Основные свойства пенобетона
Консультация
Сотрудники компании готовы ответить на интересующие вас вопросы, которые вы можете задать по телефону
8(930)830-29-69
Главная » Блоки » Пенобетонные блоки » Основные свойства пенобетона
ПОСЛЕДНИЕ СТАТЬИ
Изготовление пеноблоков при помощи форм →
Изготовление блоков из бетона →
Строительство из пористого бетона →
Вся правда о газобетоне →
Использование пенобетона. Типы пенобетонных блоков →
ВСЕ СТАТЬИ
Пенобетон – это один из видов пористого бетона. Его характеристики и область использования схожи с газобетоном. Пенобетон изготовляют с помощью распределения пузырьков воздуха по всему массиву пенистого бетона. Пену получают, используя пеногенератор и бароустановку. Главное отличие пенобетона от газобетона в том, что пенобетон изготовляют путем смешивания приготовленного раствора бетона с пеной, а газобетон изготовляют путем химических реакций.
Тип пенобетона | Маркировка средней плотности | Пенобетон, изготовленный не в автоклаве | |
---|---|---|---|
Марка прочности на сжатие | Маркировка устойчивости к низким температурам | ||
Теплоизоляционный | D400 | B 0.75 | не нормируется |
D500 | B 1 | не нормируется | |
Конструкционно-теплоизоляционный | D600 | B 2.5 | F15-F35 |
D700 | B 3.5 | F15-F50 | |
D800 | B 5 | F15-F75 | |
D1000 | B 7.5 | F15-F50 | |
Конструкционный | D1100 | B 10 | |
D1200 | B 12.![]() |
Типы бетонов подразделяются на классы исходя из прочности на сжатие. Существуют такие классы: от В 0.5 до В 60. Эта маркировка дает нам представление о величине точной прочности при сжатии материала. При изготовлении пенистого бетона нам потребуется также знать прочность, определяемую маркой (вариация от М 5 до М 600 и больше). Формула для перевода класса материала в марку такова: класс делим на величину 0.77, итог умножаем на десять, округление последнего числа до 5.
Попробуем на конкретном примере. Дано: нужно перевести класс В 600 в марку М 26. Посмотрев на приведенную выше таблицу, определяем, что пенобетону маркировки М 600 соответствует усредненный класс прочности на сжатие В 2, воспользуемся формулой для расчета: 2 делим на 0.77, умножаем на десять, получаем величину двадцать шесть, это и есть марка пенобетона, М 26. Марка пенобетона рассказывает нам о прочности пенобетона, обозначается заглавной буквой М и числовым значением.
Вид пенобетона | Марка пенобетона по средней плотности | Коэффициент теплопроводности, Вт/(м · ° С), не более, бетона в сухом состоянии, изготовленного | Сорбционная влажность бетона, % не более | ||||||
Коэффициент паропроницаемости, мг/(м · ч · Па), не менее, бетона, изготовленного | при относительной влажности воздуха 75 % | при относительной влажности воздуха 97 % | |||||||
Пенобетон, изготовленный | |||||||||
на песке | на золе | на песке | на золе | на песке | на золе | на песке | на золе | ||
Теплоизоляционный | D300 | 0,08 | 0,08 | 0,26 | 0,23 | 8 | 12 | 18 | |
D400 | 0,10 | 0,09 | 0,23 | 0,20 | 8 | 12 | 12 | 18 | |
D500 | 0,12 | 0,10 | 0,20 | 0,18 | 8 | 12 | 12 | 18 | |
Конструкционно – теплоизоляционный | D500 | 0,12 | 0,10 | 0,20 | 0,18 | 8 | 12 | 12 | 18 |
D600 | 0,14 | 0,13 | 0,17 | 0,16 | 8 | 12 | 12 | 18 | |
D700 | 0,18 | 0,15 | 0,15 | 0,14 | 8 | 12 | 12 | 18 | |
D800 | 0,21 | 0,18 | 0,14 | 0,12 | 10 | 15 | 15 | 22 | |
D900 | 0,24 | 0,20 | 0,12 | 0,11 | 10 | 15 | 15 | 22 | |
Конструкционный | D1000 | 0,29 | 0,23 | 0,11 | 0,10 | 10 | 15 | 15 | 22 |
D1100 | 0,34 | 0,26 | 0,10 | 0,09 | 10 | 15 | 15 | 22 | |
D1200 | 0,38 | 0,29 | 0,10 | 0,08 | 10 | 15 | 15 | 22 |
Положительные свойства пенобетона:
- Устойчивость к деформации.
Здания из пенобетона крайне долговечны, не подвержены деформации, со временем становятся только прочнее, имеют схожие с камнем свойства. Могут быть использованы даже при строительстве зданий с сравнительно небольшим объемным весом, так как пенобетон обладает высокой прочностью при сжатии. Увеличивает термическую резистентность стен. - Теплоизоляционность.
Использование пенобетонных блоков в строительстве зданий значительно снижает расходы на отопление этих зданий, так как стены почти не пропускают тепло. - Оптимальный микроклимат.
Дома из пенобетонных блоков называют «дышащими» домами, в них тепло зимой и прохладно летом, стены впитывают излишнюю влагу, тем самым регулируя влажность воздуха в помещениях. - Простота установки.
Блоки из пенобетона легкие и большие по размеру, что делает монтаж зданий из данного материала простым и удобным. Блоки устанавливаются быстро, по сравнению, например, с кирпичом.Блоки из пенобетона легко подвергаются резке, соответственно, установка проводки (розеток, выключателей и т.д.) не потребует больших усилий. Геометрия готовых зданий из пенобетонных блоков точная и четкая, максимальное отклонение от нормы составляет не более одного миллиметра.
- Шумоизоляция
Пенобетонные блоки отлично поглощают звуки и соответствуют действующим ГОСТам. - Отсутствие выделения вредных веществ
Здания из пенобетонных блоков не выделяют в атмосферу вредных веществ, по существующим коэффициентам экологичности стоят на втором месте после дерева (коэффициент, к примеру, кирпича – десять пунктов, пенобетона – 2). - Красота
Пенобетонные блоки легко поддаются резке, что позволяет оформить фигурные блоки, арки, закругленные углы и так далее. - Низкие расходы
Как уже было сказано выше, геометрия пенобетонных блоков крайне точна, что делает возможным соединение блоков с помощью клея и отказ от так называемых мостиков холода.За счет этого обработка стен внутри и снаружи штукатуркой не требует большого количества слоев. Вес пенобетона меньше веса привычного нам бетона от десяти до девяноста процентов. Это также снижает нагрузку на фундамент здания, соответственно, дает возможность экономии на нем.
- Низкая горючесть
Пенобетонные блоки проходили все необходимые исследования и испытания, которые показали, что пенобетонные блоки соответствуют первой степени огнестойкости. Таким образом, применение пенобетонных блоков разрешено в огнестойких конструкциях. Тяжелый бетон при сильном нагреве, к примеру, с помощью паяльной лампы, деформируется и может взорваться, такого не происходит с ячеистым бетоном. Можно сделать вывод, что арматура меньшее время находится под нагревом. Исследования показали, что пенобетон толщиной сто пятьдесят миллиметров не горит четыре часа. - Удобство в перевозках
Пенобетон легок, удобен в упаковке, всё это вкупе позволяет строителям транспортировать данный материал без особых проблем, использовать как железную дорогу, так и автотранспорт. - Широкая сфера применения
Сфера применения пенобетонных блоков во многом зависит от типа пенобетона (различие по плотности). Пенобетонные блоки высокой плотности применяют при строительстве фундаментов и межэтажных перекрытий. Пенобетон средней плотности используют в строительстве перегородок, перекрытий, утепления и шумоизоляции полов, кровли.
Сравнительный анализ пенобетонных блоков и других строительных материалов.
При сравнении пенобетона с другими строительными материалами не нужно забывать о неоспоримых преимуществах этого материала: огнестойкость, экологичность, способность пропускать воздух, легкость монтажа, низкая цена материала и небольшое количество и доступность ингредиентов для изготовления. Ниже дана таблица, анализирующая способность пенобетона проводить тепло в сравнении с другими строительными материалами. Нужно упомянуть, что пенобетонные блоки могут быть соединены с помощью клея, без использования мостиков холода.
Материал | Плотность, кг/м3 | Теплопроводность, Ккал/м2г0С |
---|---|---|
Мрамор | 2700 | 2,9 |
Бетон | 2400 | 1,3 |
Пористый глиняный кирпич | 2000 | 0,8 |
Пенобетон | 1200 | 0,38 |
Пенобетон | 1000 | 0,23 |
Пенобетон | 800 | 0,18 |
Пенобетон | 600 | 0,14 |
Пенобетон | 400 | 0,10 |
Пробка | 100 | 0,03 |
Минеральная вата | 100 | 0,032 |
Пенополистирол | 25 | 0,030 |
Пенополистирол | 35 | 0,022 |
СВОЙСТВА ПЕНОБЕТОННЫХ БЛОКОВ из ячеистого бетона
Главная > Пенобетон > Свойства пенобетона
Пенобетонные блоки из ячеистого бетона предназначены для строительства малоэтажных жилых и промышленных зданий. В связи с высокой точностью размеров блоков (имеют допуск на линейные размеры +/-1,0 мм) можно осуществлять высококачественную кладку стен на специальный клей для пенобетона с толщиной швов до 3 мм., что позволяет избежать “мостиков холода”. Пенобетонные блоки ячеистого бетона различной толщины можно использовать для заполнения проемов при монолитном железобетонном домостроении. Также благодаря своей структуре блоки ячеистого бетона легко и точно по размеру пилятся, сверляться, фрезеруются, что позволяет решать вопросы архитектурной выразительности.
ЭКОНОМИЧНОСТЬ:
При строительстве зданий из пенобетонных блоков ячеистого бетона:
- Снижается нагрузка на фундамент.
- Снижается расход кладочной смеси.
- Можно ограничиться шпаклевкой внутренней поверхности стен, избавившись от их выравнивания штукатуркой.
- Снижается трудоемкость кладки, т.к. вместо 15-20 кирпичей укладывается 1 пенобетонный блок.
При всем этом вес кирпичей составляет приблизительно 80 кг, а вес 1 блока ячеистого бетона 18 кг.
ОБРАБАТЫВАЕМОСТЬ:
Ячеистый бетон легко обрабатывается инструментами,имеющимися в любом доме. Прорезать каналы под водопровод, элекропроводку и отверстия под розетки можно при помощи бытовой электродрели, применяя сменные насадки. Пилой можно сделать любую конфигурацию дверных проемов и ниш. Рубанком сглаживаются любые неровности.
ТЕПЛОИЗОЛЯЦИОННЫЕ СВОЙСТВА:
Ячеистый бетон соединяет в себе преимущества, которые могут быть достигнуты только при комбинации различных материалов. Благодаря своей пористой структуре он одновременно массивен и легок. С одной стороны, он прочен и не сгораем, как камень, с другой-обладает легкостью и простотой обработки, свойственному дереву. Заключенный в порах воздух приводит к исключительному теплоизоляционному эффекту. Так термическое сопротивление ограждающих конструкций из пенобетона в 3 раза выше, чем из керамического кирпича и в 8 раз выше, чем из тяжелого бетона. Особенно ценно то, что изделия годятся не только для возведения внешних и внутренних стен. Но и для возведения покрытий и перекрытий, что приводит к снижению тепловых потерь всего здания. Пенобетонные блоки ячеистого бетона могут использоваться без дополнительного утепления. В процессе эксплуатации зданий из пенобетонных блоков ячеистого бетона расходы на отопление снижаются на 25 %.
ЗВУКОИЗОЛЯЦИЯ:
Конструкции дома из ячеистого бетона удовлетворяют нормативным требованиям по звукоизоляции по СНиП 11-12-77 “Защита от шума”. С увеличением плотности блоков ячеистого бетона повышаются его звукоизоляционные свойства: при толщине стены100 мм – 35-37 ДБ; 125 мм – 44-46ДБ; 150 мм – 55-57 ДБ; 175 мм – 64-66 ДБ.
ПОЖАРОБЕЗОПАСНОСТЬ:
Ячеистый бетон относится к негорючим строительным материалам. Может испльзоваться для теплоизоляции при температуре изолируемой поверхности до +400 С согласно ГОСТа 30247. 0-94. Предел огнестойкости без нарушения структуры материала по времени стены, выполненной из блоков ячеистого бетона толщиной 100 мм, составляет 2 часа, а предел распространения огня принимается равным 0 см.
ЭКОЛОГИЧНОСТЬ:
Ячеистый бетон по своим экологическим свойствам стоит в одном ряду с деревянными конструкциями. Одним из преимуществ ячеистого бетона является его теплоизоляционные свойства, что делает его предпочтительным при использовании, как в теплых, так и в холодных климатических условиях. Ячеистый бетон “дышит”, регулируя влажность в помещении. Ячеистый бетон не гниет, не горит, в отличие от дерева, и не ржавеет по сравнению с металлом. Пенобетонные блоки ячеистого бетона изготавливают из натурального природного сырья, они не содержат радиоактивных и канцерогенных веществ, тяжелых материалов, полимеров и синтетики, что подтверждено соответствующими санитарно-эпидемологическими заключениями. Микроклимат в домах из пенобетонных блоков ячеистого бетона близок к микроклимату в деревянных домах: в жару в них прохладно, а зимой тепло и уютно.
Прочность пенобетона | Энциклопедия MDPI
Пенобетон представляет собой тип бетона, который производится путем блокировки воздушных пустот в растворе с помощью подходящего пенообразователя и классифицируется как легкий бетон. Обладает малым собственным весом, минимальным расходом заполнителя (не используется крупный заполнитель), высокой текучестью, контролируемой низкой прочностью и теплоизоляцией. На свойства пенобетона влияет способ производства и используемые материалы. В отличие от других пористых легких бетонов, сборные пены с пенообразователями добавляются к свежему цементному тесту и раствору. Воздушные поры, приносимые пенами, составляют 10–90% от объема закаленного тела. Эта пористая структура лежит в основе механических свойств, теплопроводности, акустических и прочностных свойств пенобетона. Одним из преимуществ пенобетона является его снижение веса (до 80%) по сравнению с обычным бетоном. Пузырьки воздуха равномерно распределяются в теле пенобетона. Пористая структура может быть нарушена при смешивании, транспортировке и укладке свежего бетона, поэтому он должен иметь неподвижные стенки. Пузырьки воздуха имеют размер примерно от 0,1 до 1 мм. Плотность пенобетона в основном зависит от количества пены и колеблется в пределах от 400 до 1600 кг/м 9 .0003 3 . Его можно использовать для структурных, перегородочных, изоляционных и заполняющих работ с превосходной акустической/тепловой изоляцией, высокой огнестойкостью, более низкими затратами на сырье, более легкой перекачкой и, наконец, отсутствием уплотнения, вибрации или выравнивания.
пенобетон физико-механические свойства дизайн смеси теплопроводность микроструктура
1.

ASTM C666 определяет способность бетона нормальной массы противостоять циклам быстрого замораживания и оттаивания и приводит к разрушению типа микротрещин и отложений при проводке по пенобетону [1] [2] . Тикальский и др. [1] разработала модифицированную процедуру испытания на замораживание-оттаивание на основе ASTM C666. Прочность на сжатие, начальная глубина проникновения, переменные скорости впитывания оказывают важное влияние на производство морозостойкого пенобетона. Сообщалось, что плотность и проницаемость не являются важными переменными.
Вода, попадающая в бетон, расширяется во время замерзания и создает напряжения. Пористая структура пенобетона обеспечивает хорошую устойчивость к замораживанию и оттаиванию за счет дополнительного пространства, в котором вода может расширяться [3] . Пенобетоны обычно обладают хорошей устойчивостью к FT по сравнению с негазобетоном. Шон и др. [4] показали в результате своей работы, что пенобетоны с высокой пористостью не всегда обеспечивают более высокое сопротивление FT. Было обнаружено, что на сопротивление FT пенобетона влияет больше, чем размер воздушной полости, и сообщалось, что количество воздушных пустот менее 300 мкм играет решающую роль в уменьшении повреждения FT в пенобетоне. В связи с увеличением количества циклов замораживания-оттаивания на поверхности образцов пенобетона увеличиваются потери массы и появляются сколы [5] . Тип пены, используемой в пенобетоне, влияет на потерю массы и потери прочности [6] . Разница в плотности влияет на сопротивление FT пенобетонов. Сообщалось, что пенобетоны с низкой плотностью испытывают большее расширение и большую потерю массы и прочности. Эта ситуация была связана с более крупной и взаимосвязанной структурой пор пенобетонов низкой плотности. Такая пористая структура позволит большему поглощению воды бетоном, в результате чего пенобетон будет демонстрировать более низкую устойчивость к FT 9.0003 [7] .
2. Стойкость к повышенным температурам
При воздействии высоких температур пенобетон сильно дает усадку из-за высокой скорости испарения. Однако по сравнению с обычным бетоном пенобетон имеет приемлемое значение FR [8] . ТР связана с изменением механических свойств пенобетона при воздействии высоких температур [9] . Как правило, предел прочности при сжатии пенобетона увеличивается до 400 °С. Причина в том, что высокая температура стимулирует реакционную способность вяжущих. Однако после этого прочность постепенно снижается [10] [11] [12] .
При повышении температуры, которой подвергается пенобетон, происходит потеря твердости. Сообщалось, что эта потеря твердости начинается после 90 °C независимо от плотности [13] . Сообщалось, что пенобетоны плотностью 950 кг/м 3 выдерживают горение до 3,5 ч, а бетоны плотностью 1200 кг/м 3 — до 2 ч [9] . Полые конструкции помогают уменьшить воздействие высокой температуры на пенобетон [14] . Пористая структура пенобетона обычно связана с плотностью, и сообщалось, что на нее не влияют высокие температуры. По этой причине потеря прочности при высоких температурах обусловлена изменением химических компонентов пенобетона [13] .
Минеральные добавки и заполнители влияют на свойства пенобетона после воздействия высоких температур. Пуццолановые добавки могут обеспечить увеличение прочности при повышении температуры. Прочность на сжатие увеличилась после того, как пенобетон, содержащий РГК и ВМФ, выдержали при температуре 200–400 °С. При температуре выше 400 °С из-за потери воды при кристаллизации происходит изменение концентрации Ca(OH) 2 , а также изменение морфологии и образование микротрещин вызывают снижение прочности на сжатие [11] . Теплостойкость геополимерного пенобетона оценивают по изменению прочности на сжатие и объема после воздействия высоких температур. Чжан и др. [10] полностью работал на пенобетоне, произведенном с комбинацией FA и FA-шлака. 100-процентное увеличение прочности на сжатие до 800 ° C было испытано в геополимерном пенобетоне (GFC) с FA. Однако в ГПК, приготовленных с комбинацией ТВС и шлака, наблюдалось повышение прочности на сжатие до 100 °С, а затем прочность на сжатие снижалась. Потому что он гораздо сильнее разлагается с потерей химически связанной воды, чем гели, богатые кальцием, образованные комбинацией ТВС и шлака.
Трещины появляются в пенобетоне при повышении температуры. Сообщалось, что трещины появляются на поверхности пенобетона после 400 °С и увеличиваются с повышением температуры. В то же время трещины, наблюдаемые в пенобетонах высокой плотности, более многочисленны [15] . Кроме того, на образование трещин влияют способы охлаждения образцов (воздухом или водой). Было замечено, что медленно охлаждающиеся (на воздухе) образцы имели большую склонность к растрескиванию. Увеличение количества трещин увеличивает потерю прочности [11] .
3. Акустические
Наименее изучены акустические свойства пенобетона. На звукоизоляцию пенобетона могут влиять такие факторы, как содержание пены, количество, размер и распределение пор и учет их однородности. По сравнению с обычной бетонной стеной пенобетонные ячеистые стены пропускают звуковую частоту с более высоким значением до 3%, а пенобетон имеет коэффициент звукопоглощения в 10 раз выше, чем плотный бетон [8] . Сообщалось, что в пенобетоне, содержащем ФА, звукопоглощение увеличивается в диапазоне частот 800–1600 Гц. Это было связано с изменением свойств пор при добавлении FA. Кроме того, увеличение дозировки пены оказывает меньшее влияние на низких частотах. Сообщается, что среднечастотные пенобетоны (600–1000 Гц) являются более эффективным материалом [10] .
Чжуа и др. [10] сообщают, что тонкие образцы ГПЦ толщиной 20–25 мм демонстрируют впечатляющий показатель звукопоглощения (α = 0,7–1,0) в области низких частот 40–150 Гц, а среднее звукопоглощение ГПЦ лучше чем плотный бетон. Мастали и др. [16] показали, что щелочно-активные шлаковые пенобетоны, разработанные с содержанием пены 25–35%, в своих исследованиях показали отличные максимальные коэффициенты звукопоглощения (0,8–1) в области средних и высоких частот. Сообщалось, что существует линейная корреляция между плотностью и акустическими свойствами щелочно-активных шлаковых пенобетонов, использованных в исследовании. Другими словами, акустические свойства улучшаются за счет уменьшения плотности.
4. Теплопроводность
Пористость и плотность бетона являются двумя основными параметрами, влияющими на значение теплопроводности [17] . Изменение доли пены влияет на плотность в сухом состоянии, изменение плотности в сухом состоянии влияет на теплопроводность [18] . По мере увеличения плотности в сухом состоянии теплопроводность увеличивается.
Чжан и др. [10] , при исследовании механических, теплоизоляционных и акустических свойств геополимерного пенобетона установили, что при повышении плотности в сухом состоянии с 585 до 1370 кг/м 3 теплопроводность увеличилась с 0,15 до 0,48 Вт/мК. Количество пористости увеличивается по мере уменьшения плотности в сухом состоянии. Увеличение пористости снижает теплопроводность. Точно так же увеличение В/Ц снижает теплопроводность за счет увеличения пористости [19] . Другими словами, теплопроводность увеличивается с увеличением плотности в сухом состоянии. Сообщалось, что GFC обладает лучшими теплоизоляционными свойствами, чем пенобетон на портландцементе (такая же плотность и/или прочность).
Теплопроводность зависит от типа используемого цемента и вспенивающего газа. Чем ниже теплопроводность используемого цемента и пенообразователя, тем ниже теплопроводность пенобетона [18] [20] [21] . Ли и др. [20] исследовали влияние вспенивающего газа и типа цемента на теплопроводность пенобетона. Для исследования был приготовлен пенобетон с использованием четырех различных вспенивающих газов (воздух, водород, кислород, углекислый газ) и трех различных видов цемента (ПДК, ПАК, ОПЦ). Теплопроводность пенобетона на основе ПДК выше, чем у других цементов. Теплопроводность пенобетона при использовании вспенивающего газа водорода была самой высокой, а при использовании вспенивающего газа углекислого газа – самой низкой. Это связано с тем, что газообразный диоксид углерода имеет значительно меньшую теплопроводность (0,014 Вт/мК), чем атмосферный (0,025 Вт/мК) и аммиачный газы (0,025 Вт/мК). Поэтому использование пенообразователя углекислого газа является эффективным методом улучшения теплоизоляции [22] . Частичная (30%) замена ТВС на цемент позволила снизить теплоту гидратации. Использование легких заполнителей с низкой плотностью частиц среди воздушных пустот, искусственно введенных в матрицу строительного раствора, способствовало снижению теплопроводности [23] . В исследовании, проведенном Gencel et al. [17] теплопроводность пенобетона уменьшалась с RCA. Это происходит благодаря повышенной пористости при использовании RCA. Увеличение пористости снижает теплопроводность. Точно так же теплопроводность снизилась при использовании геополимера RCA в пенобетоне.
Равномерное и увеличенное количество воздушных пустот при использовании RCA могло обеспечить это [24] . SF улучшает распределение отверстий, делая поры более однородными и закрытыми круглыми, что повышает эффективность изоляции [25] . Использование кокосового волокна снизило теплопроводность пенобетона. Кокосовое волокно имеет низкую теплопроводность благодаря высокой термостойкости. Это можно показать как еще один пример, доказывающий, что материалы с низкой теплопроводностью снижают теплопроводность пенобетона. Кроме того, образование равномерных воздушных пустот в бетоне за счет добавления фибры является еще одним фактором, снижающим теплопроводность [26] . Результаты различных исследований теплопроводности приведены в Таблице 1 .
Таблица 1. Результаты различных исследований теплопроводности.
Каталожные номера | Цемент и добавки | Вспенивающийся материал | Плотность (кг/м 3 ) | Теплопроводность (Вт/мК) |
---|---|---|---|---|
[27] | ПК + ГГБФС | Н 2 О 2 | 150–300 (сухой) | 0,05–0,070 |
[21] | ПДК | Н 2 О 2 | 300–1000 (сухой) | 0,136–0,347 |
[19] | ПК + ФА | Белок | 975–1132 (оптом) | 0,225–0,264 |
[28] | ПК + ФА | Белок | 970–1307 (сухой) | 0,24 |
[29] | ПК + ФА | Синтетика | 860–1245 (сухой) | 0,021–0,035 |
[30] | ПК + ФА + СФ | Синтетика | 11:00–16:00 (сухой) | 0,40–0,57 |
[31] | ПК | Белок | 650–1200 (сухой) | 0,23–0,39 |
[10] | ГФК | – | 585–1370 | 0,15–0,48 |
[17] | ПК + ФА | Белок | 594–605 (вес шт.![]() | 0,154–0,162 |
[32] | ПК + БТ | – | 300–600 | 0,06–0,15 |
Пенобетон физико-механические свойства
Пенобетон – искусственный пористый строительный материал с равномерно распределенными замкнутыми воздушными ячейками (порами), получаемый в результате твердения смеси, состоящей из вяжущего, кремнеземистого компонента, технической пены, химические добавки и вода. Госстрой РФ пришел к выводу, что пенобетоны обладают рядом характеристик, существенно отличающих их от многих традиционных строительных материалов. Изделия, изготовленные из них, лучше всего приспособлены к сложным климатическим и экономическим условиям России и обладают рядом важных преимуществ: низкой средней плотностью, малой теплопроводностью, меньшим водопоглощением и огнестойкостью.
Характеристики | Норма для марки продукта | ||||||||||
Д300 | Д350 | Д400 | Д500 | Д600 | Д700 | Д800 | Д900 | Д1000 | Д1100 | Д1200 | |
1. | 300 | 350 | 400 | 500 | 600 | 700 | 800 | 900 | 1000 | 1100 | 1200 |
2.Класс изделий по параметрам прочности на сжатие, МПа, не менее | — — | — — | В0 5 | В0, 75 | В1 | Б1, 5 | В2 | Б2, 5 | В5 | В7, 5 | В12, 5 |
3. | 0,08 | 0,9 | 0,10 | 0,12 | 0,14 | 0,18 | 0,21 | 0,24 | 0,29 | 0,34 | 0,38 |
4. Переносимая влажность по массе, %, не более | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 |
5. | 0,26 | 0,24 | 0,23 | 0,20 | 0,17 | 0,15 | 0,14 | 0,12 | 0,11 | 0,1 | 0,1 |
6. Влажность сорбционная, % не более: (при относительной влажности 75%) | 8 | 8 | 8 | 8 | 8 | 8 | 10 | 10 | 10 | 10 | 10 |
Физико-механические свойства изделий из пенобетона на основе золы-уноса 907:15
В2
907:1535
Характеристики | Норма для марки продукта | ||||||||||
Д300 | D350 | Д400 | Д500 | Д600 | Д700 | Д800 | Д900 | Д1000 | Д1100 | Д1200 | |
1. | 300 | 350 | 400 | 500 | 600 | 700 | 800 | 900 | 1000 | 1100 | 1200 |
2.Класс изделий по параметрам прочности на сжатие, МПа, не менее | — — | — — | В0 5 | В0, 75 | В1 | Б1, 5 | Б2, 5 | В5 | В7, 5 | В12, 5 | |
3. | 0,08 | 0,085 | 0,9 | 0,10 | 0,13 | 0,15 | 0,18 | 0,20 | 0,23 | 0,26 | 0,29 |
4. Переносимая влажность по массе, %, не более | 35 | 35 | 35 | 35 | 35 | 35 | 35 | 35 | 35 | 35 | |
5. | 0,23 | 0,21 | 0,20 | 0,18 | 0,16 | 0,14 | 0,12 | 0,11 | 0,10 | 0,09 | 0,08 |
6. Влажность сорбционная, % не более: (при относительной влажности 75%) | 12 | 12 | 12 | 12 | 12 | 12 | 15 | 15 | 15 | 15 | 15 |
Пенобетон сочетает в себе преимущества камня и дерева и не требует комбинации с другими строительными материалами. По долговечности пенобетон, в отличие от традиционно используемых минеральной ваты и пенопласта, которые теряют свои свойства, со временем только улучшает свои прочностные показатели.
Изделия из пенобетона обладают высокими гигиеническими свойствами, так как не содержат вредных для здоровья человека химических и синтетических веществ.
Материалы для приготовления пенобетона
Исходные компоненты для приготовления пенобетонных смесей должны соответствовать требованиям стандартов и технических условий на эти материалы и обеспечивать получение изделий с заданными свойствами.
Портландцемент ПЦ-500 А0, ПЦ-400 Д20 ГОСТ 30515 и ГОСТ 10178 применяется в качестве вяжущего для изготовления пенобетонных изделий. Песок речной мытый или зола-унос ГОСТ 25818-91 используются в качестве кремнеземистого компонента для производства пенобетона.
Песок не должен содержать зерен крупнее 2 мм. Содержание пыли и глинистых частиц должно быть не более 2-3%. Песок должен содержать не менее 90 % SiO2 (всего) или не менее 75 % кварца.