Свайный фундамент расчет: Онлайн калькулятор свайного фундамента – рассчитать стоимость фундамента на винтовых сваях

Содержание

Онлайн калькулятор свайного фундамента – рассчитать стоимость фундамента на винтовых сваях

Минимальное количество свай для оформления заказа с монтажом 10 штук

Воспользуйтесь нашим онлайн-калькулятором для расчета свайного фундамента любого строения. Калькулятор поможет рассчитать необходимое количество свай и стоимость монтажных работ.

Обращаем ваше внимание, что данный расчет фундамента является упрощенным и не может учесть все индивидуальные особенности вашего проекта. Для их уточнения наш специалист свяжется с вами в ближайшее время.

Калькулятор не учитывает внутреннюю несущую стенку строения.

Наш сервис позволяет предварительно рассчитать винтовой фундамент, чтобы заранее прикинуть его стоимость. Если вам требуются монтажные работы, то на объект будет отправлена бригада опытных строителей, которые полностью укомплектованы необходимым оснащением, включающим, в том числе генераторы и баки с водой. После того как вы укажете место для вашего будущего свайного фундамента, строители приступят к монтажным работам. У вас есть возможность принять работу в конце дня и обсудить с бригадиром интересующие вас вопросы, касающиеся свайного фундамента. Монтаж фундамента до 25 свай длится всего 1 день. На произведенный нашими специалистами фундамент мы даем гарантию сроком на 10 лет.

Точный расчет, в процессе которого определяется стоимость винтовых свай для фундаментов домов и других конструкций, выполняется в режиме онлайн на базе введенных заказчиком параметров. Для этого предусмотрен удобный и наглядный сервис.

Чтобы рассчитать стоимость фундамента, введите необходимые данные о грунте, размерах, типе строения и его параметрах в калькулятор. Если у вас возникнут дополнительные вопросы, задайте их нашим специалистам. Они помогут вам разобраться и правильно рассчитать винтовой фундамент. Контактные телефоны указаны в верхней части страницы нашего сайта.

Прежде всего, следует рассчитать стоимость винтовых свай для фундамента. Для этого необходимо учесть ряд важных параметров:

Количество свай. Обычно расчет ведется из предположения, что расстояние между сваями не может превышать 3 метров. Таким образом, для фундамента небольшого одноэтажного дома 6х6 метров достаточно девяти свай. Однако для двухэтажного здания лучше располагать их на расстоянии 2-2,5 метра друг от друга.

Диаметр сваи. Здесь все зависит от потенциальной нагрузки фундамента. Для беседки подойдут винтовые сваи диаметром 89 мм, а для дома нужно выбирать классические 108-миллиметровые.

Тип наконечника. Наконечник сваи может быть сварным или литым. Конкретный вариант выбирается, исходя из особенностей грунта. Опорные элементы с литым наконечником обойдутся несколько дороже, но их стоимость компенсируется высокими антикоррозийными характеристиками.

Длина. На стоимости винтовых свай, разумеется, напрямую сказывается их длина. В большинстве случаев она составляет 2,5 метра, однако специалист в обязательном порядке должен провести пробное бурение, чтобы определить точные значения длин свай для конкретного фундамента.

Наличие и размер оголовков. Оголовки привариваются поверх свай и служат опорой для плиты или балки ростверка.

На следующем этапе определяется стоимость обвязки. Обвязка свай может понадобиться в случае необходимости обеспечения дополнительной их стабильности в горизонтальной плоскости. К примеру, обвязка желательна, если высота свай над уровнем земли превышает 50 см или в случае нестабильных торфяных грунтов. Однако даже в общем случае обвязка свай никогда не бывает лишней, поскольку данная операция значительно повышает конструктивную прочность фундамента.

При финальном определении стоимости работ учитываются дополнительные факторы: необходимость предоставления монтажных услуг, расстояние до объекта (расходы на горючее), наличие на объекте электричества (необходима компенсация затрат на доставку и эксплуатацию портативного дизельного генератора).

Расчет свайного фундамента

Для расчета веса строения достаточно знать удельный вес материалов, которые будут использованы при его строительстве и их предполагаемые объемы. Это не требует каких-то специальных знаний и навыков. Можно попробовать запросить нужные данные у поставщика стройматериалов. 

Мы при выполнении расчетов будем использовать справочные данные с усредненными значениями удельного веса конструкций дома (стен, перекрытий, кровли), приведенные в таблице 1.

Таблица 1 – Справочные данные с усредненными значениями удельного веса конструкций дома: стен, перекрытий, кровли.

Удельный вес 1 м2 стены

Каркасные стены толщиной 200 мм с утеплителем

40-70 кг/м2

Стены из бревен и бруса

70-100 кг/м2

Кирпичные стены толщиной 150 мм

200-270 кг/м2

Железобетон толщиной 150 мм

300-350 кг/м2

Удельный вес 1 м2 перекрытий

Чердачное по деревянным балкам с утеплителем, плотностью до 200 кг/м3

70-100 кг/м2

Чердачное по деревянным балкам с утеплителем плотностью до 500 кг/м3

150-200 кг/м2

Цокольное по деревянным балкам с утеплителем, плотностью до 200 кг/м3

100-150 кг/м2

Цокольное по деревянным балкам с утеплителем, плотностью до 500 кг/м3

200-300 кг/м2

Железобетонное

500 кг/м2

Удельный вес 1 м2 кровли

Кровля из листовой стали

20-30 кг/м2

Рубероидное покрытие

30-50 кг/м2

Кровля из шифера

40-50 кг/м2

Кровля из гончарной черепицы

60-80 кг/м2

При самостоятельном выполнении расчетов стоит учитывать, что согласно п. 7.1 СП 20.13330.2016 «Нагрузки и воздействия» расчетное значение нагрузки следует определять, как произведение ее нормативного значения на коэффициент надежности по нагрузке (γf) для веса строительных конструкций, соответствующий рассматриваемому предельному состоянию:

Таблица 2 – Таб. 8.2. СП 20.13330.2016 «Нагрузки и воздействия»

Конструкции сооружений и вид грунтов

Коэффициент надежности, γf

Конструкции

Металлические

Бетонные (со средней плотностью свыше 1600 кг/м), железобетонные, каменные, армокаменные, деревянные

Бетонные (со средней плотностью 1600 кг/м, изоляционные, выравнивающие и отделочные слои (плиты, материалы в рулонах, засыпки, стяжки и т.п.), выполняемые:

в заводских условиях

на строительной площадке

Грунты:

В природном залегании

На строительной площадке

 

1,05

1,1

 

 

1,2

1,3

 

1,1

1,15

Выполним необходимые расчеты на примере каркасно-щитового дома с мансардой с размерами в плане 6х9 м.

Чтобы посчитать вес от стен дома необходимо вычислить их периметр. Периметр наружных стен + внутренние стены: Р=47 м, среднюю высоту стен примем h=4,5 м. Тогда вес от конструкции стен будет равен: Р х h х удельный вес материала стен.

47 м х 4,5 м х 70 кг/м2 = 14 805 кг = 14,8 т.

Далее посчитаем вес крыши. Принимаем, что вес крыши (деревянная стропильная система с покрытием из металлочерепицы) равен 40 кг/ м

2 (суммарный вес металлочерепицы, обрешетки, стропилы). Тогда вес крыши будет равен: S крыши х удельный вес 1 м2

92 м2 х 40 кг/м2 = 3 680 кг = 3,7 т.

Также необходимо посчитать вес от перекрытий. Принимаем, что вес деревянного пола вместе с утеплителем будет равен 100 кг/м2. Тогда вес от перекрытий будет равен: S перекрытия*удельный вес*количество.

54 м2 х 0,1 т/м2 х 2 = 10,8 т.

После того как выполнены все необходимые расчеты, полученный вес сооружения умножаем на коэффициент надежности, о котором мы говорили ранее (в расчете для каркасно-щитового дома коэффициент принимаем равным 1,1 – для деревянных конструкций):

29,3 т х 1,1 = 32,2 т

Таким образом, нагрузка от самого здания составит 32,2 т. Этот вес принят условно, без вычета дверных и оконных проемов.

Свайный фундамент, расчет количества свай

Одной из основных задач, возникающих во время проектирования строительства будущего здания, является расчет нагрузки основной конструкции на фундамент. От полученных результатов зависит выбор типа фундамента и его конфигурация. Эта статья посвящена особенностям свайного фундамента дома и его преимуществам. Будут рассмотрены условия, при которых свайная конструкция наиболее предпочтительна, а также продемонстрированы примеры того, как рассчитать количество свай с учетом потенциальных нагрузок на фундамент и характеристик грунта.

Что такое свайный фундамент и из чего он состоит

Основой для этого типа фундамента служат полые стальные сваи, равномерно распределяемые по периметру будущих несущих стен дома. Внешняя поверхность покрывается защитным антикоррозионным слоем на основе цинка или полимерного материала, а внутренняя поверхность защищается бетоном, заливаемой в установленную сваю. Верхняя часть свай для фундамента соединяется посредством сварки с оголовком, который в свою очередь будет поддерживать ростверк – конструкцию, объединяющую отдельные сваи в единую основу. Чаще всего для изготовления ростверка используется бетон, стальные швеллеры и двутавры, реже – деревянный брус.

В отличие от ленточного или монолитного фундамента, также нагруженного по всему периметру здания, для монтажа не потребуется значительный объем земляных работ. Фундамент на сваях рекомендуется использовать в следующих случаях:

  • Грунты, находящиеся под стройплощадкой, характеризуются неустойчивостью, высокой влажностью, усадкой под воздействием сезонных факторов;
  • Застройка проводится на территории со сложным рельефом, на котором крайне сложно или невозможно установить обычные фундаменты;
  • Климатические условия в местности, а также уровень грунтовых вод, согласно действующим правилам СНиП, вынуждают сооружать массивный бетонный фундамент, требующий значительных денежных вложений;
  • При сооружении каркасного здания, как правило, используется именно свайный фундамент.

Виды свай для фундамента

Различают две основные категории, отличающиеся по способу противодействия осадкам свайных фундаментов: стоечные и висячие. Устойчивость висячей сваи обеспечивается за счет силы трения между внешней поверхностью и окружающим ее после погружения грунтом. Стоечные оснащены упором возле своих оснований, который удерживает конструкцию, основываясь на плотных слоях грунта под ним. А также упором служат лопасти винтовых свай, дополнительно трамбующие грунт во время монтажа.

Разделение свай по способу строительства:

По названию понятно, что данные сваи забиваются в грунт с помощью специальных механизмов (строительные пневмомолоты). Их особенностью является тот факт, что при забивании сила, воздействующая на нее, берется из расчета свайного фундамента. Таким образом, она погружается до глубины, на которой находится довольно прочный слой грунта, способный выдержать расчетную массу дома. Данный тип считается очень устойчивым, при забивании грунт вокруг нее и под ней дополнительно уплотняется. Монтаж забивных свай практически не используется при строительстве небольших домиков и частных коттеджей, так как требует применения сложной спецтехники.

Изделия состоят из стальной трубы и приваренных в нижней части лопастей либо это цельнолитая конструкция (что предпочтительнее в плане долговечности). Лопасти способствуют проникновению в грунт при ее закручивании, а после установки они удерживают на себе нагрузку на свайный фундамент и не дают ей проворачиваться. В верхней части изделия находятся специальные отверстия, с помощью которых свая ввинчивается в землю. При этом этот процесс вполне можно осуществить вручную, контролируя вертикальное положение во время работы. Внутренний объем заполняется бетоном для увеличения массы и защиты от коррозии.

Порядок установки буронабивных свай не предусматривает использование готовых металлоконструкций. Роль сваи в данном случае выполняет бетон, залитый в предварительно пробуренную скважину. Если грунт недостаточно плотный также потребуется опалубка. Этот способ достаточно прост в применении и подходит для индивидуального строительства. Единственный нюанс: расчетная нагрузка на сваю может оказаться слишком высокой для избранного в качестве основания слоя грунта.

В дальнейших примерах статьи, иллюстрирующих как точно рассчитать свайный фундамент, будут использоваться параметры предельной нагрузки винтовых свай. В следующей таблице вкратце перечислим наиболее распространенные марки данных изделий.

Таблица 1

Подробно о свайном фундаменте с ростверком

С одной стороны, ростверк выполняет функцию связного элемента для отдельных свай, с другой – это основа для остальной конструкции здания. Ростверк и сваи условного фундамента объединяются попарно (ленточный тип связки) либо объединяются все оголовки (плиточный тип). Ростверк для дома может изготавливаться из таких материалов:

  • Армированный бетон. Бетонная лента укладывается на оголовки свай, расположенные на уровне земли. Во время проектирования также указываются места прокладывания неглубоких траншей, проходящих вглубь ростверка.
  • Бетонный ростверк подвесного типа. Аналогичный способ, при котором между грунтом и ростверком оставляется зазор. Этот промежуток позволяет компенсировать возможные колебания грунта (в рамках нормы).
  • Ростверк из железобетона. Основой служит двутавр и швеллер (для монтажа под несущие стены СНиП рекомендует) швеллер 30.
  • Деревянные брусья. В последнее время практически не применяются.

Как рассчитать количество свай для фундамента

Правильный расчет количества используемых свай нуждается в предварительной геодезической разведке. Прежде всего, необходимо рассчитать уровень промерзания грунта в зимний период, учитывая, что данный показатель отличается в разных регионах. Для прочной установки сваи ее нижний конец должен находиться ниже этого уровня.

А также необходимо выяснить степень плотности слоев грунта. Чем выше плотность, тем меньшую глубину сваи следует закладывать на этапе проектирования. К примеру, для полускальных и крупноблочных пород она будет минимальной (но не меньше 0,5 метра), а для песчаных и глинистых грунтов придется углубляться по максимуму.

Чтобы посчитать количество и тип используемых свай необходимо учитывать множество параметров. Для упрощения задачи можно использовать специальный онлайн калькулятор, но для общего понимания процесса лучше пройтись по всем этапам расчета самостоятельно.

1. Вычисление потенциальной предельной нагрузки на сваи

Перед началом расчета количества свай для фундамента следует выяснить несущую способность отдельной сваи. Общий вид формулы выглядит следующим образом:

В этом случае W является искомой фактической несущей силой, Q – расчетное значение несущей силы, рассчитанное для отдельной сваи по материалу, размерам и характеристикам грунта; k – дополнительный «коэффициент надежности», расширяющий эксплуатационный запас фундамента.

2. Вычисление расчетной нагрузки на сваи

Далее нам необходимо найти параметр Q, без которого расчет свайного фундамента невозможен. Расчетная нагрузка определяется по формуле:

Где S равно площади поперечного сечения лопастей сваи, а Ro – это показатель грунтового сопротивления на глубине размещения лопастей. Сопротивление грунта можно брать из готовой таблицы:

Таблица 2

Что касается «коэффициента надежности» условного фундамента, его величина может варьироваться в пределах 1,2-1,7. Логично, что чем меньше коэффициент, тем ниже себестоимость фундамента на этапе проектирования, поскольку для достижения заданного значения несущей силы не потребуется использования большого количества свай. Чтобы уменьшить коэффициент следует провести качественный и достоверный анализ грунта на стройплощадке, привлекая специалистов.

А также для данных целей используется методика ввинчивания эталонной скважины. Ее применение зачастую требуется для расчета осадка свайных фундаментов на промышленных стройплощадках и при строительстве многоквартирных зданий, как того требует СНиП. Но при желании эталонная скважина может буриться и при индивидуальном строительстве.

3. Расчет нагрузки от конструкции здания

На завершающем этапе проектирования свайного фундамента проводится расчет количества свай. Для этого потребуется просуммировать все элементы конструкции здания: от капитальных стен и перекрытий, до стропильной системы и кровли. Провести точное вычисление всех компонентов довольно сложно, поэтому рекомендуем воспользоваться одним из специализированных калькуляторов. И также в калькулятор расчета вносятся эксплуатационные нагрузки, включающие предметы интерьера, мебель, бытовую технику и даже проживающих в доме людей.

4. Подсчет требуемого количества свай

Перед тем как рассчитать количество задействованных свай нам нужно получить на предыдущих этапах две величины: совокупную массу здания (M) и несущую способность сваи (W) умноженную на «коэффициент надежности». Значение несущей способности можно взять из Таблицы 1. Итак, если масса равна 58 тонн, а скорректированная несущая способность сваи СВС-108 равна 3,9 тонн, то:

Как показал пример расчета, для дома весом в 58 тонн потребуется 15 свай марки СВС-180. Следует отметить, что это значение приблизительно и не учитывает правила точного распределения свай согласно СНиП:

  • Первые должны быть установлены в точках пересечения несущих конструкций;
  • Остальные монтируются равномерно между обозначенными углами;
  • Минимальное расстояние между отдельными сваями 3 метра;

Как правило, в процессе проектирования выясняется, что для соблюдения вышеперечисленных правил потребуется немного больше свай, чем показали расчеты.

5. Глубина установки свай и расстояние между ними

Базовое значение глубины установки сваи рассчитывается исходя из глубины промерзания грунта в конкретно регионе, плюс 25 сантиметров. И также перед тем как рассчитать свайный фундамент, необходимо выяснить:

  • Уровень прочности сваи по материалу и конструкции;
  • Несущую способность грунта;
  • Провести расчет осадки свайного фундамента, со временем возникающей под нагрузкой здания;
  • Дополнительные параметры (температурный режим в течение года, объем осадков, нагрузки от ветра и др.).

Заключение

С помощью свайного фундамента можно достаточно быстро и за небольшие деньги соорудить прочное основание для жилой или нежилой постройки. В ряде случаев это единственный вариант, поскольку такому фундаменту не страшны осадки грунта, он легко возводится на сложном рельефе. Кроме того, по сравнению с традиционным ленточным или монолитным фундаментом, для монтажа свайной основы не потребуется большой объем земляных работ. Если провести правильный расчет свайного фундамента, он прослужит в течение десятилетий, не теряя функциональности.

 

Расчёт свайного фундамента — Блог Бауфундамент

Время чтения: 3 минуты

Окончательный расчет стоимости свайно-винтового фундамента зависит от массы факторов. Но чтобы понимать примерную стоимость работ и оборудования, вы можете воспользоваться формой обратной связи, чтобы наши консультанты сориентировали вас по стоимости бауфундаментов.

Также мы предлагаем вашему вниманию статью, в которой разберем на какие факторы важно обращать внимание при самостоятельном расчете стоимости свайного фундамента.

При самостоятельном расчете стоимости свайного фундамента, клиенты часто не учитывают следующее:

  • неправильный расчет объема нагрузок будущей постройки;

  • игнорирование особенностей грунта на участке постройки;

  • игнорирование коррозионной агрессивности грунта на участке постройки;

Есть еще некоторые факторы – например, заказчик не учитывает общее влияние климатических условий на постройку и фундамент, что приводит к неправильному расчет количества винтовых свай и, как следствие, к дополнительным финансовым тратам. Намного выгоднее заранее доверить всю работу профессионалам, чтобы все работы и расчеты были выполнены точно и в срок. 


Какие нагрузки должна выдерживать будущая постройка?

Нагрузки на здание во время и после стройки можно условно разделить на 4 вида:

  • перманентные нагрузки. Это вес сооружения, несущих конструкций и так далее;
  • продолжительные нагрузки. Это временные нагрузки в виде перегородок, оборудования, и прочих объектов;
  • непродолжительные нагрузки. Это нагрузки от людей, животных, от транспорта, а также климатические нагрузки в виде снега, дождя и так далее;

  • особые нагрузки. Это как правило внештатные ситуации: пожар, ураган, взрыв, деформация фундамента, и так далее.

Грунт на участке постройки

Прежде всего, важно определить тип грунта, какова его несущая способность, и какова его коррозионная активность. Самый «правильный» способ получения достоверной информации о грунте – полевые испытания натурной сваей. Но по причине довольно высокой стоимости данная процедура не пользуется большим спросом.
Также можно воспользоваться услугами инженерно-геологических изысканий (ИГИ). В таких отчетах обычно содержится весьма детальная информация о свойствах грунта, о глубине его промерзания, и так далее. Но такое исследование тоже стоит недешево, и поэтому используется очень редко.

Альтернативными способами определить тип и характеристики грунта являются:

  • пробное завинчивание винтовой сваи. Данная процедура не является на 100% исследованием грунта, так как зависит от времени года, от количества влаги в грунте, таким образом данные полученные весной, будут по понятным причинам отличаться от данных о грунте, полученных летом в сухой сезон. Но зато данный метод доступен в цене, и в целом способен дать заказчику общее представление о грунте на участке постройки;
  • экспресс-геология, позволяющая выявить потенциально опасные геологические объекты или процессы, а также определить уровень сложности грунта и потенциальный объем будущих работ.

Очень важно обладать хотя бы базовой информацией о грунте на участке постройки, это даст возможность выбрать оптимальный вид винтовых свай и составить представление о стоимости будущих работ.

Для вашего удобства на нашем сайте имеется калькулятор расчета стоимости, а также возможность заказать обратный звонок, чтобы наши специалисты могли оперативно вам перезвонить и ответить на все интересующие вопросы.

Калькулятор для расчета количества винтовых свай под фундамент

При покупке свай винтового типа и монтаже качественного свайно-винтового фундамента, особое значение имеет правильный расчет. На основе расчета подбирается нужное количество, необходимое для реализации проекта, определяется правильное расстояние между сваями, несущая способность свайного фундамента и размер свайного поля. Провести подсчет количества свай для фундамента своими силами достаточно сложно – для этого нужно взвесить и проанализировать большое число параметров. Однако, чтобы приблизительно представить себе, сколько свай вам потребуется и какие расходы вы понесете в ходе реализации проекта, можно использовать наш калькулятор.

Как рассчитать количество свай с помощью Online калькулятора?

Использование калькулятора – это отличный вариант для всех тех, кто собирается возводить свайный фундамент. Подобные программы, не требующие установки на ваш персональный компьютер, получили большую популярность при расчете пластиковых окон и различных строительных материалов. И теперь компания «РУС-СВАЯ» предлагает вам использовать их и для покупки свай. При этом пользоваться калькулятором очень просто. Перед собой вы видите интерактивную форму с несколькими полями для ввода данных.

Всё что вам нужно, это указать следующие параметры: 

  • Сторона A;
  • Сторона B;
  • Количество углов;
  • Тип строения;
  • Тип грунта;
  • Наличие печки;
  • Планируемая высота пола строения над землей.

Расчет проводится по сложным математическим алгоритмам и результат вы получаете практически мгновенно. После нажатия кнопки подтверждения данных вы увидите не только количество, но также их диаметр и длину свай. Все эти параметры будут иметь большое значение при выборе свай под конкретный тип строения.

Основные достоинства использования калькулятора

Калькулятор позволяет вам получить нужный результат с минимальными затратами времени и сил.

Вот основные достоинства, объясняющие его большую популярность:

  1. Расчеты проводятся с высокой степенью точности. Все вычисления производит машина, так что вы оказываетесь застрахованы от ошибки. Ранее для того, чтобы провести расчет заказчикам приходилось вооружаться ручкой и бумагой. Это отнимало неоправданно много времени и приводило к ошибкам. С появлением удобного онлайн-инструмента всё изменилось.
  2. Высокая скорость расчета. Если сроки поджимают, а приобрести сваи нужно быстро, использование калькулятора станет оптимальным решением. Обратите внимание на то, что программа обрабатывает все введенные данные за считанные секунды.
  3. Большая универсальность использования. Наш калькулятор может работать с большим количеством самых разных параметров. В частности, на выбор пользователя предоставляется несколько вариантов строений и типов грунта – вы обязательно найдете то, что вам нужно. В результате, с использованием такого калькулятора, вы без труда проведете все нужные расчеты.
  4. Отсутствие необходимости долгой установки. Если ранее расчетные программы требовали от вас длительного скачивания и установки на компьютер, с появлением онлайн-калькулятора вы можете проводить расчеты в режиме реального времени. Программа проста и понятна и работает непосредственно с самого сайта.

Что вы получите воспользовавшись калькулятором?

Произвести расчет винтовых свай под фундамент можно своими руками. Но это потребует значительных временных затрат, в то время как наш калькулятор для расчета позволяет вам:

  • Получить точные данные по необходимой закупке винтовых свай.
  • Приобрести оптимальное количество без нехватки и излишков.
  • Рассчитать количество свай под постройку с конкретными параметрами.

Все эти возможности существенно упрощают для вас выбор. Используйте простой и удобный онлайн-калькулятор, чтобы быстро рассчиать проект свайного фундамента.

После того, как все расчеты произведены, мы будем рады видеть вас в числе наших клиентов. Компания «РУС-СВАЯ» предоставляет для своих заказчиков не только прочные винтовые сваи, но и полный набор необходимых услуг по установке. Работать с нами просто и приятно – вы всегда получаете гарантии качества поставляемого товара и индивидуальный подход к каждому покупателю.

Вам также может быть интересно:

Расчет нагрузки свайного фундамента: пример расчета

Методика расчёта необходимого количества свай для фундамента с исходными данными и конкретными примерами. Провести точный и правильный расчёт нагрузки свайного фундамента с учётом всех параметров, требований, норм и правил может каждый человек, знающий сопромат и разбирающийся в математике. На практике это сложно и не нужно неспециалисту, а возможные просчёты могут привести не только к убыткам.  Но понять принцип расчёта поможет краткая упрощённая методика:

  • Подсчитывается общий вес сооружения.
  • Определяются снеговая и ветровая нагрузки исходя из средних обобщённых данных.
  • Подсчитывается полезная или бытовая нагрузка.
  • Подсчитывается общий вес ( сбор весов).
  • Ориентируясь на полную площадь строения и минимально допустимый шаг свай .определяется их общее максимальное количество
  • Подсчитывается суммарная площадь оснований свай.
  • Подбирается типоразмер и реальное количество свай.
  • На основе максимальных значений расстояний между сваями с учётом равного распределения нагрузок  формируется план свайного поля.
  • С учётом распределения нагрузок от строения проектируется и рассчитывается ростверк .

Конкретные цифры для расчётов

В случае, когда сложно либо невозможно определить несущую способность грунта, принимается значение 2,5 кг\см2,  это усреднённый показатель для грунтов российской средней полосы.

Исходные данные для расчёта свайных фундаментов

Максимальный шаг винтовых свай для малоэтажного и хозяйственного индивидуального строительства:

  • строения из бревна или бруса 3 м;
  • сооружения каркасного либо сборно-щитового типа 3 м;
  • здания с несущими стенами из облегчённых блоков 2,5 м;
  • дома из кирпича  и полнотелых бетонных блоков 2 м;
  • монолитные сооружения 1,7 м.

Для кустов свай под печи, колонны и подобные сооружения с сосредоточенной нагрузкой допустимое минимальное расстояние между сваями 1,5 м, для веранд и аналогичных построек 1,2 м.

Вес конструкций и частей зданий

Для сбора весов  допустим приблизительный подсчёт. Ошибка в большую сторону приведёт к небольшому увеличению стоимости работ. Если же реальные нагрузки окажутся больше расчётных, то возможно разрушение фундамента и здания в целом.

Предпочтительный ориентир при отсутствии точной информации максимальное значение.

Стены :

  • кирпичные 600-1200кг\м2;
  • бревенчатые 600 кг\м2;
  • газо- и пенобетонные 400-900 кг\м2;
  • каркасные и панельные 20-30 кг\м2.

Крыши с учётом стропильной системы:

  • листовая сталь, в т.ч. металлопрофиль и металлочерепица 20-30 кг\м2;
  • листы асбоцементные 60-80 кг\м2;
  • рубероид и другие мягкие покрытия 30-50 кг\м2.

Перекрытия:

  • деревянные с утеплителем 70-100 кг\м2;
  • цокольные с утеплителем 100-150 кг\м2;
  • монолитные армированные 500 кг\м2;
  • плитные пустотелые 350 кг\м2.

Снеговая и ветровая нагрузки подсчитываются с учётом средних региональных показателей с поправочными коэффициентами. Средняя эксплуатационная (полезная) нагрузка с учётом веса людей, оборудования, техники, мебели, домашней утвари — 100 кг\м2. После сведения веса необходимо применить к результату коэффициент запаса 1,2.

Пример подсчёта потребности в сваях

Для примера расчёта возьмём одноэтажный дачный дом:

  • с крышей из металлочерепицы;
  • стены бревенчатые;
  • перекрытия деревянные;
  • размер 6 Х 6 м;
  • без фундаментальной печи;
  • высота стен 2,4 м.

Расчет:

  • вес стен из бревна: 2,4 (высота) Х  24 (периметр) Х 600 =  34560;
  • вес перекрытий: 36 (площадь) Х2 Х 100 = 7200;
  • вес крыши: 54 (площадь) * 20 = 1080;
  • полезная нагрузка: 100 Х 36 = 3600.

Сборный вес дома: 34560+7200+1080+3600=46440 кг.

Снеговую нагрузку определяем для севера нашей страны по номинальной массе снежного покрова 190 кг\м2. Отсюда расчет равен: 6х6х190=6840 кг.

Итоговый сборный вес: (46440+6840) Х 1,2 (запас) = 63936 кг.

Выбираем сваю самого популярного размера 89*300мм при её погружении на 2,5 м с несущей способностью 3,6 т, а сводный вес также переводим в тонны. 63,9 : 3,6 = 17,75 шт. — понадобится 18 штук  винтовых свай.

Далее сваи распределяются по свайному полю с учётом первоочередной установки в углах, примыканиях и пересечениях. Количество буронабивных свай будет соответствовать расчёту количества свай винтовых при соблюдении аналогичных параметров.

Для расчёта нагрузок, подбора оптимальных параметров свай и их количества, а также расчёта ростверка, разработаны специальные компьютерные программы, например, StatPile и GeoPile, облегчающие и упрощающие задачу по устройству фундаментов.

Расчёт ростверка

Назначение ростверка равномерное распределение нагрузок на свайную конструкцию. Расчёты параметров ростверка учитывают силы продавливания основания в целом, по каждому углу и воздействия на изгиб.

Довольно сложные подсчёты  застройщикам могут заменить стандартные решения, применение которых возможно только  небольших индивидуальных строений:

  • Материал исполнения ростверка: металлический швеллер, двутавр, монолитный бетон с армированием, брус или бревно сечением не менее материала стен.
  • Голова сваи должна входить в ростверк не меньше, чем на 10 см  для монолитного исполнения
  • По ширине ростверк не может быть меньше толщины стены.
  • Высота должна быть не меньше 30 см для бетона.
  • Ростверк должен располагаться как минимум на 20 см над уровнем почвы.
  • Соединение опор с ростверком может быть жёстким либо свободным.

Свайный фундамент. Расчет количества свай

Для расчёта необходимого количества свай для свайного фундамента можно воспользоваться онлайн-калькуляторами, которые предлагает вездесущий интернет.

Но, как ученик в школе, привыкший пользоваться арифметическим калькулятором. Зачастую даже не знает таблицы умножения, так и строитель, использующий онлайн-калькулятор для расчёта количества свай, не будет знать откуда берутся результаты расчёта.

Основная функция любого фундамента – это принятие на себя всех нагрузок от конструкций здания – стен, перегородок, перекрытий потолка, крыши и пола. По сути, фундамент «удерживает» вес всего здания вместе с дополнительными нагрузками, например, весом снега, который накопился на крыше или весом камина, расположенном на втором этаже здания.

Алгоритмы для расчета свайного фундамента

Итак, вначале рассчитаем нагрузку здания на ленточный фундамент, а потом по аналогии перейдём к расчёту свайного фундамента из винтовых свай.

Для примера берём кирпичный дом размером 6 на 6 метров, с внутренней опорной перегородкой, толщина стен – двойной кирпич — 0,4 м.

Длина стен дома будет равна 6*4 = 24 м, длина внутренней перегородки 6 м. Итого — 30 м.

Вес кирпичного дома с дополнительными нагрузками условно возьмём в 120 т (можно и вычислить вес здания, посчитав объём кирпича, раствора, штукатурки, вес потолочного перекрытия и крыши). Толщину фундамента примем такую же как и толщина стен — 0,4 м.

Тогда площадь основания фундамента будет равна: 30*0,4 = 1,2 м2.

Итак, на площадь 1,2 м2 давит здание весом 120 т или 120000 кг. Или 10,0 кг на 1 см2. Толщина фундамента, как правило, больше толщины стен (это видно по характерному выступу цоколя). Если увеличим толщину фундамента по 10 см на внешнюю и внутреннюю сторону стены, то его площадь будет равна 30*0,6 =1,8 м2. В этом случае давление здания на фундамент составит 120 000/18 000 = 6,7 кг/см2.2=3,14 * 0,15*0,15 = 0,07м2.

Площадь основания фундамента рассчитаем с учётом коэффициентов по формуле:
S=Кн*М/ Ку*Кг = 1,2*120 000/ 1*6 = 24 000 см2 = 2,4 м2

Количество свай, если не считать сопротивление их стенок о грунт: 2,4/0,07 = 30,4 = 31 свая.
Если увеличим диаметр сваи до 0,5 м, то тогда необходимо будет 2,4/0,197 = 17,9 = 12,18 = 13 свай.

Сколько нужно винтовых свай на баню 6х3?

Бани, как правило, возводят из деревянных срубов, поэтому их вес намного меньше, чем из кирпича. Оставим все коэффициенты такими, как в прошлом расчёте кроме веса бани, примерно определим его в 48 тонн или 48000 кг.

Диаметр сваи – 0,3 м.

Площадь основания фундамента бани:

S=Кн*М/ Ку*Кг = 1.2*48000/1*6 = 9600 см2 =0,96 м2

Площадь сечения сваи: S=πr^2=3,14 * 0,15*0,15 =0,07

Количество свай: 0,96/0,07 = 13,7 =14 свай.2= 3,14*0,25*0,25 =0,197 м2

На одну сваю приходится давления 0,197* 6 =11 820 кг.

Необходимо свай: 160 000/11 820 =13,5 =14 свай.

Расчёт количества свай для каркасного дома, как и любого другого, согласно, приведённых алгоритмов будет аналогично зависеть от веса дома, удельного сопротивления грунта на строительной площадке и диаметра винтовой сваи.

Расчет количества винтовых свай КСАмет

Свайные оголовки КСАмет выпускаются диаметром 20, 25 и 30 см. Поэтому расчёт количества свай будет зависеть, как и в прошлых примерах от веса дома, удельного сопротивления грунта и диаметра используемых свай. Единственное отличие при расчёте в том, что в технических характеристиках этих свай указаны максимальные допустимые нагрузки на сваю. Поэтому расчёт ведётся в соответствии с техническими характеристиками свай КСАмет.

Как уже отмечалось в интернете можно найти калькуляторы онлайн-расчётов количества фундаментных свай. Однако, всё-таки лучше самостоятельно изучить алгоритмы расчётов свайных фундаментов, хотя бы на вышеприведённых примерах.

Глубокий (свайный) фундамент – расчеты, методы проектирования и строительства

Сваи – это относительно длинные и тонкие элементы, используемые для передачи нагрузок на фундамент через слои грунта с низкой несущей способностью на более глубокий грунт или скалу с более высокой несущей способностью. Метод, которым это происходит, лежит в основе простейшей классификации типов свай. У нас есть два основных типа свай (типы свай):

1. Сваи концевые

2.Сваи фрикционные (плавающие)

Для обоих типов свай требуется дополнительное различие в зависимости от способа установки.

  1. Забивные (или вытесняющие) сваи: Эти сваи обычно предварительно формуются перед забиванием, подъемом, привинчиванием или забиванием в землю.
  2. Буронабивные сваи: Для этих свай сначала просверливается отверстие в земле, а затем обычно в нем формируется свая.

Эти категории можно подразделить на:

Большой рабочий объем

  • Предварительно сформованная – вбивается в землю и остается на месте
    • – массив – древесина / бетон
    • – Пустотелый с закрытым концом – Стальные или бетонные трубы
  • Формование на месте – закрытый трубчатый привод с последующим извлечением, заполнение пустоты бетоном

Малый рабочий объем

  • Винтовые сваи
  • Стальная труба и H-образные профили – (Трубы могут закупориваться и стать большим смещением)

Нет смещения

  • Пустота, образованная бурением или выемкой грунта, затем заполненная бетоном.Во время строительства может потребоваться поддержка отверстия, для чего существует два основных варианта.
    • Стальной кожух
    • Буровой раствор

Нагрузки на сваи

На поверхность почвы со стороны вышележащей конструкции могут применяться комбинации вертикальной, горизонтальной и моментной нагрузки. Для большинства фундаментов нагрузки, прикладываемые к сваям, в основном вертикальные. Горизонтальные нагрузки, возникающие из-за ветровых нагрузок на конструкции, обычно относительно невелики, и ими пренебрегают.Однако для свай на пристанях, фундаментов опор мостов, высоких дымовых труб и морских свайных фундаментов важно учитывать поперечное сопротивление.

Здесь рассматривается только расчет свай, подверженных вертикальным нагрузкам. Анализ свай, подверженных боковым и моментным нагрузкам, является более сложным из-за характера взаимодействия грунт-конструкция. Помимо их способности передавать нагрузки от фундамента на нижележащие пласты, сваи также широко используются в качестве средства контроля осадки и дифференциальной осадки.В этих примечаниях учитывается только предельная осевая нагрузка.

Сваи с вертикальной нагрузкой

Предельная вместимость одинарных свай

Общее сопротивление свае можно разделить на составляющие от основания и вала. Рассмотрение статического равновесия дает окончательную производительность как:

P u = P su + P bu – W

P u Предельная несущая способность сваи

P bu = Предельное сопротивление в основании сваи (Базовое сопротивление)

P su = Предельное сопротивление боковому сдвигу на стволе сваи (Сопротивление вала)

Вт = собственный вес сваи

Базовое сопротивление

При анализе поведения сваи предельное сопротивление основания принято выражать как

.

P bu = A b (f b + p o )

A b = Площадь на плане свайного основания

f b = Чистое предельное сопротивление на единицу площади основания

p o = Давление вскрыши на уровне основания

Если свая не выступает над поверхностью почвы, выясняется, что вес сваи обычно аналогичен силе, создаваемой давлением покрывающих пород.Таким образом,

W ≈ A b p o

и P u = P su + A b f b

Боковое сопротивление

As = Площадь контакта ствола сваи с почвой

= Среднее конечное сопротивление стороны на единицу площади

В общем, боковое сопротивление будет функцией глубины под поверхностью, потому что как недренированная прочность su (краткосрочный недренированный анализ), так и эффективные напряжения (долгосрочный анализ) увеличиваются с глубиной.Среднее напряжение сдвига можно математически выразить как

где L – длина сваи

Анализ общих напряжений (глинистые почвы)

Для этих почв предельная емкость часто определяется краткосрочным (недренированным) состоянием.

Базовое сопротивление

Это простая проблема несущей способности, то есть

где qf – предельная несущая способность.Для грунта с fu = 0 предельную несущую способность можно записать как

q f = N c s u + g D = N c s u + p o

Чистое предельное сопротивление просто

f b = N c s u

и предельное базовое сопротивление примерно

P bu = A b (N c s u + p o )

Условно принимать c u = c ub

, где переводник – сопротивление недренированному грунту на сдвиг у основания сваи, и предполагается, что fu равно нулю.Затем значение Nc может быть получено из диаграммы Скемптона (p28 Data Sheets), которая применима для Φu = 0.

При использовании этой таблицы важно проверить отношение длины к диаметру L / D (D / B на диаграмме). Обычно предполагается, что свайные основания можно рассматривать как глубокие фундаменты и что N c = 9. Однако, если L / D меньше 4, N c будет меньше 9, как показано в таблице ниже, и максимальная емкость будет также уменьшена.

Боковое сопротивление

Для оценки бокового сопротивления насыщенных глин используются методы анализа как полного, так и эффективного напряжения.Здесь мы рассматриваем только метод полного напряжения или α-метод.

su (z) = недренированная прочность грунта на глубине z

α = эмпирический коэффициент уменьшения, который зависит от:

  • Тип почвы
  • Тип сваи
  • Прочность почвы (см. Таблицу ниже, лист данных p105)
  • Способ установки
  • Время с момента установки

При отсутствии дополнительной информации для оценки α можно использовать приведенную ниже таблицу.

Сообщите нам в комментариях, что вы думаете о концепциях в этой статье!

Проект свайного фундамента – Structville

Глубокие фундаменты используются, когда слой грунта под конструкцией не способен выдерживать нагрузку с допустимой осадкой или адекватной защитой от разрушения при сдвиге. Двумя распространенными типами глубоких фундаментов являются фундаменты колодцев (или кессоны) и свайные фундаменты. Сваи – это относительно длинные тонкие элементы, которые забиваются в землю или монтируются на месте.Конструкция свайного фундамента предусматривает обеспечение свай соответствующего типа, размера, глубины и количества, чтобы выдерживать нагрузку надстройки без чрезмерной осадки и нарушения несущей способности. Фундаменты глубокого заложения более дороги и технически сложны, чем фундаменты мелкого заложения.

Свайный фундамент можно использовать в следующих случаях;

  1. Когда верхний слой (слои) почвы сильно сжимается и слишком слаб, чтобы выдерживать нагрузку, передаваемую надстройкой, сваи используются для передачи нагрузки на нижележащую коренную породу или более прочный слой почвы.Когда коренная порода не встречается на разумной глубине ниже поверхности земли, используются сваи для постепенной передачи структурной нагрузки на почву. Сопротивление приложенной структурной нагрузке определяется главным образом сопротивлением трению на границе раздела грунт-сваи.
  2. Когда свайные фундаменты подвергаются воздействию горизонтальных сил, они сопротивляются изгибу, сохраняя при этом вертикальную нагрузку, передаваемую надстройкой. Такая ситуация обычно встречается при проектировании и строительстве заземляющих конструкций и фундаментов высоких сооружений, которые подвергаются сильному ветру и / или землетрясениям.
  3. Во многих случаях грунт на участке предлагаемого сооружения может быть расширяющимся и разрушающимся. Эти почвы могут простираться на большую глубину ниже поверхности земли. Расширяющиеся почвы набухают и сжимаются по мере увеличения и уменьшения содержания влаги, и давление набухания таких почв может быть значительным. При использовании неглубоких фундаментов конструкции могут быть нанесены значительные повреждения.
  4. Фундаменты некоторых сооружений, таких как опоры электропередачи, морские платформы и цокольные маты ниже уровня грунтовых вод, подвергаются подъемным силам.Иногда для этих фундаментов используются сваи, чтобы противостоять подъемной силе.
  5. Опоры мостов и опоры обычно сооружаются над свайным фундаментом, чтобы избежать возможной потери несущей способности, которая может возникнуть у неглубокого фундамента из-за эрозии почвы на поверхности земли
Рисунок 1 : Схематическое изображение свайного фундамента

Классификация свай

Сваи можно классифицировать по разным критериям:

( a ) Функция или действие
( b ) Состав и материал
( c ) Способ установки

Классификация на основе функции или действия

Сваи могут быть классифицированы следующим образом в зависимости от функции или действия:

Концевые опорные сваи
Используются для передачи нагрузки через наконечник сваи на подходящий несущий слой, проходя через мягкий грунт или воду.

Фрикционные сваи
Используются для передачи нагрузок на глубину во фрикционном материале посредством поверхностного трения по поверхности сваи.

Натяжные или подъемные сваи
Подъемные сваи используются для анкеровки конструкций, подверженных подъему из-за гидростатического давления или опрокидывающего момента из-за горизонтальных сил.

Уплотняющие сваи
Уплотняющие сваи используются для уплотнения рыхлых сыпучих грунтов с целью увеличения несущей способности.Поскольку они не обязаны нести какую-либо нагрузку, материал может не быть прочным; Фактически, песок может быть использован для образования кучи. Труба сваи, забиваемая для уплотнения почвы, постепенно вынимается, и ее место засыпается песком, образуя «песчаную кучу».

Анкерные сваи
Эти сваи используются для обеспечения анкеровки против горизонтального натяжения шпунтовых свай или воды.

Отбойные сваи
Используются для защиты прибрежных сооружений от ударов кораблей или других плавучих объектов.

Шпунтовые сваи
Шпунтовые сваи обычно используются в качестве переборок или отрезков для уменьшения просачивания и подъема в гидротехнических сооружениях.

Сваи для теста
Используются для противодействия горизонтальным и наклонным силам, особенно в сооружениях на берегу воды.

Сваи с боковой нагрузкой
Используются для поддержки подпорных стен, мостов, дамб и причалов, а также в качестве отбойников при строительстве портов.

Классификация по материалу и составу

Сваи по материалу и составу можно классифицировать следующим образом:

Деревянные сваи
Изготовлены из качественной древесины.Длина может достигать примерно 8 м; сращивание принято для большей длины. Диаметр может быть от 30 до 40 см. Деревянные сваи хорошо работают как в полностью сухом, так и в погруженном состоянии. Чередование влажных и сухих условий может сократить срок службы деревянной сваи; чтобы преодолеть это, применяется креозинг. Максимальная расчетная нагрузка составляет около 250 кН.

Стальные сваи
Это обычно H-образные сваи (катаные H-образные), трубные сваи или шпунтовые сваи (катаные профили правильной формы).Они могут нести нагрузки до 1000 кН и более.

Рисунок 2 : Стальные двутавровые сваи

Бетонные сваи
Они могут быть сборными или монолитными. Сборные сваи усилены, чтобы выдерживать нагрузки при транспортировке. Им требуется место для литья и хранения, больше времени на отверждение и тяжелое оборудование для погрузки-разгрузки и вождения. Монолитные сваи устанавливаются путем предварительной выемки грунта, что устраняет вибрацию, возникающую при забивке и перемещении.

Рисунок 3 : Сборные железобетонные сваи

Композитные сваи
Они могут быть сделаны из бетона и дерева или из бетона и стали.Они считаются подходящими, когда верхняя часть сваи должна выступать над уровнем грунтовых вод. Нижняя часть может быть из необработанной древесины, а верхняя часть из бетона. В противном случае нижняя часть может быть из стали, а верхняя – из бетона.

Классификация по способу установки

Сваи также могут быть классифицированы по способу установки:

Забивные сваи
Деревянные, стальные или сборные железобетонные сваи можно забивать вертикально или под наклоном.Если они расположены под наклоном, они называются «бьющими» или «сгребающими» сваями. Для забивки свай используются сваебойные молотки и сваебойное оборудование.

Монолитные сваи
Только бетонные сваи можно монтировать. Просверливаются отверстия и заливаются бетоном. Это могут быть сваи с прямым бурением или сваи с недорастворением с использованием одной или нескольких луковиц через определенные промежутки времени. В соответствии с требованиями могут использоваться подкрепления.

Забивные и монолитные сваи
Это комбинация обоих типов.Может использоваться кожух или оболочка. Куча Франки попадает в эту категорию.

Однако наиболее распространенным типом свайного фундамента в Нигерии являются буронабивные сваи с использованием шнека непрерывного действия (CFA).

Проектирование свайного фундамента

Раздел 7 стандарта EN 1997-1: 2004 посвящен инженерно-геологическому проектированию свайных фундаментов. Есть некоторые стандарты проектирования, которые посвящены проектированию и строительству свайных фундаментов. Упомянутый стандарт проектирования является частью Еврокода 3 для расчета конструкции стальных свай:

.
  • EN 1993-5: Еврокод 3, Часть 5: Проектирование стальных конструкций – сваи

Другие стандарты, на которые можно ссылаться при выполнении свайных работ:

  • EN 1536: 1999 – Буронабивные сваи
  • EN 12063: 1999 – Шпунтовые сваи
  • EN 12699: 2000 – Вытесняемые сваи
  • EN 14199: 2005 – Микросваи

Подходы к проектирование свайных фундаментов

Согласно п.7.4 (1) P EN 1997-1, расчет свай должен основываться на одном из следующих подходов:

  1. Результаты испытаний на статическую нагрузку, которые, как было продемонстрировано с помощью расчетов или иным образом, согласуются с другим соответствующим опытом
  2. Эмпирические или аналитические методы расчета, достоверность которых была продемонстрирована испытаниями статической нагрузкой в ​​сопоставимых ситуациях
  3. результаты испытаний на динамическую нагрузку, достоверность которых была продемонстрирована испытаниями на статическую нагрузку в сопоставимых ситуациях.
  4. Наблюдаемые характеристики сопоставимого свайного фундамента при условии, что этот подход подтверждается результатами исследования площадки и наземных испытаний.

Испытание статической нагрузкой – лучший способ проверки несущей способности свай, однако он не очень привлекателен, поскольку является дорогостоящим и трудоемким. Традиционно инженеры проектируют свайные фундаменты на основе расчетов теоретической механики грунта. Самый распространенный подход – разделить почву на слои и присвоить каждому слою свойства почвы. Наиболее важными параметрами грунта для каждого слоя являются сцепление (C) и угол внутреннего трения (ϕ). Эти два свойства позволят быстро определить коэффициенты несущей способности для оценки несущей способности сваи.

На основании профиля грунта трение вала о сваю из разных слоев суммируется, чтобы получить общее сопротивление трению вала сваи. Сопротивление основания сваи также определяется на основе свойств грунта слоя, на который устанавливается верхушка сваи.

Рисунок 4 : Свая в слоистом грунте

Отсюда предельное сопротивление свае Q и ;

Q u = ∑Q s + Q b —— (1)

Q с = Сопротивление вала = q с A с
Q b = Сопротивление основания = q b A b

Где q с – сопротивление вала агрегата сваи и A s – площадь поверхности сваи, для которой применимо q s .A b – это площадь поперечного сечения основания сваи, а q b – сопротивление основания.

Для сваи в несвязном грунте (C = 0)
Q s = q 0 K s tanδA s —— (2)

Для сваи в связном грунте (ϕ = 0)
Q s = αC u A s —— (3)

Где;
q 0 – среднее эффективное давление покрывающих пород по глубине заделки сваи, для которой применимо значение K s tanδ.
K s – коэффициент бокового давления грунта
δ – угол трения стенки
C u – средняя недренированная прочность глины на сдвиг вдоль вала
α – коэффициент сцепления.

Типичные значения δ и K s приведены в таблице ниже;

С другой стороны, ниже приведены типичные уравнения для определения сопротивления основания одиночной сваи;

Q b = Сопротивление основания = q b A b
Где q b – удельное сопротивление основания сваи, а A b – площадь основания сваи.

Для сваи в несвязном грунте (C = 0)
Q b = q 0 N q A b —— (4)

Для сваи в связном грунте (ϕ = 0)
Q b = c b N c A b —— (5)

Для сваи в грунте c-ϕ;
Q b = (c b N c + q 0 N q ) A b —— (6)

Где N q и N c – коэффициенты несущей способности.

Следовательно, чтобы конструкция считалась приемлемой, приложенная нагрузка ≤ предельной грузоподъемности / запаса прочности. Коэффициент безопасности обычно варьируется от 2,0 до 3,0 и зависит от качества проведенного наземного исследования.

Проектирование свайного фундамента по Еврокоду 7

EN 1997-1: 2004 позволяет определять сопротивление отдельных свай:

  • формулы статических свай на основе параметров грунта
  • прямые формулы на основе результатов полевых испытаний
  • результаты испытаний статической нагрузкой на сваи
  • результаты динамических испытаний на удар
  • формулы забивки свай и
  • анализ волнового уравнения

Согласно п.7.6.2.1 (1) P, чтобы продемонстрировать, что свайный фундамент будет выдерживать расчетную нагрузку с достаточной защитой от разрушения при сжатии, должно выполняться следующее неравенство для всех случаев нагружения по предельному состоянию и сочетаний нагрузок:

F c, d ≤ R c, d —— (7)

Где F c, d – расчетная осевая нагрузка на сваю, а R c, d – сопротивление сваи сжатию. F c, d должны включать вес самой сваи, а Rc, d должны включать давление перекрывающего грунта у основания фундамента.Однако этими двумя пунктами можно пренебречь, если они аннулируются приблизительно. Их не нужно отменять, если нисходящее движение является значительным, или когда почва очень легкая, или когда свая выступает над поверхностью земли.

Для свай в группе расчетное сопротивление должно приниматься как меньшее из сопротивления сжатию свай, действующих по отдельности, и сопротивления сжатию свай, действующих как группа (блокирующая способность). Согласно пункту 7.6.2.1 (4) сопротивление сжатию группы свай, действующей как блок, можно рассчитать, рассматривая блок как одну сваю большого диаметра.

Формулы статических свай на основе параметров грунта

Методы оценки сопротивления свайному фундаменту на сжатие по результатам испытаний грунта должны быть установлены на основе испытаний свайной нагрузки и сопоставимого опыта. Как правило, сопротивление сваи при сжатии должно быть получено из:

R c, d = R b, d + R s, d —— (8)

Где;
R b, d = R b, k / γ b
R s, d = R s, k / γ s

Значения частных коэффициентов могут быть установлены Национальным приложением.Рекомендуемые значения для устойчивых и переходных ситуаций приведены в таблицах A6, A7 и A8 стандарта EN 1997-1: 2004 для забивных, буронабивных и CFA свай соответственно;

Таблица 1 (Таблица A6): Коэффициенты частичного сопротивления (γ R ) для забивных свай

9069 Таблица 900 Таблица A7): Коэффициенты частичного сопротивления (γ R ) для буронабивных свай

Сопротивление Символ R1 R2 R3 R4 R4 1.0 1,1 1,0 1,3
Вал (сжатие) γ s 1,0 1,1 1,0 1,3
907 Всего / в сочетании 907 (сжатие) 2 t 1,0 1,1 1,0 1,3
Вал в напряжении γ s; t 1,25 1,15 1,1 1,62
1,62
9069
Сопротивление Символ R1 R2 R3 R4 R4 1.25 1,1 1,0 1,6
Вал (сжатие) γ s 1,0 1,1 1,0 1,3
9077 Всего / в сочетании 907 (сжатие) t 1,15 1,1 1,0 1,5
Вал на растяжении γ s; t 1,25 1,15 1,1 1,62
Таблица A8): Коэффициенты частичного сопротивления (γ R ) для свай непрерывного лопастного шнека (CFA)

9069 9080 b, k и R s, k должны определяться из;

R c, k = R b, k + R s, k = (R b, калибровка + R s, калибровка ) / ξ = R c, калибровка / ξ = min [R c, кал (среднее) / ξ 3 ; R c, кал (мин) / ξ 4 ] —— (9)

, где ξ 3 и ξ 4 – коэффициенты корреляции, которые зависят от количества профилей испытаний, n.Значения коэффициентов корреляции могут быть установлены Национальным приложением. Рекомендуемые значения приведены в таблице A10 стандарта EN 1997-1: 2004. Для конструкций с достаточной жесткостью и прочностью для передачи нагрузок от «слабых» к «сильным» сваям коэффициенты ξ 3 и ξ 4 можно разделить на 1,1, при условии, что они никогда не будут меньше 1,0.

Характеристические значения могут быть получены путем вычисления:
R b, k = A b q b, k —— (11)
R s, k = ∑A s, i q s, i, k —— (12)

, где q b, k и q s, i, k – характерные значения сопротивления основания и трения вала в различных пластах, полученные из значений параметров грунта.

Для оценки трения вала сваи и концевого подшипника по параметрам грунта можно использовать следующие соотношения;

Несвязные почвы;
q s, k = σ v ‘k s tanδ —— (13)
q b, k = σ v ‘ N q —— (14)

Связный грунт или слабая порода (аргиллит)
q s, k = αC u —— (15)
q b, k = C u N c —— (16 )

Коэффициент адгезии (α) можно определить по таблице или по результатам испытаний на неограниченное сжатие (UCS).Для свай в глине N c обычно принимается равным 9,0.

Рисунок 5 : Взаимосвязь между коэффициентом сцепления и недренированным сцеплением грунта

Обычно рекомендуется, чтобы Cu <40 кПа, α принималось равным 1,0.

Рисунок 5: Взаимосвязь между коэффициентом сцепления и прочностью грунта на неограниченное сжатие

Расчет свайного фундамента с испытанием статической свайной нагрузкой

Процедура определения сопротивления сваи сжатию при испытаниях на статическую нагрузку основана на анализе значений сопротивления сжатию R c, m , измеренных при испытаниях на статическую нагрузку на одной или нескольких пробных сваях.Пробные сваи должны быть того же типа, что и сваи фундамента, и должны быть заложены в том же слое.

Важным требованием, изложенным в Еврокоде 7, является то, что интерпретация результатов испытаний свайной нагрузкой должна учитывать изменчивость грунта на площадке и изменчивость из-за отклонения от обычного метода установки свай. Другими словами, необходимо тщательное изучение результатов исследования грунта и результатов испытаний свайной нагрузки.Результаты испытаний под нагрузкой на сваи могут привести, например, к идентификации различных «однородных» частей площадки, каждая из которых имеет свои собственные характерные характеристики сопротивления сваи сжатию.

Чтобы использовать результат испытания на статическую нагрузку для проектирования свайного фундамента, определите характеристическое значение R c, k из измеренного сопротивления заземления R c, m , используя следующее уравнение:

R c, k = Мин {(R c, m ) среднее значение / ξ 1 ; (R c, m ) мин / ξ 2 } —— (17)

, где ξ 1 и ξ 2 – коэффициенты корреляции, относящиеся к количеству n испытанных свай, и применяются к среднему (R c, m ) , среднему и наименьшему (R c, m ) мин из рэндов c, м соответственно.Рекомендуемые значения для этих коэффициентов корреляции, приведенные в Приложении А, предназначены в первую очередь для покрытия изменчивости грунтовых условий на площадке. Однако они могут также покрывать некоторую изменчивость из-за эффектов установки свай.

Расчетное сопротивление сваи сжатию R c, d получается путем применения частного коэффициента γt к общему характеристическому сопротивлению или частных коэффициентов γs и γb к характеристическому сопротивлению вала и характеристическому сопротивлению основания, соответственно, в соответствии со следующим уравнения:

R c, d = R c, k / γ t —— (18)
или
R c, d = R b, k / γ b + R s, k / γ s —— (19)

R c, d для устойчивых и переходных ситуаций может быть получено из результатов испытаний свайной нагрузкой с использованием DA-1 и DA-2 и рекомендуемых значений для частичных Коэффициенты γ t или γ s и γ b приведены в таблицах А.6, A.7 и A.8 стандарта EN 1997-1: 2004.

онлайн-курсов PDH. PDH для профессиональных инженеров. ПДХ Инжиниринг.

«Мне нравится широта ваших курсов по HVAC; не только экологичность или экономия энергии

курсов. “

Russell Bailey, P.E.

Нью-Йорк

“Это укрепило мои текущие знания и научило меня еще нескольким новым вещам.

, чтобы познакомить меня с новыми источниками

информации.”

Стивен Дедак, П.Е.

Нью-Джерси

«Материал был очень информативным и организованным. Я многому научился, и они были

.

очень быстро отвечает на вопросы.

Это было на высшем уровне. Будет использовать

снова. Спасибо. “

Blair Hayward, P.E.

Альберта, Канада

“Простой в использовании сайт.Хорошо организовано. Я действительно буду снова пользоваться вашими услугами.

проеду по вашей компании

имя другим на работе. “

Roy Pfleiderer, P.E.

Нью-Йорк

“Справочные материалы были превосходными, и курс был очень информативным, особенно потому, что я думал, что я уже знаком.

с деталями Канзас

Городская авария Хаятт.”

Майкл Морган, P.E.

Техас

«Мне очень нравится ваша бизнес-модель. Мне нравится просматривать текст перед покупкой. Я нашел класс

.

информативно и полезно

в моей работе ».

Вильям Сенкевич, П.Е.

Флорида

«У вас большой выбор курсов, а статьи очень информативны.Вы

– лучшее, что я нашел ».

Russell Smith, P.E.

Пенсильвания

“Я считаю, что такой подход позволяет работающему инженеру легко зарабатывать PDH, давая время на просмотр

материал “

Jesus Sierra, P.E.

Калифорния

“Спасибо, что позволили мне просмотреть неправильные ответы.На самом деле

человек узнает больше

от отказов ».

John Scondras, P.E.

Пенсильвания

«Курс составлен хорошо, и использование тематических исследований является эффективным.

способ обучения »

Джек Лундберг, P.E.

Висконсин

«Я очень впечатлен тем, как вы представляете курсы; i.е., позволяя

студент для ознакомления с курсом

материалов до оплаты и

получает викторину “

Арвин Свангер, П.Е.

Вирджиния

“Спасибо за то, что вы предложили все эти замечательные курсы. Я определенно выучил и

получил огромное удовольствие “.

Мехди Рахими, П.Е.

Нью-Йорк

“Я очень доволен предлагаемыми курсами, качеством материалов и простотой поиска.

на связи

курсов.”

Уильям Валериоти, P.E.

Техас

“Этот материал в значительной степени оправдал мои ожидания. По курсу было легко следовать. Фотографии в основном обеспечивали хорошее наглядное представление о

.

обсуждаемых тем ».

Майкл Райан, P.E.

Пенсильвания

“Именно то, что я искал. Потребовался 1 балл по этике, и я нашел его здесь.”

Джеральд Нотт, П.Е.

Нью-Джерси

“Это был мой первый онлайн-опыт получения необходимых мне кредитов PDH. Это было

информативно, выгодно и экономично.

Я очень рекомендую

всем инженерам ».

Джеймс Шурелл, P.E.

Огайо

«Я понимаю, что вопросы относятся к« реальному миру »и имеют отношение к моей практике, и

не на основе каких-то неясных раздел

законов, которые не применяются

до «нормальная» практика.”

Марк Каноник, П.Е.

Нью-Йорк

«Отличный опыт! Я многому научился, чтобы перенести его на свой медицинский прибор.

организация “

Иван Харлан, П.Е.

Теннесси

«Материалы курса имели хорошее содержание, не слишком математическое, с хорошим акцентом на практическое применение технологий».

Юджин Бойл, П.E.

Калифорния

“Это был очень приятный опыт. Тема была интересной и хорошо изложенной,

а онлайн формат был очень

Доступно и просто

использовать. Большое спасибо “.

Патрисия Адамс, P.E.

Канзас

“Отличный способ добиться соответствия требованиям PE Continuing Education в рамках ограничений по времени лицензиата.”

Joseph Frissora, P.E.

Нью-Джерси

“Должен признаться, я действительно многому научился. Помогает иметь печатный тест во время

обзор текстового материала. Я

также оценил просмотр

предоставлено фактических случаев “

Жаклин Брукс, П.Е.

Флорида

“Документ” Общие ошибки ADA в проектировании объектов “очень полезен.

Тест потребовал исследования в

документ но ответы были

в наличии “

Гарольд Катлер, П.Е.

Массачусетс

“Я эффективно использовал свое время. Спасибо за широкий выбор вариантов.

в транспортной инженерии, что мне нужно

для выполнения требований

Сертификат ВОМ.”

Джозеф Гилрой, П.Е.

Иллинойс

«Очень удобный и доступный способ заработать CEU для моих требований PG в Делавэре».

Ричард Роудс, P.E.

Мэриленд

“Я многому научился с защитным заземлением. До сих пор все курсы, которые я прошел, были отличными.

Надеюсь увидеть больше 40%

курсов со скидкой.”

Кристина Николас, П.Е.

Нью-Йорк

“Только что сдал экзамен по радиологическим стандартам и с нетерпением жду возможности сдать дополнительный

курсов. Процесс прост, и

намного эффективнее, чем

придется путешествовать. “

Деннис Мейер, P.E.

Айдахо

“Услуги, предоставляемые CEDengineering, очень полезны для профессионалов.

Инженеры получат блоки PDH

в любое время.Очень удобно ».

Пол Абелла, P.E.

Аризона

«Пока все отлично! Поскольку я постоянно работаю матерью двоих детей, у меня мало

время искать где

получить мои кредиты от. “

Кристен Фаррелл, П.Е.

Висконсин

«Это было очень познавательно и познавательно.Легко для понимания с иллюстрациями

и графики; определенно делает это

проще поглотить все

теорий. »

Виктор Окампо, P.Eng.

Альберта, Канада

“Хороший обзор принципов работы с полупроводниками. Мне понравилось пройти курс по

.

мой собственный темп во время моего утром

на метро

на работу.”

Клиффорд Гринблатт, П.Е.

Мэриленд

“Просто найти интересные курсы, скачать документы и пройти

викторина. Я бы очень рекомендовал

вам на любой PE, требующий

CE единиц. “

Марк Хардкасл, П.Е.

Миссури

«Очень хороший выбор тем из многих областей техники.”

Randall Dreiling, P.E.

Миссури

«Я заново узнал то, что забыл. Я также рад оказать финансовую помощь

по ваш промо-адрес электронной почты который

сниженная цена

на 40% “

Конрадо Казем, П.E.

Теннесси

«Отличный курс по разумной цене. Воспользуюсь вашими услугами в будущем».

Charles Fleischer, P.E.

Нью-Йорк

“Это был хороший тест и фактически подтвердил, что я прочитал профессиональную этику

коды и Нью-Мексико

правил. “

Брун Гильберт, П.E.

Калифорния

«Мне очень понравились занятия. Они стоили потраченного времени и усилий».

Дэвид Рейнольдс, P.E.

Канзас

“Очень доволен качеством тестовых документов. Буду использовать CEDengineerng

при необходимости дополнительно

сертификация. “

Томас Каппеллин, П.E.

Иллинойс

“У меня истек срок действия курса, но вы все же выполнили свое обязательство и дали

мне то, за что я заплатил – много

оценено! “

Джефф Ханслик, P.E.

Оклахома

“CEDengineering предлагает удобные, экономичные и актуальные курсы.

для инженера »

Майк Зайдл, П.E.

Небраска

“Курс был по разумной цене, а материалы были краткими, а

хорошо организовано. “

Glen Schwartz, P.E.

Нью-Джерси

“Вопросы подходили для уроков, а материал урока –

.

хороший справочный материал

для деревянного дизайна. “

Брайан Адамс, П.E.

Миннесота

“Отлично, я смог получить полезные рекомендации по простому телефонному звонку.”

Роберт Велнер, P.E.

Нью-Йорк

“У меня был большой опыт работы в прибрежном строительстве – проектирование

Building курс и

очень рекомендую .”

Денис Солано, P.E.

Флорида

“Очень понятный, хорошо организованный веб-сайт. Материалы курса этики Нью-Джерси были очень хорошими

хорошо подготовлены. »

Юджин Брэкбилл, P.E.

Коннектикут

“Очень хороший опыт. Мне нравится возможность загрузить учебные материалы на

.

обзор везде и

всякий раз, когда.”

Тим Чиддикс, P.E.

Колорадо

«Отлично! Сохраняю широкий выбор тем на выбор».

Уильям Бараттино, P.E.

Вирджиния

«Процесс прямой, без всякой ерунды. Хороший опыт».

Тайрон Бааш, П.E.

Иллинойс

“Вопросы на экзамене были зондирующими и демонстрировали понимание

материала. Полная

и всесторонний ».

Майкл Тобин, P.E.

Аризона

“Это мой второй курс, и мне понравилось то, что мне предложили курс

поможет по моей линии

работ.”

Рики Хефлин, P.E.

Оклахома

«Очень быстро и легко ориентироваться. Я обязательно воспользуюсь этим сайтом снова».

Анджела Уотсон, P.E.

Монтана

«Легко выполнить. Нет путаницы при подходе к сдаче теста или записи сертификата».

Кеннет Пейдж, П.E.

Мэриленд

“Это был отличный источник информации о солнечном нагреве воды. Информативный

и отличный освежитель ».

Луан Мане, П.Е.

Conneticut

“Мне нравится подход к регистрации и возможность читать материалы в автономном режиме, а затем

Вернуться, чтобы пройти викторину “

Алекс Млсна, П.E.

Индиана

«Я оценил объем информации, предоставленной для класса. Я знаю

это вся информация, которую я могу

использование в реальных жизненных ситуациях. »

Натали Дерингер, P.E.

Южная Дакота

“Обзорные материалы и образец теста были достаточно подробными, чтобы позволить мне

успешно завершено

курс.”

Ира Бродский, П.Е.

Нью-Джерси

“Веб-сайт прост в использовании, вы можете скачать материалы для изучения, а затем вернуться.

и пройдите викторину. Очень

удобно а на моем

собственный график “

Майкл Глэдд, P.E.

Грузия

“Спасибо за хорошие курсы на протяжении многих лет.”

Деннис Фундзак, П.Е.

Огайо

“Очень легко зарегистрироваться, получить доступ к курсу, пройти тест и распечатать PDH

сертификат. Спасибо за создание

процесс простой ».

Фред Шейбе, P.E.

Висконсин

«Положительный опыт.Быстро нашел курс, который соответствовал моим потребностям, и закончил

один час PDH в

один час. “

Стив Торкильдсон, P.E.

Южная Каролина

“Мне понравилось загружать документы для проверки содержания

и пригодность, до

имея платить за

материал .”

Ричард Вимеленберг, P.E.

Мэриленд

«Это хорошее напоминание об ЭЭ для инженеров, не занимающихся электричеством».

Дуглас Стаффорд, P.E.

Техас

«Всегда есть возможности для улучшения, но я ничего не могу придумать в вашем

.

процесс, требующий

улучшение.”

Thomas Stalcup, P.E.

Арканзас

“Мне очень нравится удобство участия в викторине онлайн и получение сразу

Сертификат . “

Марлен Делани, П.Е.

Иллинойс

“Учебные модули CEDengineering – это очень удобный способ доступа к информации по номеру

.

много разные технические зоны за пределами

по своей специализации без

надо ехать.”

Гектор Герреро, П.Е.

Грузия

Свайные фундаменты – Руководство по проектированию, строительству и испытаниям

Свайные фундаменты сооружаются, когда невозможно построить конструкцию на фундаменте мелкого заложения. В зависимости от характера конструкции и по большему количеству причин выбор свайных фундаментов производится, как описано в статье.

Мы сконцентрируемся на следующих основных темах этой статьи.

Свайные фундаменты – обзор

Проектирование свайных фундаментов

Строительство столбов

Испытания свай

Давайте начнем с понимания…

Что такое свайный фундамент?

Это тип фундамента, который закладывается глубоко в землю, и в строительстве используются в основном круглые сечения.

Неглубокие фундаменты опираются на землю и передают вертикальные нагрузки непосредственно на почву. Пропускная способность грунта представлена ​​как допустимая несущая способность, и если приложенное давление меньше допустимого давления на опору, геотехнический расчет в порядке.

Однако в свайных фундаментах используются другие методы и другие параметры.

При проектировании учитываются поверхностное трение грунта (положительное и отрицательное), поверхностное трение выветриваемой породы, поверхностное трение в породе и концевой подшипник породы.

Почему сваи должны поддерживать конструкцию

  • Когда вертикальные нагрузки, прикладываемые к фундаменту, не могут переноситься мелкими фундаментами из-за низкой несущей способности.
  • При наличии слабых слоев почвы, таких как торф, в почве.
  • Для передачи растягивающих усилий, приложенных к фундаменту. Сваи могут быть закреплены в скале, чтобы выдерживать растягивающие усилия.
  • Для восприятия боковых нагрузок (сжатия), приложенных к фундаменту. Будет построена наклонная свая, способная выдерживать как сжимающие, так и растягивающие усилия.
  • При очень высоких вертикальных нагрузках, особенно в высоких зданиях, несущая способность грунта недостаточна для выдерживания таких нагрузок. нам нужны сваи.

Факторы, влияющие на проектирование и строительство свайных фундаментов

  • Нагрузки от надстройки
  • Состояние почвы. В зависимости от характера почвы трение кожи будет различным. Когда есть слои почвы, такие как торф, при геотехническом проектировании сваи необходимо учитывать отрицательное поверхностное трение.
  • Состояние породы. Значения RQD и CR, определенные в результате исследования ствола скважины, сильно влияют на вместимость сваи.
  • Стоимость строительства также является важным фактором при выборе свай в качестве опорной системы.
  • Доступность на сайт проверяется.
  • Проверить зазоры от границ.
  • Проверить ограничение вибрации и уровня звука. Чрезмерная вибрация может привести к повреждению прилегающих участков.

Типы свайных фундаментов

Эта категоризация была произведена на основе типа материала, используемого при строительстве свай, и на основе характера конструкции.

  1. Буронабивные сваи / монолитные сваи
  2. Забивные сваи / сборные сваи
  3. Микросваи
  4. Шпунтовые сваи
  5. Деревянные сваи
  6. Винтовые сваи

Буронабивные или монолитные сваи

Наиболее часто и широко б / у тип сваи.В большинстве построек, построенных на свайном фундаменте, наблюдается набивка досок.

Свая вбита в скалу. В зависимости от характера нагрузки и ее величины глубина заделки в скале будет варьироваться.

Кроме того, количество свай, необходимое для поддержки колонны, зависит от грузоподъемности сваи и приложенной нагрузки.

Во-первых, мы находим геотехническую способность и структурную способность сваи. Тогда минимальное из этих значений принимается за вместимость сваи.

Поскольку приложенная нагрузка известна, количество свай можно рассчитать.

Буронабивные сваи строятся как одиночные или групповые в зависимости от приложенных нагрузок. Как правило, групповые сваи требуются для поддержки сдвиговых стержней, сдвиговых стен, лифтовых стержней и т. Д.

Забивные сваи / сборные сваи

Это сборные сваи.

Они сконструированы, когда прилагаемая нагрузка сравнительно мала по сравнению с буронабивными сваями.

Кроме того, сборные сваи не забиваются в скалу, а заканчиваются или вставляются в твердый слой почвы.Должен быть плотный слой почвы, чтобы поддерживать сваю и обеспечивать опору на конце.

Эти сваи в основном представляют собой сваи с преобладанием трения, хотя имеется концевой подшипник.

Забивку можно производить вручную путем падения массы в сваю или с помощью вибропогружателя.

Доступны сваи разных размеров от 400 мм. Далее, в зависимости от характера конструкции, могут изготавливаться даже меньшие размеры.

Кроме того, эти типы свайных фундаментов широко используются в малоэтажных зданиях, когда они не могут быть построены на мелком фундаменте.

Микросваи

Микросваи довольно популярны в малоэтажном строительстве.

Когда состояние грунта слабое и нет достаточной несущей способности, чтобы выдерживать нагрузки от надстройки, необходимо построить глубокий фундамент.

На этом фоне, если посмотреть на доступные варианты; мы должны выбрать тип фундамента из буронабивных свай, сборных свай и микросвай.

Из них буронабивные сваи в целом более дорогостоящие по сравнению с двумя другими типами.

В зависимости от характера и типа нагрузок от надстройки производится выбор типа сваи.

Кроме того, при строительстве фундаментов такого типа желательно получить рекомендацию инженера-геолога.

Проект должен быть выполнен на основе параметров, представленных в отчете по исследованию грунта, и они должны быть проверены после строительства путем проведения необходимых испытаний.

Микросвая представляет собой стальную оболочку, заполненную бетоном.При необходимости и по мере увеличения диаметра микросваи арматурный каркас также можно разместить внутри сваи, чтобы улучшить ее конструктивную способность.

Микросваи используются при строительстве устоев и мостовых опор. Боковые нагрузки, приложенные к опоре, могут передаваться на грунт наклонными микрошваями.

При строительстве опор стоят три сваи или шесть свай шестиугольной формы, используемые для несения вертикальных нагрузок.

Основным риском конструкции этого типа является коррозия стали.Если подвергнуть воздействию коррозии или дать ей возможность соответствовать требованиям по коррозии, свая может разрушиться.

Однако, с другой стороны, риск меньше, так как свая находится под землей, и меньше шансов получить все ингредиенты для коррозии.

Если конструкция должна быть построена в прибрежной зоне, особое внимание следует уделить защите стального кожуха.

Микросваи состоят из стальных обсадных труб 150, 200, 300 мм и т. Д.

Шпунтовые сваи

Шпунтовые сваи также могут рассматриваться как тип свайного фундамента, хотя в большинстве случаев они не используются для непосредственной поддержки конструкций, как другие типы. свай.

Например, шпунтовые сваи используются для поддержки почвы вокруг конструкции, а также действуют как постоянная конструкция. Удаление или рассмотрение как постоянных работ зависит от характера конструкции и состояния земли.

Кроме того, в строительстве широко используются шпунтовые сваи, чтобы удерживать землю для земляных работ. В конструкциях глубоких подвалов, также как указано выше, могут использоваться правильно закрепленные шпунтовые сваи.

Кроме того, он полезен также при строительстве коффердамов.

Существуют разные типы шпунтовых свай в зависимости от профиля и схемы соединения. Кроме того, мы можем выбрать подходящую шпунтную сваю на основе необходимого модуля упругости сечения согласно проектным требованиям.

В статье Шпунтовая подпорная стена обсуждается конструкция устойчивости шпунтовой подпорной стены.

Деревянные сваи

Не только в нынешнем, но и в древнем строительстве использовались более совершенные технологии.

Они знали, что когда есть слабая почва, нужно делать сваи. Поэтому для этого они использовали экологически чистый материал.

Даже сейчас, когда строительство или расширение закончено, можно наблюдать забивание деревянных свай.

В частности, здания и мосты построены на деревянных сваях.

Деревянные сваи долговечны, экономичны и экологичны.

Используется специальная древесина с хорошими прочностными характеристиками.

Пожалуйста, снимайте нагрузку с кожного трения и концевого подшипника.

Конструкции в очень слабых местах, где нельзя приближаться к тяжелым машинам, используются деревянные сваи.

Винтовые сваи

Свая похожа на винт, как показано на следующем рисунке.

Тип винта зависит от типа конструкции.

Кроме того, бывают разные типы винтовых свай.

В соединениях зданий или любых других конструкциях, таких как строительство мостов, можно использовать винтовые сваи.

Проектирование свайных фундаментов

После того, как сваи выбраны в качестве фундамента типа в соответствии с рекомендациями отчета о геотехнических исследованиях, выполняется оценка количества свай.

Тогда нам понадобится вместимость сваи.

В свайных фундаментах имеется двухкомпонентный фундамент для оценки несущей способности слоев.

Возьмем меньшее из нижеприведенных.

  • Геотехническое проектирование
  • Конструктивное проектирование

Геотехническое проектирование свай

Оценка геотехнических возможностей сваи выполняется на основе состояния почвы и состояния породы, в которой она закреплена. рок.

Геотехническая нагрузка сваи может быть представлена ​​следующим уравнением

Qu = Qp + Qs

Где

Qu – предельная геотехническая нагрузка сваи

Qp – конечная опора сваи

Qs – Предельное поверхностное трение сваи

Допустимая нагрузка (Qall) может быть рассчитана как

Qall = Qu / FoS

FoS – коэффициент безопасности; варьируется 2,5 -4

Кроме того, существуют разные методы расчета допустимой грузоподъемности сваи.Метод применения запаса прочности может отличаться от страны к стране в зависимости от местных стандартов.

Иногда применяется отдельный коэффициент безопасности как для концевого подшипника, так и для поверхностного трения, а также используется единичный коэффициент безопасности.

Замечено, что низкий коэффициент безопасности, такой как 2,0, также используется для трения кожи. При проектировании настоятельно рекомендуется соблюдать местные стандарты.

В основном есть пять компонентов, связанных с геотехнической емкостью сваи.

  1. Кожное трение грунта (положительное поверхностное трение и отрицательное поверхностное трение)
  2. Кожное трение выветриваемой породы
  3. Кожное трение камня
  4. Концевая опора скальной породы
  5. Концевая опора грунта

Если свая заканчивается в грунте (твердом слое), в случае сборных свай используется торцевое опорное кольцо в грунте. Если сваи вставлены в скалу (набивные сваи на месте), то опорный конец в скале используется для расчета несущей способности сваи.

Указанные выше пять параметров указаны в геотехнических рекомендациях, основанных на данных исследования скважин.

Если мы знаем параметры почвы, мы можем рассчитать значения поверхностного трения по уравнениям.

Для расчета поверхностного трения почвы доступны следующие методы.

Трение кожи в песке
  • На основе покрывающего слоя и угла трения между грунтом и сваей
  • Корреляция со стандартным тестом на проникновение (SPT)
  • Корреляция с тестом на проникновение конуса (CPT)
Трение кожи в глине
  • λ метод
  • α метод
  • β метод
  • Корреляция с CPT

Концевой подшипник почвы также может быть рассчитан с помощью различных предложенных методов.Следующие методы широко используются дизайнерами.

Подшипник на конце грунта
  • Метод Мейерхофа (песок / глина)
  • Метод Васича (песок / глина)
  • Метод Койла и Кастелло (песок)
  • Корреляция с SPT и CPT
Кожное трение породы

Обшивка породы определяется в зависимости от состояния и типа породы.

Как правило, предельное поверхностное трение свежей породы и погодных пород указывается в отчете о геотехнических исследованиях.

Мы должны применить коэффициент запаса прочности для расчета допустимой мощности. Если указана допустимая мощность, мы можем использовать ее напрямую.

Точечный подшипник скалы (концевой подшипник)

Оценка основана на результатах испытаний. В большинстве случаев для определения прочности породы проводится испытание на прочность на одноосное сжатие (UCS).

Отношение между ПСК и концевым подшипником используется для определения окончательного значения.

Значения RQD и CR также должны проверяться при определении несущей способности сваи и длины раструба, поскольку они отражают состояние породы.

Таким образом, мы получим необходимые геотехнические параметры, такие как поверхностное трение и значения концевых подшипников, из отчета о геотехнических исследованиях. Что нам нужно сделать, так это применить необходимый запас прочности и рассчитать геотехнические возможности.

Конструктивное проектирование сваи

Допустимое напряжение бетона в буронабивных монолитных сваях в большинстве стандартов рассматривается как 0,25fcu . Есть лишь небольшие отклонения.

  • ACI 318: 0,25 fcu
  • EC2: 0,26 fcu
  • CP4: 0,25 fcu

Однако сваю необходимо проверять на коробление, особенно если она построена на слабом грунте. Таким образом, выполняется анализ продольного изгиба свайного фундамента.

И, учитывая то же, можно сделать конструктивный расчет или расчет арматуры.

Есть два метода / этапа проектирования сваи.

  1. Рассчитайте критическую нагрузку на изгиб и проверьте, превышает ли она приложенную нагрузку.
  2. Выполнение более тщательного анализа потери устойчивости и проектирования.

Сводка шагов расчета выглядит следующим образом. Дальнейшее чтение необходимо сделать перед выполнением проектирования.

Шаг 01

Рассчитайте критическую нагрузку потери устойчивости (Pcr).

Step 02

На основе Pcr, грунтовых пружин, вращения в верхней части сваи (может иметь некоторую устойчивость к вращению) и т. Д. Найдите эффективную длину (Lcr).

Step 03

Поскольку нам известны прилагаемые нагрузки, эффективная длина и диаметр сваи, мы можем спроектировать сваю обычным методом или с помощью программного обеспечения.

Ключевые факторы, которые необходимо учитывать при проектировании свайных фундаментов, резюмируются следующим образом.

  • Оцените геотехническую способность и конструктивную способность сваи и примите меньшее значение в качестве несущей способности сваи.
  • Разделите грузоподъемность сваи на приложенную нагрузку (нагрузку на колонну или приложенную нагрузку; предельное состояние эксплуатационной пригодности), чтобы найти количество свай.
  • При проектировании группы свай индивидуальная нагрузка должна рассчитываться на основе центра нагрузки и геометрического центра каждой сваи.Нагрузки распределяются в зависимости от положения сваи.
  • Если имеется более одной сваи, минимальный зазор между ними должен составлять 2,5 диаметра сваи.
  • Увеличение зазора между сваями не позволит использовать фермовую аналогию с конструкцией сваи . Поэтому зазор между сваями выдерживают в 2,5 – 3 раза больше диаметра сваи.
  • Следует обратить внимание на отрицательное трение кожи при наличии органических загрязнений. В противном случае оценка вместимости сваи будет неверной.
  • Устойчивость сваи должна проверяться при наличии очень слабых грунтов, таких как торф, на большей глубине.
  • При выборе длины раструба необходимо обратить внимание на значения RQD и CR .
  • Как правило, в соответствии с большинством стандартов допустимый допуск на отклонения конструкции составляет 75 мм. Это необходимо учитывать при проектировании заглушки сваи. Особое внимание следует обращать на одиночную стопку. Момент центричности должен передаваться наземными балками.Следовательно, это необходимо учитывать при проектировании наземного луча.

Строительство свайного фундамента

Давайте обсудим основные этапы строительства свай. Следующая процедура обсуждается в отношении свай, уложенных на месте.

Следующие допуски допускаются различными стандартами как допустимые отклонения во время строительства.

Сопротивление Символ R1 R2 R3 R4 R4 1.1 1,1 1,0 1,45
Вал (сжатие) γ s 1.0 1,1 1,0 1,3
Всего / в сочетании2 (сжатие) t 1,11 1,1 1,0 1,4
Вал в напряжении γ s; t 1,25 1,15 1,1 1,62
Код Допустимый допуск
ACI-336 4% диаметра или 75 мм; в зависимости от того, что меньше
BS EN 1536 100 мм; для диаметра сваи (D) ≤ 1000 мм

0.1D для 1000

150 мм D> 1500

Конструкция для граблей менее 1 из 15 пределов до 20 мм / м

Конструкция с граблями от 1 к 4 до 1 из 15 пределов до 40 мм / м

CP4 75 мм
BS 8004 Не более 1 из 75 от вертикали или 75 мм

Отклонение до 1 из 25 разрешено для буронабивных свай, пробуренных с граблями до 1 из 4

Этапы строительства сваи и ключевые аспекты, требующие внимания

  • Выполнение разбивки
  • Приступите к удалению верхнего слоя почвы до уровня породы.Он всегда должен стараться поддерживать положение сваи, как указано на чертежах, хотя обычно существует приемлемый допуск 75 мм.
  • Начать выемку керна и контролировать глубину залегания керна. В этом случае он должен убедиться, что бурение керна проводится в свежей породе, а не в выветрившейся породе.
  • Он должен быть измерен с использованием образцов, скорости проникновения, данных каротажа скважины, других глубин сваи, если таковые имеются.
  • Из-за трудностей с поиском свежей породы первый пласт будет заброшен ближе к скважине.Затем можно оценить другие параметры. Исходя из этого, можно приступать к укладке свай.
  • Производятся визуальные наблюдения для проверки качества породы.
  • Кроме того, для проверки прочности породы можно использовать такие методы испытаний, как испытание точечной нагрузкой. Результаты испытаний на точечную нагрузку можно сопоставить, чтобы найти концевую опору сваи. Если это не дает удовлетворительных результатов, следует проводить отбор керна до тех пор, пока не будет найден здоровый камень. Для получения дополнительной информации о тестировании можно обратиться к статье методы тестирования строительных материалов .
  • После завершения бурения керна в породе в соответствии с длиной раструба будет проведена очистка.
  • Основная цель очистки – удалить грязь, песок и т. Д. Из бентонита. Это также называется промыванием.
  • Есть параметры, которые необходимо проверить, чтобы убедиться, что свая должным образом чиста. На следующем рисунке указаны предельные значения. Эти значения будут меняться от спецификации к спецификации.

  • Когда бентонит в выработке достигает заданных пределов, промывка прекращается.
  • Затем труба помещается в котлован.
  • Затем медленно заливается бетон. После того, как он заполнен, дрожь снимается на очень небольшое количество, позволяя бетону вытекать.
  • Этот бетон будет постепенно подниматься со всей грязью и загрязнениями на дне сваи. Затем снова заполняют треми бетоном и дают возможность бетону вытекать.
  • Он должен следить за тем, чтобы конец дрожжевой трубы всегда находился в свежем бетоне.Это позволяет всегда свежему бетону смешиваться со свежим бетоном, и верхний слой бетона постепенно поднимается вверх.
  • Кроме того, очень важно контролировать скорость заливки бетона, чтобы избежать подъема арматурного каркаса. Если скорость выше, клетка будет поднята.
  • Повторяйте это до тех пор, пока бетонирование не будет завершено.

Испытания свайных фундаментов

В отличие от других фундаментов, мы не можем видеть, что происходит под землей.

Ничего не видно…

Как определить, правильно ли мы построили сваю с помощью..

  • Соответствующее покрытие арматуры
  • Без образования перемычек
  • Без выступов
  • Без бетонных смесей с бентонитом
  • Без полостей (например, сот) в бетоне
  • Без грязи на дне сваи
  • И т. Д.…

Поэтому нам необходимо провести испытания сваи, чтобы убедиться, что она построена правильно.

Подрядчик несет ответственность за проведение испытаний свай по согласованию с консультантом по проекту и сторонним испытательным агентством.

Методы испытания свай

В основном существует четыре типа методов испытания свай.

  1. Испытание на целостность сваи (испытание на целостность при низкой деформации)
  2. Испытание на динамическую нагрузку (испытание на высокую деформацию)
  3. Испытание на статическую нагрузку
  4. Звуковое испытание в поперечном отверстии
Испытание на целостность сваи

Самый простой метод прогнозирования целостности сваи.

С помощью этого теста можно предсказать выпуклости, выемки, выемки и т. Д.

Это лучший метод определения дефектного файла, но не может оценить вместимость сваи.

Обеспечивает первоначальное предупреждение о том, неисправна ли свая.

Испытание на целостность сваи используется для определения свай, подлежащих испытанию другими методами, такими как динамическое испытание сваи и испытание статической нагрузкой сваи.

Кроме того, этот метод тестирования не требует больших затрат по сравнению с другими тестами. Далее все сваи испытываются этим методом.

Испытание динамической нагрузкой

Наиболее широко используемый метод определения несущей способности сваи в существующей конструкции.

В отличие от теста статической нагрузки, он дает результаты мгновенно. Емкость плие можно получить на месте сразу после тестирования. Однако будет проведен дальнейший анализ, чтобы дать точные ответы после анализа с помощью программного обеспечения, такого как CAPWAP.

Мы можем получить подшипник скольжения обшивки сваи и концевой подшипник, рассчитанный на испытательную нагрузку.

Первоначально испытание сваи будет смоделировано с помощью программного обеспечения, а высота падения молота будет определена таким образом, чтобы он не создавал растягивающих напряжений, превышающих допустимые или которые могут восприниматься арматурой сваи.

Это называется анализом волнового уравнения (WEAP). При использовании этого метода не требуется прикладывать ударную нагрузку несколько раз, пока мы не найдем испытательную нагрузку.

WEAP обеспечивает взаимосвязь между испытательной нагрузкой, сжимающим напряжением и развитием растягивающего напряжения.

Таким образом, тестирование может быть выполнено очень легко.

Испытание статической нагрузкой

Это более надежный и традиционный метод, используемый при испытании свай. Поскольку все измерения производятся вручную, мы имеем представление о том, что происходит с увеличением нагрузки.

Нагрузку на сваю увеличиваем до испытательной нагрузки, указанной в проекте сваи, и постепенно снижаем.

Деформация сваи отслеживается и проверяется, находится ли она в установленных пределах.

Звуковой тест через отверстие в отверстии

Этот тест используется для проверки состояния сваи. Его можно использовать для проверки состояния соответствующих работ в отверстиях, размещенных в свае.

Трубопроводы укладываются в штабель. Затем испытательный инструмент кладут в стопку и проверяют.Передатчик и приемник используются для проверки состояния сваи.

На основе скоростей волн прогнозирует состояние сваи. Дополнительную информацию о методе тестирования можно найти в статье Википедии Межскважинный акустический каротаж .

Вместимость сваи – обзор

Время влияет на изменения осевой нагрузки в глинистом грунте

Вместимость сваи, рассчитанная по предыдущему уравнению, не учитывает влияние старения с течением времени на емкость сваи, учитывая, что в старом платформа, которая была построена 40 лет назад и более, если пересмотреть расчет, вы можете обнаружить, что она отличается от коэффициента безопасности API в дополнение к условиям окружающей среды Эффект времени, несомненно, влияет на емкость сваи, как это происходит в результате нормальных явлений со временем работы сваи с окруженным грунтом как единым целым, поэтому дополнительное сцепление не учитывается в расчетах.Поэтому недавно было проведено исследование, чтобы определить поведение осевой способности глинистой почвы во времени.

Кларк (1993) и Богард и Мэтлок (1990) провели полевые измерения, в которых было показано, что время, необходимое забивным сваям для достижения предельной прочности в связном грунте, может быть относительно большим – до 2–3 лет.

Стоит отметить, что в течение короткого периода времени после установки наблюдается значительное увеличение прочности, и это происходит из-за того, что показатель прочности быстро увеличивается после непосредственного движения, и этот показатель уменьшается в процессе рассеивания.

Во время забивки сваи в обычных или легких переуплотненных глинах почва, окружающая сваю, значительно нарушается, напряженное состояние изменяется, и это также создает большое превышение порового давления. После установки сваи это избыточное поровое давление начинает рассеиваться, что означает, что окружающий грунт вокруг свай начинает консолидироваться, и, исходя из этого, емкость сваи в глинистой почве со временем увеличивается. Этот процесс называется « настройка ». Скорость рассеяния избыточного порового давления зависит от коэффициента радиальной консолидации, диаметра сваи и слоистости грунта.

В наиболее распространенном случае, когда забивные трубные сваи, поддерживающие конструкцию, имеют расчетные нагрузки, прикладываемые к сваям вскоре после установки, при проектировании свай следует учитывать характеристики времени уплотнения. В традиционных стационарных морских сооружениях время между установкой сваи и полной загрузкой платформы составляет от 1 до 3 месяцев, но в некоторых случаях ввод в эксплуатацию и запуск происходят раньше, и в этом случае эта информация должна быть передана. для инженерного бюро, поскольку ожидаемое увеличение пропускной способности со временем является важными проектными переменными, которые могут повлиять на безопасность системы фундамента на ранних этапах процесса консолидации.

Поведение сваи при значительных осевых нагрузках в высокопластичных, обычно консолидированных глинах было изучено с помощью большого количества испытаний свайных моделей и некоторых натурных испытаний на нагрузку.

В результате этого исследования диссипации порового давления с данными нагрузочных испытаний в разное время после забивки сваи были получены эмпирические корреляции между степенью консолидации, условиями закупоривания и сдвиговой способностью ствола сваи. Это исследование показало, что результаты испытаний стальных свай с закрытым концом в сильно переуплотненной глине указывают на отсутствие значительного изменения вместимости с течением времени.Это противоречит испытаниям стальных свай с закрытым концом диаметром 0,273 м (10,75 дюйма) в переуплотненной глине, где была обнаружена значительная и быстрая установка за 4 дня, поэтому емкость сваи в конце установки так и не восстановилась полностью.

Поэтому очень важно подчеркнуть, что осевая способность сваи с течением времени находится в стадии исследований и разработок, и нет твердой формулы или уравнения, которым следовало бы следовать, но следует сосредоточить внимание на исследованиях, проводимых на конкретном участке. местоположение, а также зависит от предыдущей истории местоположения.

Расчет несущей способности сваи для одиночных и групповых свай

🕑 Время считывания: 1 минута

Расчет несущей способности сваи определит предельную нагрузку, которую свайный фундамент может принять в условиях эксплуатационной нагрузки. Эта способность также называется несущей способностью свай. Устанавливаемые сваи могут быть как одиночными, так и групповыми. Следовательно, расчет нагрузки для одиночной и групповой свай будет другим. Это делается для заданных условий нагрузки или размера фундамента.Здесь расчет несущей способности как для одиночных, так и для групповых свай.

Расчет несущей способности одиночной сваи Здесь необходимо определить вертикальную нагрузку и горизонтальную нагрузку, действующую на сваю.

Расчет вертикальной нагрузки

Рис.1: Вертикальная нагрузка на сваю

Допустимое сопротивление сжатию R ac одиночной сваи обеспечивается концевым подшипником F eb и поверхностным трением для каждого слоя F sf .Таким образом,

Rac = Feb + Total (Fsf) Уравнение 1

Таким образом, максимальная сжимающая эксплуатационная нагрузка, которую может выдержать одна свая, равна ее общему сопротивлению R ac, за вычетом собственного веса сваи W. Таким образом,

Nser Eq.2

Свая также может выдерживать растягивающую нагрузку. Максимальная рабочая нагрузка при растяжении, которой может выдержать свая, составляет

Крыса = Всего (Fsf) + W Уравнение 3

Детали исследования почвы предоставят подробную информацию о концевом подшипнике и величине поверхностного трения.Эти значения получены с помощью испытательных нагрузок и энергетических процедур забивания свай. Эти предельные значения делятся на частный коэффициент надежности от 2 до 3, чтобы получить допустимые значения F eb и F sf .

Расчет горизонтальной нагрузки

Рис.2: Горизонтальная нагрузка на сваи

Двумя основными факторами, ограничивающими горизонтальную вместимость сваи, являются:
  1. Максимальный прогиб конструкции
  2. Конструктивная способность сваи
Максимальная горизонтальная способность для данного прогиба определяется по модулю реакции земляного полотна (кН / м3).Существует несколько методов определения модуля реакции земляного полотна.

Расчет грузоподъемности свай группы Чтобы выдерживать большие нагрузки, сваи располагаются группами. Сваи располагаются группами, что позволяет уменьшить размер и стоимость строительства свайной шапки.

Рис.3.Групповая вместимость сваи

Неповрежденная несущая способность и требуемые условия забивки достигаются за счет обеспечения минимального свободного расстояния между сваями. Это расстояние будет равно удвоенному диаметру сваи.

Рис.4. Минимальное расстояние между сваями

Общая вертикальная эксплуатационная нагрузка на группу свай не должна превышать грузоподъемность группы, которая определяется по формуле: Групповая нагрузка = групповая фрикционная способность + несущая способность на конце группы

= 2D (L + K) k1 + BLk2 Уравнение 4

Где k1 и k2 – коэффициенты почвы. Нагрузки на отдельные сваи внутри группы ограничиваются несущей способностью одной сваи.

Метод местного проектирования свайных фундаментов

В данной работе делается попытка предложить метод местного проектирования свай, основанный на результатах испытаний свайной нагрузки для эталонного участка.Такой LPDM просто основан на идентификации трех безразмерных величин, таких как коэффициент мощности CR, коэффициент жесткости SR и коэффициент групповой осадки. Чтобы доказать надежность LPDM, экспериментальные данные, собранные в течение многих лет в Неаполитанской области (Италия), были использованы для получения вышеупомянутых коэффициентов. Затем LPDM был применен в качестве метода предварительного проектирования к трем хорошо задокументированным случаям с применением подходов, основанных на мощности и расчетах (CBD и SBD).Удовлетворительное соответствие между геометрией первоначального проекта свай и геометрией, полученной с помощью LPDM, доказывает, что предложенная методика может быть очень полезной для предварительного проектирования, обеспечивая разумную точность и требуя небольшого количества ручных расчетов.

1. Введение

Проектирование фундаментных систем – это инженерный процесс, который, следовательно, включает упрощенное моделирование более сложного реального мира. Применительно к свайным фундаментам при проектировании свай всегда необходимо рассчитать осевую несущую способность одиночной сваи.Среди основных методов оценки значений сопротивления основания агрегата и сопротивления вала агрегата есть методы, основанные на фундаментальных свойствах грунта ( теоретических методов ), таких как угол трения, и методы, основанные на результатах испытаний на месте. ( эмпирических методов ), таких как стандартные тесты на проникновение (SPT) или тесты на проникновение конуса (CPT). Понимание разницы между моделью и реальностью, ограничений модели и осуществимости различных методов имеет решающее значение.

Теоретические методы состоят в оценке расчетных значений следующих выражений: где – эффективное горизонтальное напряжение при разрушении, его оценка является одним из наиболее сложных методов в инженерно-геологической инженерии, и – угол трения грунт-сваи. Горизонтальное эффективное напряжение может быть принято как некоторое отношение вертикального эффективного напряжения, что дает в результате вторую форму выражения в уравнении (1).

В уравнении (2) – коэффициент несущей способности, часто принимаемый как функция угла внутреннего трения грунта вблизи вершины сваи, как предлагается в работе Березанцева и др.[1]; – эффективное вертикальное напряжение, действующее на глубине вершины сваи.

Эмпирические методы, основанные на результатах CPT, состоят в оценке следующих эмпирических соотношений: где и – эмпирические коэффициенты, зависящие как от типа грунта, так и от типа сваи, – значение точечного сопротивления CPT, представляющего слой вдоль ствола сваи. , и – среднее значение, измеренное в подходящем интервале глубин вокруг основания сваи.

Для повышения надежности уравнений (3) и (4) данные нагрузочных испытаний экспериментальных свай можно интерпретировать для получения значений и значений для эталонного участка, и только для такого конкретного участка, используя рассчитанные назад значения вышеуказанные коэффициенты делают расчет сваи более точным.

Хотя в последние десятилетия были сделаны значительные улучшения в понимании процессов, управляющих поведением системы грунт-сваи вплоть до разрушения, недавние статьи [2, 3] демонстрируют, что наша способность оценивать реакцию сваи на нагрузку все еще далека от совершенства. удовлетворительно для практических целей по конкретному проекту.

Орр [3] проанализировал прогнозы, сделанные 15 геотехническими специалистами в отношении забивных, буронабивных, винтовых свай и свай CFA в различных грунтовых условиях.Прогнозы полностью теоретические, в том смысле, что каждый специалист получил все данные, необходимые для прогнозирования реакции сваи, но не было экспериментальных данных для сравнения прогнозов и производительности. По мнению автора, наблюдается большой разброс значений предельной вертикальной несущей способности (Таблица 1), особенно в отношении монолитных свай (буронабивных, винтовых и CFA).

0 Международного прогнозного события, инициированного ISSMGE TC212, результаты которого были обнародованы во время 3 Боливийской международной конференции по глубоким фондам, состоявшейся в Санта-Крус-де-ла-Сьерра (Боливия).В данном случае на B.E.S.T. были установлены 3 разные сваи (буронабивные, винтовые и CFA). (Боливийский экспериментальный сайт для тестирования), а затем загружается в случае отказа. Анализ прогнозов [2] показывает, что соотношение между прогнозируемыми максимальными и минимальными значениями (72 прогноза, выполненных 121 человеком) было даже больше, чем указано в таблице 1.

Способ повышения надежности и точности Проектирование свай в локальном масштабе заключается в разработке местных методов проектирования свай (LPDM), которые могут использоваться либо на предварительном этапе, либо на заключительном этапе проектирования, в зависимости от данных (качества и количества), на основе которых они были разработаны. .

Целью данной работы является (1) предложить LPDM, основанный на интерпретации результатов испытаний свайной нагрузкой для эталонного участка, (2) описать некоторые истории болезни, расположенные на эталонном участке, и сообщить о наиболее значимых экспериментальных доказательствах, и (3) применить предложенный LPDM к выбранным историям болезни. Будет показано, что LPDM может быть очень полезным для предварительного проектирования фундамента, будучи довольно точным с инженерной точки зрения, несмотря на то, что требует небольшого количества ручных расчетов.

2.Метод локального проектирования свай

Поскольку прогноз реакции сваи на нагрузку зависит от нескольких неопределенностей, программу испытаний свайной нагрузки следует рассматривать как неотъемлемую часть процесса проектирования и строительства. Испытания свай могут относиться к одной из двух категорий: испытания на разрушение пробных свай, чтобы доказать пригодность системы свай и подтвердить проектные параметры, полученные в результате исследования площадки, и испытания, проведенные на эксплуатационных сваях, для проверки конструкции. техника и качество изготовления и подтвердить эффективность сваи как элемента фундамента [4].

Испытания на нагрузку на сваи в основном используются для определения предельной несущей способности свай непосредственно по полученной кривой «нагрузка-оседание» или путем ее экстраполяции, а также жесткости системы сваи-грунт при определенной нагрузке. Нагрузочные тесты также предоставляют значительный объем дополнительных данных, которые часто остаются неиспользованными. Тем не менее, такие данные могут быть лучше использованы, как демонстрирует LPDM, предложенный в следующих разделах.

2.1. Коэффициент мощности

Mandolini et al. В [5] введен коэффициент несущей способности,, безразмерный параметр, определяемый следующим образом: где предельная осевая несущая способность сваи, полученная по результатам испытаний сваи на нагрузку, делится на вес сваи,.

Предельная нагрузка сваи обычно не определяется должным образом, исходя из наблюдений за кривой осадки сваи. Простой критерий, который можно использовать для преодоления этой проблемы, – это условно определить как нагрузку, вызывающую смещение головки сваи, равную 10% диаметра основания сваи (как, например, предлагается в Еврокоде 7). Если испытание под нагрузкой было остановлено до того, как головка сваи могла испытать такое смещение, можно получить экстраполяцию кривой «нагрузка-оседание»; например, может быть применен эмпирический метод Чина [6], который предполагает, что форма кривой нагрузка-оседание является гиперболической.Чтобы получить достоверное значение путем экстраполяции, во время испытания на нагрузку необходимо измерить осадку головки сваи, составляющую не менее 5% диаметра основания сваи.

Коэффициент вместимости CR позволяет сравнивать данные с разных свай (типа и геометрии), принадлежащих одной и той же территории, с точки зрения геологических и геотехнических условий недр. Для данного установленного объема сваи коэффициент вместимости, как и, зависит от типа сваи и типа почвы. Поскольку состояние грунта фиксированное, ожидается, что на CR сильно повлияет конкретная технология установки свай.На предварительном этапе проектирования, среднее значение коэффициентов пропускной способности, полученное для эталонного участка, позволяет спрогнозировать ожидаемое значение. Очевидно, что необходимо адекватное количество значений CR, чтобы обеспечить надежную оценку. Поэтому предлагается рассчитать коэффициент вариации (CV) популяции CR, чтобы выразить точность.

2.2. Коэффициент жесткости

Mandolini et al. [5] ввел коэффициент жесткости, выраженный следующим образом: где – начальная осевая жесткость грунта-сваи (наклон начальной касательной экспериментальной кривой нагрузки-осадки; для объективной и повторяемой обработки данных можно быть полученным как начальная касательная гиперболы, аппроксимирующей первые три точки на экспериментальной кривой нагрузки-осадки).Его знание важно для прогнозирования ожидаемой осадки одиночной сваи под рабочей нагрузкой на предварительном этапе проектирования.

– осевая жесткость колонны, имеющей длину, равную критическому значению,. Он представляет собой ту длину, при превышении которой любое увеличение длины сваи приводит к небольшому увеличению жесткости сваи или вообще не вызывает ее. Fleming et al. [4] определяется следующим образом: где – модуль Юнга материала сваи; представляет собой значение модуля сдвига грунта на глубине от поверхности земли, и его можно итеративно оценить, используя результаты сейсмических испытаний (в скважине, поперечной скважине и т. д.)) через скорость поперечной волны.

Критическая длина вместо полной длины сваи была введена в определение SR, потому что на реакцию сваи при рабочих нагрузках (следовательно, далеко от разрушения) влияют, тогда как обычно она фиксируется требованиями к вместимости сваи.

Ожидается, что для данной геометрии сваи в эталонной площадке на значения SR не так сильно повлияет метод установки конкретной сваи, как на CR, поскольку конкретная установка сваи должна влиять на начальную осевую жесткость грунта-сваи, менее чем ± 20%, как видно из работы Мандолини [7], сбора имеющихся экспериментальных данных [8–10] и простого метода, предложенного Рэндольфом [11] для моделирования влияния установки на начальную осевую жесткость сваи.На предварительном этапе проектирования вводится среднее значение коэффициентов жесткости, полученных для эталонного участка, для прогнозирования ожидаемого значения. Еще раз, предлагается вычислить коэффициент вариации (CV) популяции SR, чтобы выразить точность.

3. Приложение LPDM
3.1. Проект на основе емкости (CBD) свайного фундамента

Свайный фундамент должен быть предварительно спроектирован в соответствии с подходом, основанным на мощности, на участке, для которого необходим набор данных для оценки и который доступен благодаря предыдущим исследованиям.

Общая вертикальная нагрузка, которая должна быть передана группе свай, получается из структурного анализа. Предполагая номер сваи, средняя нагрузка, передаваемая на каждую сваю, может быть получена как. Для любого заданного диаметра сваи, который должен быть достаточно большим, чтобы гарантировать приемлемый уровень напряжений в головной части сваи, после выбора технологии сваи и оценки как FS (коэффициент безопасности, определенный в нормативных документах), вес сваи может быть оценивается по Уравнению (5) с использованием, с точки зрения безопасности, следующего уменьшенного значения:

Из, можно получить длину сваи.После оценки, таким образом, начальная осевая жесткость грунта-сваи, может быть получена из уравнения (6) с учетом, опять же, следующего приведенного значения:

Соответствующая упругая составляющая смещения одиночной сваи при среднем значении вертикальную нагрузку можно оценить как. В более широком смысле, это сумма двух вкладов: (упругий компонент) и (нелинейный компонент) =, как показано на рисунке 1.


Тем не менее, если уровень нагрузки сваи достаточно низкий, можно предположить.Оценка средней осадки свайного фундамента описана в следующем разделе.

3.2. Групповые эффекты с точки зрения осадки

Взаимодействие между сваями, принадлежащими к группе, усиливает только упругую составляющую осадки одной сваи (например, [5, 11–13]). Таким образом, средняя осадка свайных фундаментов, может быть выражена следующим образом: где – коэффициент усиления, названный «коэффициент групповой осадки », первоначально введенный Skempton et al.[14] и измерения эффектов взаимодействия между сваями.

Рассмотрение предположения имеет следующее выражение:

Исследовательские работы (например, [14, 15]) предположили, что это может быть выражено как функция геометрических факторов, таких как количество,, расстояние, и гибкость,, геморрой.

Мандолини [13] постулировал, что это может быть выражено как функция соотношения сторон, которая была первоначально введена Рэндольфом и Клэнси [16] как, но с критической длиной ворса, вместо общей длины ворса, как показано следующим выражением:

Чтобы проверить справедливость этого предположения, Мандолини [13] оценил соотношение между экспериментально измеренным средним оседанием, для шести зданий в восточной части Неаполя и оседанием единственной сваи под средняя рабочая нагрузка, измеренная во время нагрузочного испытания на одной или нескольких эксплуатационных сваях, принадлежащих одному фундаменту.Интерполируя все экспериментальные данные, он предложил следующее выражение:

Эти результаты, кажется, подтверждают идею о том, что групповые эффекты с точки зрения оседания исключаются в основном геометрическими факторами (посредством соотношения сторон), а не размером конкретные типы свай, влияние которых входит в анализ через значение, полученное при испытании на нагрузку.

Позже набор данных, необходимых для оценки, увеличивался, включая экспериментальные данные, относящиеся даже к контролируемым свайным фундаментам, не расположенным в восточной части Неаполя.В 2005 году было доступно 63 хорошо задокументированных истории болезни, включая широкий спектр типов свай (забивные, буронабивные и CFA), собранные в различных геометрических конфигурациях (4 ≤ n ≤ 6500; 2 ≤ s / d ≤ 8; и 13 ≤ L / d ≤ 126) и в отношении очень разных почв (от глинистых до песчаных, стратифицированных, насыщенных или ненасыщенных и т. д.).

Mandolini et al. [5], аппроксимируя все вышеупомянутые данные той же степенной функцией, что и уравнение (13), предложил следующее выражение для оценки:

Данные, собранные в вышеупомянутых 63 историях, включают экспериментально измеренную максимальную осадку свайных фундаментов, что позволяет получить выражение для оценки, определяемое как:

Подставляя уравнение (14b) в уравнения (10) и (11), можно получить максимальную осадку свайного фундамента.

3.3. Расчетное проектирование (SBD) свайного фундамента

Свайный плот – это система фундамента, объединяющая как плоты, так и сваи. Поскольку в такой системе фундамента сваи используются для уменьшения и / или регулирования оседания и их распределения, не предписывается никаких ограничений для коэффициента безопасности свай от разрушения несущей способности, что приводит к оптимизации стоимости фундамента.

Для предварительного проектирования свайного плота описанный выше метод немного корректируется.Во-первых, необходимо спрогнозировать распределение нагрузки между группой свай и плотом. После оценки с помощью классических методов средней осадки, связанной с разложенным плотом, жесткость грунта легко может быть получена как. Принимая допустимое значение для средней осадки свайного плота и пренебрегая вкладом плота в общую жесткость комбинированного основания, последнее можно получить как. Доля нагрузки, передаваемой сваями на грунт, может быть выражена следующим образом [16]:

Таким образом, нагрузка, присваиваемая группе свай, равна.В то время как в подходе к проектированию на основе грузоподъемности определяется длина сваи, необходимая для обеспечения требуемого запаса прочности на случай нарушения несущей способности; при проектировании на основе осадки длина сваи выводится из оценки SR и необходима для обеспечения приемлемой средней осадки свайного плота. В таких обстоятельствах влиянием нелинейности на среднее смещение нельзя пренебрегать из-за высокого уровня нагрузки, и поэтому следует использовать уравнение (10).

Если кривая нагрузка-расчет интерполирована гиперболой согласно Чину [6], ее можно выразить следующим образом: где – уровень нагрузки.

Комбинируя уравнения (10) и (17), получается следующее выражение для: которое может быть вычислено для любой данной комбинации диаметра и количества свай. Подставляя уравнение (18) в определение, учитывая, что и и выражая как, получается следующее выражение для:

Установка значения первой попытки длины сваи,, можно рассчитать вес сваи.Таким образом, из уравнения (5), принимая (уравнение (8)), можно рассчитать осевую несущую способность одиночной сваи и, следовательно, уровень нагрузки. Затем по уравнению (19) выводится жесткость группы свай-грунта,, и, следовательно, новое значение получается как. Процедура повторяется до тех пор, пока выбранная длина,, гарантирует приемлемую осадку,.

Всю процедуру можно повторить для допустимого значения максимальной осадки свайного плота, приняв уравнение (19), (уравнение (14b)) вместо (уравнение (14a)).

4. Опыт в восточной части Неаполя (Италия)

В 1995 году в Неаполе было завершено строительство «Нового направленного центра» (CDN). Это крупный поселок городского типа, расположенный в восточной части города, в основном предназначенный для ведения бизнеса. Он включает в себя многоэтажные дома высотой до 100 метров.

Свайные фундаменты, спроектированные с учетом вместимости, были приняты почти для всех зданий. Из-за важности работ и обычных неопределенностей, связанных с проектированием свайных фундаментов, до, во время и после строительных работ было проведено обширное экспериментальное исследование.В частности, было проведено 20 испытаний под нагрузкой до разрушения с головы вниз на различных пробных сваях, 125 испытаний под нагрузкой с головы вниз на различные производственные сваи, а также тщательный мониторинг характеристик нескольких зданий во время и после их строительства.

4.1. Геолого-геотехнический конкурс

Недра всей территории были тщательно исследованы рядом авторов (резюме дано Мандолини [13]).

Сбор геологической и геотехнической информации показал наличие достаточно однородного состояния недр.Начиная с поверхности земли, расположенной на высоте от 5 до 8 м над средним уровнем моря, и двигаясь вниз, обнаруживаются следующие почвы (Рисунок 2): (а) искусственный грунт; (б) вулканический пепел; (c) стратифицированные пески с органическими почвами; (г) пуццолана, несвязная или слегка цементированная; (д) вулканический туф; и (f) морские пески.

Уровень грунтовых вод находится на небольшой глубине от поверхности земли (от +2 до +5 м над уровнем моря).

На Рисунке 2 также представлены результаты CPT с точки зрения сопротивления конуса, и трения, а также измерения скорости поперечной волны.Все данные относятся к вертикали (обозначена в верхней части сплошными точками), где вулканический туф не обнаружен.

Как видно, значения очень изменчивы и очень часто меньше 10 МПа в верхних 30 м. После обнаружения пуццоланы значения все еще остаются довольно низкими, но, даже незначительно, линейно возрастают с глубиной до 40 м, где обнаруживается слабоцементированная пуццолана, о чем свидетельствует внезапное увеличение. За пределами глубины 60 м (морской песок) значения сильно различаются.

Если посмотреть на, независимо от типа почвы, значения имеют тенденцию линейно увеличиваться с глубиной от примерно 150 м / с на небольшой глубине до более 300 м / с на большей глубине.

4.2. Данные по применению LPDM в Неаполитанской области (2005 г.)

В 2005 г. Mandolini et al. [5], обработка данных, собранных в предыдущие годы, предоставила информацию, необходимую для применения LPDM для неаполитанской территории. Они представлены в таблице 2.


Тип сваи Количество прогнозов (кН) мин.значение (кН) макс. значение Соотношение макс. / мин.

Приводной 3 1748 2262 1,3
Посадочный

2 Винт
8 351 1500 4,3
CFA 11 1290 5093 4,0

4.1

Тип сваи

0,26 1,46 0,28
CFA 37,5 0,25 1,44 0,46
Винтовой и приводной4 9049

Буронабивные сваи дают наименьшее значение (в среднем в 12 раз больше веса сваи) и больший разброс, в то время как забивные сваи дают наибольшее значение (в 73 раза больше веса сваи) и наименьший разброс.Сваи CFA являются промежуточными, даже если их разброс аналогичен разбросу буронабивных свай. Эти результаты подтверждают ожидаемое сильное влияние технологии установки свай на осевую несущую способность сваи. Напротив, на конкретную установку сваи так не влияет. Фактически он составляет от 1,29 (винтовые и забивные) до 1,46 (буронабивные) для всех свай, с. Эти данные, по-видимому, подтверждают то, что многие авторы утверждали за более чем 20 лет [11, 13, 17, 18]: метод установки влияет на осевую жесткость свай намного меньше, чем их несущая способность, и зависит в первую очередь от небольшой модуль деформации сдвига грунта.

4.3. Данные для приложения LPDM в Неаполитанской области (2018)

Сбор данных, начатый во время строительства CDN, никогда не прекращается. До настоящего времени во время строительных работ в провинции Неаполь было проведено большое количество нагрузочных испытаний на пробных и эксплуатационных сваях. В набор данных теперь включены результаты 384 нагрузочных испытаний, выполненных на сваях, реализованных на 15 сопоставимых площадках с точки зрения геологического и геотехнического контекста. Улучшение такого набора данных позволяет обновлять значения и (и соответствующие коэффициенты вариации), как показано в таблице 3.

9314 901

Тип сваи

901 37,5 0,25 1,46 0,08
Приводной 78,2 0,13 1,38 0,16
FDP 51.5 0,33 1,44 0,07

В дополнение к данным, обработанным в 2005 году, был введен еще один тип сваи – сваи полного вытеснения. Стоит отметить, что коэффициенты вариации уменьшаются как для каждого типа сваи, так и для каждого типа; таким образом, предоставленные значения и более надежны из-за расширения набора данных.

5. Применение LPDM для трех хорошо задокументированных историй болезни

Чтобы проиллюстрировать применение LPDM, сделана ссылка на следующие три хорошо задокументированных истории болезни: (i) История болезни №1, относящаяся к строительство здания Нового суда; данные очень подробно представлены Мандолини [13], но читатель может найти исчерпывающее резюме в Мандолини и Виггиани [17].(ii) История болезни № 2, связанная со строительством двух башен; опять же, данные очень подробно представлены Мандолини [13], но читатель может найти исчерпывающее резюме в Мандолини и Видгиани [19]. (iii) История случая № 3, связанная со строительством группы круглых стальных резервуаров; данные подробно представлены Russo et al. [20].

Стоит отметить, что применение LPDM было проверено по другим хорошо задокументированным историям болезни в восточной части Неаполя, здесь не сообщается; его надежность для эскизного проекта систематически подтверждается.

5.1. История болезни №1
5.1.1. Описание

Новое здание суда состоит из трех башен высотой от 67 до 110 м от поверхности земли (рис. 3). Каждая башня имеет стальную рамную конструкцию с железобетонными жёсткими сердцевинами для защиты от ветра и сейсмических воздействий.

Общая приложенная вертикальная нагрузка составляет примерно 1450 МН, а вся площадь фундамента составляет примерно 7000 м. 2 . Полученное среднее контактное давление (≈200 кПа) привело бы к средней осадке порядка нескольких десятков сантиметров, превышающей допустимое значение.Поэтому свайный фундамент, изображенный на рисунке 4, был рассмотрен проектировщиком.


Состоит из 241 буронабивной сваи с ячейкой предварительного напряжения в основании. Все сваи имеют длину 42 м и диаметр от 1,5 до 2,2 м (23 сваи с диаметром d = 1,5 м, 62 сваи с диаметром d, = 1,6 м, 79 свай с диаметром d, = 1,8 м, 57 свай с d = 2,0 м и 20 свай с d = 2,2 м). Расстояние между сваями в среднем составляет с = 6.1 мес.

Каждая свая подвергается средней нагрузке = Q / n = 6,0 МН. Из-за концентрации нагрузки под железобетонными стержнями жесткости максимальная ожидаемая нагрузка составляет = 8,9 МН.

Перед началом строительства были проведены четыре испытания пробных свай (A, B, C и D) на нагрузку с головы вниз, все длиной L = 42 м [21].

Сваи A (без датчика предварительного напряжения в основании) и C (с датчиком предварительного напряжения в основании) имеют диаметр d = 1.5 м, тогда как сваи B (без ячейки предварительного напряжения в основании) и D (с ячейкой предварительного напряжения в основании) имеют диаметр d = 2,0 м. Все сваи оснащены инструментами по всей длине, чтобы измерить вклады вала и основания.

Поскольку окончательное решение было принято о применении свай, оснащенных ячейкой предварительного напряжения в основании, на Рисунке 5 показаны только результаты нагрузочных испытаний свай C и D.


Как видно, тогда как кривая нагрузка-осадка для сваи C ( d = 1.5 м) явно демонстрирует состояние хрупкого разрушения при Q = 19,1 МН, то же самое не относится к свае D ( d = 2,0 м). В этом случае из-за проблемы с реакционной системой испытание под нагрузкой было остановлено при Q = 27,5 МН. Основываясь на интерпретации измерений внутренней деформации, Мандолини [13] оценил следующие значения для среднего трения кожи и сопротивления основания единицы: = 63 кПа и = 2,4 МПа. Из рисунка 5 также можно заметить, что при средней нагрузке = 6.0 МН, измеренная осадка находится в диапазоне от 3,5 мм (ворс C) до 2,3 мм (ворс D).

Строительство трех башен заняло около семи лет (1982–1989). В течение всего периода строительства (Рисунок 6) велась подробная запись приложенной нагрузки; В настоящее время осадка 41 точки, распределенная по всей площади фундамента, была измерена с помощью высокоточной нивелирной съемки.

Как видно, большая часть нагрузки (95%) была приложена до конца 1987 года; в то время измеренные средние осадки для трех башен находятся в диапазоне от 26 мм (Башня C) до 35 мм (Башня B) со средним значением = 31 мм.

В заключительной части периода строительства (1987–1989 гг.) И в течение нескольких лет после окончания строительства (1989–1995 гг.) Скорость осадки оставалась практически неизменной (∼5 мм / год), несмотря на очень небольшое увеличение приложенной нагрузки и возникновение деформаций ползучести в пирокластических грунтах.

5.1.2. Краткое изложение основных результатов экспериментов

Свайный фундамент, принятый для здания Нового суда в восточной части Неаполя, состоит из 241 буронабивной сваи большого диаметра разного диаметра ( d = 1.5 / 2,2 м), но такой же длины ( L = 42 м), в среднем s = 6,1 м. Чтобы отнести к одному единственному значению, взвешивая диаметр каждой сваи по количеству соответствующих свай, получается следующий средний диаметр: = 1,8 м.

Поскольку нет экспериментальных данных, относящихся к этому диаметру сваи, можно разумно оценить предельную вертикальную несущую способность, используя экспериментальные значения, полученные в результате испытаний на нагрузку для (= 63 кПа) и (= 2.4 МПа). Интегрирование по площади ствола и площади основания сваи диаметром 1,8 м дает = 21,1 МН.

В условиях осадки одинарной сваи при рабочей нагрузке = 6,0 МН возникает та же проблема. Однако разумно предположить, что осадка сваи с = 1,8 м находится в пределах измеренных значений для меньшего (свая C = 3,5 мм) и большего (свая D = 2,3 мм) диаметра. Например, с помощью простой линейной интерполяции можно оценить = 2,8 мм.

Рассматривая групповые эффекты, измеренная осадка для трех башен дает среднюю осадку всей группы свай = 31 мм; итоговый коэффициент расчетов группы составляет.

5.1.3. Применение LPDM в здании нового суда

Структурный анализ выявил высокую концентрацию нагрузки с максимальным расчетным значением = 8,9 МН. Согласно итальянским нормам того времени (минимальный коэффициент запаса прочности FS = 2,5 для высоконагруженной сваи) = 22,25 МН.

Диаметр сваи принят равным d = 1,8 м, что соответствует поперечному сечению сваи A = 2,54 м 2 .

Из таблицы 3 для буронабивных свай = 11.7 и = 0,27, следует = 8,51.

Так как = 22,25 МН, то Вт = 2,61 МН. Принимая = 24 кН / м 3 , такое значение для W приводит к длине сваи L = 42,8 м (всего 0,8 м, что означает на 2% больше, чем было выбрано на окончательной стадии проектирования). Принимая = 25000 МПа, на основе профиля на Рисунке 2 после нескольких итераций найдено значение = 33,4 м. Это соответствует = 1905 МН / м. Из таблицы 3 для буронабивных свай = 1,56 и = 0.09 следует, что = 1,42 и = 2701 МН / м.

Соответствующее смещение головки одинарной сваи (упругая составляющая) при средней вертикальной нагрузке ожидается = 2,2 мм. Если учесть нелинейную часть односвайной осадки, она будет равна 3,7 мм. Выявлен диапазон для, практически совпадающий с диапазоном значений, измеренных во время нагрузочных испытаний (2,3 мм и 3,5 мм).

С точки зрения групповых эффектов результирующее соотношение сторон составляет R = 6.6, а коэффициент погашения группы = 9,9, что всего на 10% меньше экспериментального значения. Максимальный коэффициент расчетов группы = 18,9.

Отсюда следует, что расчетные средние и максимальные осадки свайного фундамента равны соответственно = 22,1 мм и = 42,0 мм. Отсюда следует, что измеренная средняя осадка (= 31 мм) попадает в диапазон расчетных значений.

Обратите внимание, что нелинейная часть осадки = 1,5 мм составляет около 6% от общей средней осадки свайного фундамента и около 3% от общей максимальной осадки свайного фундамента; поэтому она незначительна.

5.2. История болезни №2
5.2.1. Описание

Две башни имеют одинаковую высоту (86,5 м) от поверхности земли (Рисунок 7). Каждая башня (U для офиса и A для гостиницы) имеет стальную каркасную конструкцию с железобетонными жёсткими сердцевинами для защиты от ветра и сейсмических воздействий.

Общая приложенная вертикальная нагрузка, Q , исходящая от двух башен (за исключением небольшого трехэтажного здания), составляет приблизительно 410 МН, а вся площадь фундамента составляет около 2800 м 2 .Полученное среднее контактное давление (≈145 кПа) привело бы к средней осадке, превышающей допустимое значение. Таким образом, всего было установлено 637 свай CFA (613 под двумя главными башнями и 24 под малым зданием), длиной L = 20 м и диаметром d = 0,60 м. Расстояние между сваями в среднем с = 2,4 м.

На каждую сваю действует средняя нагрузка = 0,67 МН. Из-за концентрации нагрузки под железобетонными стержнями жесткости максимальная ожидаемая нагрузка составляет = 1.37 Мн.

Перед началом строительства были проведены два испытания пробных свай на разрушение (рис. 8). Сваи были оснащены инструментами по всей длине, чтобы измерить вклады ствола и основания.


Как видно, свая 2 вела себя лучше, чем сваа 1: максимальная нагрузка, достигнутая в конце испытания, составила 4,8 МН и 4,2 МН соответственно, что соответствует осадке головы сваи = 85 мм и = 65 мм. , соответственно.

На основе интерпретации измерений внутренней деформации можно оценить следующие значения для среднего поверхностного трения и сопротивления основания устройства: = 90 кПа и = 3.5 МПа. Как и ожидалось, эти значения немного больше, чем соответствующие значения для буронабивных свай из-за положительного воздействия на окружающий грунт во время проходки винтом. Из рисунка 8 также можно заметить, что при средней нагрузке измеренная осадка находится в диапазоне от 1,7 мм (свая 1) до 2 мм (свая 2).

На строительство двух башен ушло около двух лет. В течение всего периода строительства (Рисунок 9) велся подробный учет приложенной нагрузки; В настоящее время осадка 39 точек, распределенных по всей площади фундамента главных башен, была измерена с помощью высокоточной нивелирной съемки.

Как видно, в конце строительства измеренные средние осадки для двух башен были разными (29,2 мм для башни A и 20,9 мм для башни U).

Важно добавить, что измерения для башни А начались до бетонирования плота, соответствующая средняя осадка которого составила 2,6 мм. Поскольку два фундамента очень похожи, Мандолини [13] предложил увеличить измеренную среднюю осадку для башни U на ту же величину, в результате чего общая осадка будет равна 20.9 + 2,6 = 23,5 мм. В целом по окончании строительства две башни показали среднюю осадку = 26,4 мм. Что касается предыдущей истории болезни, то после окончания строительства зафиксировано увеличение осадки, связанное с возникновением деформаций ползучести в пирокластических грунтах.

5.2.2. Сводка основных результатов экспериментов

Свайный фундамент, принятый для башен A и U в восточной части Неаполя, состоит из 613 свай CFA одинаковой длины ( L, = 20 м) и диаметра ( d = 0.60 м), в среднем с = 2,4 м.

С точки зрения осадки одинарной сваи при средней рабочей нагрузке, осадка, измеренная во время испытаний на нагрузку на пробные сваи, в среднем составляет = 1,85 мм.

Рассматривая групповые эффекты, измеренная осадка для двух башен дает среднюю осадку всей группы свай = 26,4 мм, что соответствует коэффициенту групповой осадки.

5.2.3. Применение LPDM к башням A и U

Структурный анализ показал максимальное расчетное значение = 1.37 Мн. Согласно итальянским нормам того времени (минимальный коэффициент запаса прочности FS = 2,5 для высоконагруженной сваи) = 3,43 МН. Диаметр сваи принят равным d = 0,60 м, что соответствует поперечному сечению сваи A = 0,28 м 2 .

Из таблицы 3 для свай CFA = 37,5 и = 0,25 следует, что = 28,18.

Так как = 3,43 МН, то Вт = 0,12 МН. Приняв = 24 кН / м 3 , такое значение для W приводит к длине сваи L = 18 м (всего 2 м, что означает на 10% короче, чем выбрано на окончательной стадии проектирования L = 20 м).Используя профиль, представленный на Рисунке 2, и принимая = 25000 МПа, после нескольких итераций найдено значение = 15,5 м. Это соответствует = 456 МН / м.

Из таблицы 3 для свай CFA = 1,46 и = 0,08 следует, что = 1,34 и K = 613 МН / м.

Соответствующее смещение головы одинарной сваи (упругая составляющая) при максимальной вертикальной нагрузке ожидается = 1,1 мм. Если рассматривать нелинейную часть односвайной осадки, будет равняться 1.82 мм, что практически совпадает со средним измеренным (1,85 мм).

С точки зрения групповых эффектов результирующее соотношение сторон составляет R = 9,7, а коэффициент согласования в группе = 17,8, что примерно на 20% больше экспериментального значения. Максимальный коэффициент расчетов группы = 32,3.

Отсюда следует, что расчетные средние и максимальные осадки свайного фундамента равны соответственно = 19,4 мм и = 35,3 мм. Отсюда следует, что измеренная средняя осадка (= 26.4 мм) попадает в диапазон расчетных значений.

Обратите внимание, что нелинейная часть осадки = 0,73 мм составляет около 4% от общей средней осадки свайного фундамента и 2% от общей максимальной осадки свайного фундамента; поэтому она незначительна.

5.3. История болезни №3
5.3.1. Описание

Четыре стальных резервуара для хранения гидроксида натрия, токсичной жидкости с удельным весом 15,1 кН / м 3 , должны быть добавлены к уже существующему кластеру в районе порта Неаполя (Рисунок 10) .Новые резервуары имеют диаметр от 10,5 до 12,5 м и высоту 15 м. Суммарная приложенная вертикальная нагрузка Q , исходящая от каждого резервуара, составляет от 18 до 25,5 МН. Полученное среднее контактное давление (≈187 кПа) привело бы к средней осадке от 90 до 105 мм при статических нагрузках. Это больше, чем значение, совместимое с безопасной эксплуатацией цистерн. Поскольку коэффициент запаса прочности при расчетной нагрузке был удовлетворительным (от 8 до 9), был рассмотрен свайный плотный фундамент (рисунок 11).



Всего было установлено 52 сваи CFA (по 13 свай под каждым резервуаром) длиной L = 11,3 м и диаметром d = 0,60 м.

На этапе проектирования пробная свая была испытана на нагрузку около 2100 кН. Из полученной кривой «нагрузка-оседание» (рис. 12) можно заметить, что при нагрузке 1500 кН (средний уровень нагрузки свай под резервуарами) секущая жесткость испытательной сваи составляет 214 кН / мм. Соответствующее оседание головки одинарной сваи составляет = 7 мм, что является суммой = 3 мм и = 4 мм.


Осадку ряда точек на фундаментах новых резервуаров контролировали методом точного нивелирования. Также были измерены нагрузки, передаваемые плотом на некоторые из свай двух новых резервуаров. Во время первого заполнения при общей приложенной нагрузке 23 МН средняя осадка, наблюдаемая для резервуара № 12 составляет 19,7 мм, а максимальное наблюдаемое оседание составляет 35 мм.

5.3.2. Обобщение основных результатов экспериментов

На свайный плотный фундамент, принятый для резервуара №12 в порту Неаполя состоит из 13 свай CFA одинаковой длины ( L = 11,3 м) и диаметра ( d = 0,60 м), в среднем с интервалом s = 3,5 м.

При средней рабочей нагрузке на сваю = 1,5 МН осадка, измеренная при испытании на нагрузку сваи на пробной свае, составляет = 7 мм.

Рассматривая групповые эффекты, измеренные средние и максимальные осадки для резервуара при рабочей нагрузке Q = 23 МН составляют, соответственно, = 19,7 мм и = 35 мм, что соответствует групповым коэффициентам осадки = 2.8 и = 5.0.

5.3.3. Применение LPDM к резервуару № 12

Общая приложенная вертикальная нагрузка составляет Q = 23 МН. Расчетная осадка для разнесенного плота = 105 мм; Таким образом, жесткость плота без свайного грунта составляет = 219 МН / м. Принимая допустимое среднее значение осадки для плота, равное 20 мм, соответствующая групповая жесткость грунта свай составляет = 1150 МН / м. Из уравнения (15) = 0,96 и, следовательно, = 22 МН – нагрузка, передаваемая на сваи. 13 свай диаметром 0.Учитывается 6 м (поперечное сечение сваи A = 0,28 м 2 ), что дает средний шаг сваи 3,5 м.

После применения предложенного метода длина сваи, необходимая для получения = 20 мм, составляет L = 9,8 м, что на 15% меньше длины, выбранной на финальной стадии проектирования. Для полноты картины стоит упомянуть, что в результате расчетов масса сваи Вт = 0,07 МН; осевая несущая способность односвайной = 1,9 МН; уровень нагрузки = 0.90; соотношение сторон R = 2,1, коэффициент расслоения в группе = 1,5; жесткость колонны = 722 МН / м; и группа сваи – жесткость грунта = 1150 МН / м.

Описанная выше процедура может быть повторена, если допустимое максимальное значение осадки для плота равно 35 мм. Соответствующая группа свай – жесткость грунта = 657 МН / м. Из уравнения (15) = 0,92 и, следовательно, = 21,1 МН – нагрузка, передаваемая на сваи. Рассмотрены 13 свай диаметром 0,6 м, что дает среднее расстояние между сваями 3.5 мес.

После применения предложенного метода длина сваи, необходимая для получения = 35 мм, составляет L = 9,0 м, что на 25% короче выбранной на финальной стадии проектирования. Для полноты картины стоит упомянуть, что в результате расчетов масса сваи Вт = 0,06 МН; осевая несущая способность односвайной = 1,7 МН; уровень нагрузки = 0,95; соотношение сторон R = 2,2; максимальный коэффициент расчетов группы = 3,2; жесткость колонны = 789 МН / м; и группа сваи – жесткость грунта = 657 МН / м.

6. Резюме

В таблице 4 представлены основные результаты, полученные с помощью приложения LPDM, основные экспериментальные результаты и основные окончательные варианты дизайна для каждого проанализированного случая.

93–141 9,3 –35

История болезни Расчетный подход по сравнению (м) (мм) (и) LPDM (мм)
1 CBD 42 vs.42,8 31 22,1–42
2 CBD 20 по сравнению с 18 26,4 19,4–35,3
3 SBD 20–35

Как видно, согласие вполне удовлетворительное.

Для историй болезни CBD различия между длинами свай, взятыми из этапов детального проектирования, и теми, которые просто получены из LPDM, находятся в диапазоне от –20% до + 2%; измеренные средние осадки находятся в пределах диапазона, полученного LPDM.

Для случая SBD, то есть для случая, когда осадки были наложены равными измеренным (средним и максимальным), длина сваи из LPDM была немного меньше (-2, чем та, которая была принята на стадии детального проектирования).

7. Выводы

Проектирование фундаментной системы состоит из последовательности этапов, направленных на выбор типа системы, которая удовлетворяет наши потребности наиболее экономичным способом, с достаточным запасом прочности на случай отказа несущей способности и безопасным реакция на рабочие нагрузки, согласно нормативным требованиям.Важной частью процесса проектирования и строительства фундамента является исследование площадки и испытание свай. Последнее должно быть выполнено для подтверждения пригодности свайной системы, подтверждения проектных параметров, полученных в результате исследования площадки, для проверки технологии строительства и качества изготовления, а также для подтверждения характеристик сваи в качестве элемента фундамента. Аналитические, эмпирические, полуэмпирические и теоретические методы проектирования свайных фундаментов за последние десятилетия очень быстро развиваются.Тем не менее их надежность обычно зависит от грамотного выбора вводимых параметров. Хотя есть успехи в нашем понимании геотехнических проблем, было продемонстрировано [2, 3], что прогнозирование работы свай часто далек от фактического.

Чтобы улучшить нашу способность оценивать реакцию сваи на нагрузку для практических целей в конкретном проекте, авторы рекомендуют использовать метод локального проектирования свай, как показано в настоящей работе.Он просто основан на идентификации следующих трех безразмерных величин: коэффициента несущей способности CR, коэффициента жесткости SR [5] и коэффициента групповой осадки [14]. Вышеупомянутые коэффициенты были получены авторами для неаполитанской области, где были доступны необходимые экспериментальные данные, но описанная процедура, безусловно, повторяется везде.

LPDM был успешно применен в качестве метода предварительного проектирования к трем хорошо задокументированным случаям проектирования свайных фундаментов с учетом мощности и осадки.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *