Утеплитель без мембраны: Ветрозащитные мембраны в энергоэффективном строительстве

Ветрозащитные мембраны в энергоэффективном строительстве

Основная функция мембран – защита минераловатного утеплителя от ветра, влаги и конденсации пара, а также от эмиссии волокон из утеплителя. Наибольший эффект от свойств мембран проявляется в экстремальных условиях длительной морозной зимы при высокой влажности и сильных ветрах. Дополнительное важное свойство мембран – защита минераловатного утеплителя от увлажнения дождем при монтаже и от солнечного ультрафиолета во время длительного перерыва, до закрытия навесным фасадом. Известно, что УФ-излучение быстро разрушает силиконовый гидрофобизатор и синтетическое связующее волокон утеплителя.

Негорючие мембраны во всем мире изготавливаются на основе стеклоткани с пропиткой фторполимером. В России производится негорючая мембрана с пропиткой отечественной разработки.

 

Почему минеральная вата нуждается в защите?

У минеральной ваты есть два основных достоинства: она не горит и прекрасно пропускает пар. А основной недостаток – неограниченная воздухопроницаемость. В Своде Правил «Проектирование тепловой защиты зданий» 2004 сопротивление воздухопроницанию волокнистых материалов (минеральной ваты) принято равным нулю независимо от толщины слоя.

Известно, что неподвижный воздух – лучший после вакуума теплоизолятор, если он находится в закрытых ячейках утеплителя. Такими утеплителями являются пенополистирол и пенополиуретан, которые в свою очередь хорошо горят и не обладают необходимой паропроницаемостью.

А если в утеплителе свободно гуляет воздух? Изнутри здания через стену в ватный утеплитель поступает влажный теплый воздух (эксфильтрация), снаружи через вентиляционные зазоры фасада вату продувает морозный ветер (инфильтрация). Противоположные вихревые потоки встречаются в утеплителе, где влага конденсируется и становится водой.

Известно, что в течение зимы утеплитель, даже защищенный от ветра слоем паропроницаемой штукатурки, набирает воды до двух килограммов на квадратный метр площади стены. Ясно, что об утеплении зимой в таком случае можно забыть. Расчеты ЦНИИПРОМЗДАНИЙ показывают, что без ветрозащитной мембраны теплоизоляционные свойства утеплителя снижаются в четыре раза.

При циклическом замерзании-оттаивании со временем происходит старение связующего. В любом материале при его производстве возможны дефекты, в слабых местах утеплителя развиваются катастрофические процессы нарастающего разрушения. Слабые места накапливаются, их количество увеличивается, их площади расширяются. И вот уже стены промерзают, появляется плесень, грибок, аллергены воздушно-капельным путем распространяются по помещениям, и люди болеют, сами не зная от чего.

Но стоит только со стороны морозной улицы укрыть утеплитель ветрозащитной «дышащей» паропроницаемой мембраной, как инфильтрация прекратится, теплая зона в утеплителе будет резко ограждена от внешней холодной, пар свободно выйдет из утеплителя и будет конденсироваться в наружном воздухе.

Кроме того, вдоль волокнистой поверхности ваты воздух движется турбулентным потоком, а вдоль пленки – ламинарным потоком.

Если мембрана увеличит неподвижность воздуха в утеплителе, то вопрос качестве и свойствах ваты как теплоизолятора потеряет остроту.

По этим причинам в различных документах рекомендовано применение ветрозащитных мембран с ватным утеплителем. Такие рекомендации содержатся в Своде правил «Проектирование тепловой защиты зданий» (п.8.14): «При проектировании стен с вентилируемой воздушной прослойкой (стены с вентилируемым фасадом) следует руководствоваться следующими рекомендациями: — применять жесткие теплоизоляционные материалы плотностью не менее 80 — 90 кг/м3, имеющие на стороне, обращенной к прослойке, ветро- воздухозащитные паропроницаемые пленки (типа „Тайвек“, „Тектотен“ или аналогичных мембранных пленок)».

Или в Стандарте организации-производителя НВФ (СТО 71168565-001-2010):

«5.4.7. Непосредственно к поверхности утеплителя, если это требуется расчетом, на соответствующих участках или по всей поверхности стены плотно крепится защитная ветрогидрозащитная мембрана. Ветрогидрозащитная мембрана с внутренней стороны обладает сопротивлением паропроницанию, которое существенно ниже сопротивления паропроницанию всего слоя теплоизоляции и основания, а с наружной стороны обладает ветро- и водонепроницаемостью».

Так почему же сегодня производители минеральной ваты настойчиво утверждают, что ветрозащита фасадного утеплителя не требуется?

На чем основано такие заявления? Откуда берутся аргументы в защиту этого тезиса, распространяемого во множестве рекламных публикаций? Насколько достоверна такая информация?

И наконец, какие проблемы в области энергоэффективности ожидают тех, кто доверился такой рекламе и такой информации?

 

Ветрозащита не требуется. Дискуссия и ее последствия.

Впервые тезис об отмене мембран прозвучал на круглом столе по вопросу пожарной опасности полимерных мембран (ТАЙВЕК: быть или не быть. «Технологии строительства». 13 ноября 2007) в дискуссии о целесообразности и безопасности применения влаговетрозащитных мембран при устройстве навесных фасадных систем в ВЫСОТНОМ строительстве. Участники дискуссии призвали производителей мембран повысить огнестойкость ветрозащитных пленок. Но специалист в области строительной физики предложил отказаться от мембран. Он привел несколько аргументов против. Эти аргументы много раз цитировались в дальнейших обсуждениях и привели к созданию двух административных барьеров на пути вывода на рынок негорючих мембран.

Аргументы против касались в основном человеческого фактора (проектировщики не так проектируют, монтажники неправильно монтируют). Лишь три аргумента были по существу и затрагивали три главных свойства мембран – предотвращение эмиссии волокна из ваты, паропроницаемость пленки и ветрозащита ваты. Но аргументы оказались весьма странными.

1) Эмиссия волокна.Утверждается по результатам лабораторных испытаний, что эмиссии волокна из ваты в процессе эксплуатации не существует. Вата без ветрозащиты не изменит свойств в течение 50 лет. Однако практика показывает иное, о чем будет сказано ниже.

2) Паропроницаемость. Утверждается, что мембрана – источник переувлажнения утеплителя, на ней может конденсироваться пар и образовать сплошную ледяную пленку. Ясно, что обледеневшая мембрана пар уже не пропустит и приведет к накоплению и конденсации пара в утеплителе.

Но сопротивление паропроницанию пленки тайвек – 0,055 мг/ ( м² ч Па). Сопротивление паропроницанию негорючих пленок Тенд 0,02, Изолтекс НГ – 0,014. А сопротивление паропроницанию минплиты 3,33 (при толщине образца 30 мм по ГОСТ 25898) (по данным Роквул). Это меньше сопротивления кирпичной стены (5,73) или бетонной стены (6,50) и соответствует технологии утепления наружной стены от большего сопротивления пару к меньшему. Как же сможет конденсироваться пар на мембране? Только если только точка росы фокусируется на тонкой пленке мембраны.

Однако, в работах с участием того же специалиста [4] показано, что точка росы находится внутри слоя ваты, есть мембрана или нет. Задача мембраны – уменьшить возможность возникновения условий конденсации влаги в утеплителе, понизив поперечную и продольную фильтрацию воздуха.

3) Ветрозащита. «Согласно СНиП „Тепловая защита зданий“ значение воздухопроницаемости наружной стены, в том числе и стены с вентилируемым фасадом, не должно превышать 0, 5 кг/ ( м² час).

Экспериментально определено сопротивление воздухопроницанию ветрозащитных мембран „Тайвек“. Оно составляет 10, 5 ( м² ч Па) /кг» (то есть воздухопроницаемость – 0,095 кг/ м² *час). И хотя сопротивление тайвека укладывается в норму, далее утверждается, что «с таким сопротивлением воздухопроницанию он не может обеспечить надежную защиту от поперечной фильтрации. Поэтому если основанием вентилируемого фасада служат кирпичная кладка, пенобетонные блоки, другие воздухопроницаемые материалы, стены изнутри помещения необходимо обязательно оштукатуривать цементно-песчаным раствором».

Но такой вывод означает, что в огороде бузина (норма СНиП выполняется), а в киеве дядька (защита от поперечной фильтрации недостаточна). Если отменить мембран, будет еще хуже! А стены изнутри штукатурят не смотря на то, есть тайвек или нет.

В той же работе указано, что при скорости движения ветра в воздушном зазоре даже в несколько сантиметров в секунду «даже сравнительно небольшое движение воздуха в утеплителе способно переносить количество теплоты, сопоставимое с тепловыми потерями конструкции без фильтрации». И после этого ветрозащита утеплителя не требуется?

Другие специалисты на этом круглом столе не одобрили отмену мембран.


Вот что сказал представитель ИЗОВЕР (минеральная вата):

Опыт работы в области тепловой изоляции показывает, «что теплоизоляционные материалы, контактирующие с атмосферой, всегда использовались с защитным покрытием. Можно, конечно, приводить разные аргументы, но… теплоизоляционный слои и защитное покрытие — это два взаимосвязанных элемента, которые всегда присутствуют вместе».

Проблема возникла лишь потому, что «Тайвек» не безупречен в плане пожарной безопасности. Если бы мембраны были негорючими, у нас вряд ли бы возник вопрос «применять ветрозащиту или не применять».

Если ветрозащита так или иначе решает теплотехнические проблемы, то защищать утеплитель надо. И вообще, эти пленки позволяют решить несколько проблем: и эмиссии волокна, и теплотехнической эффективности конструкции, и защиты утеплителя от атмосферных осадков. Поэтому ветрозащитные мембраны, в принципе, нужны. Только желательно, чтобы они были негорючими.

Представитель Роквул (минеральная вата) посетовал на то, что без мембраны придется увеличивать слой ваты.

Заседание «Рабочей группы по координации проектирования, строительства, мониторинга фасадных систем для высотного строительства и уникальных зданий» закончилось принятием следующей резолюции:


1. Поручить НИИ Строительной физики совместно с ГУ «Центр „ЭНЛАКОМ“, НО „Ассоциация „Анфас“, НО «Росизол“ разработать рекомендации по использованию ветрогидрозащитных мембран в составе НФС.


2. До выхода вышеуказанных рекомендаций необходимость применения ветрогидрозащитных мембран должна основываться на температурно-влажностном режиме работы НФС и расчете ветровой нагрузки, заложенных в проекте.


3. На участках фасада, где не предусмотрено применение ветрогидрозащитных мембран, рекомендовать использование кашированного утеплителя либо рекомендовать применение наружного слоя утеплителя плотностью не менее 80 кг/ м³ или утеплителя двойной плотности.

Заметим, что ни в дальнейших обсуждениях, ни в последующих рекомендациях, нигде и никогда не утверждалось, что мембраны не нужны. Мембраны нужны, но желательно не горючие. Лишь известный представитель стройфизики занял радикальную позицию и похоже, задался целью полностью исключить мембраны из обихода. Статья „Достоинства и недостатки ветрозащитных пленок в вентилируемых фасадах“ (31.01.2008 СтройПРОФИль» 1 (63) заключалась следующими выводами: «Вообще все положительные результаты использования ветрозащитных пленокв вентилируемых фасадах можно обеспечить альтернативными путями при ограниченном их применении. В настоящее время применение ветрозащитных покрытий в вентилируемых фасадах обосновано недостаточно. Их применение обусловлено директивно.

Представляется целесообразным следующий порядок решения вопроса об использовании ветрозащитных пленок:

— выделить участки фасада, где следует устанавливать ветрозащиту, не обусловленную теплофизическими требованиями: например, по углам зданий, безусловно, надо ставить ветрозащитное покрытие;

— на остальных участках при проектировании фасадов необходимость устройства ветрозащиты следует проверять теплофизическими расчетами, при этом можно использовать приведенные выше критерии.

Отсутствие ветрозащиты на некоторых участках можно компенсировать толщиной утеплителя. Конечно, это увеличит стоимость системы, но не намного, поскольку не придется платить за саму пленку и работы по ее монтажу».

17 апреля 2008 г. состоялось обсуждении разработанных рекомендаций. На их основе 11 июля 2008 г. был подписан Протокол Москомархитектуры об обеспечении требований пожарной безопасности навесных фасадных систем с ветрогидрозащитными мембранами различных типов.

Показательно, что этим событием остались довольны производители ваты. «Протокол, подписанный на заседании Москомархитектуры, — серьезный шаг в решении проблемы обеспечения требований пожарной безопасности зданий. Выпущенные рекомендации помогут проектировщикам в выборе удовлетворяющих современным требованиям продуктов. Уверен, что этот опыт будет воспринят и другими городами России в самом ближайшем будущем»,- прокомментировал директор по продажам и маркетингу российского подразделения компании ROCKWOOL

Понятна радость представителя Роквула: без мембраны продажи удвоятся, ведь как уже отмечалось, для фасада без мембран требуется утеплитель двойной плотности, большей толщины, уложенный в несколько слоев.

 

Первый административный барьер

Интересно, что в это же время, пока обсуждались рекомендации, Роквул оформлял Техническое Свидетельство о пригодности новой продукции для применения в строительстве на территории Российской Федерации (ТС № 2221-08 от 30 мая 2008 г. ), в пункте 3.9 которого указано, что в фасадных системах с воздушным зазором применение мембран не требуется.

Но позвольте спросить: разве это техническое свидетельство посвящено фасадной системе? Эта новация представлена в пункте 3 «Основные технические характеристики, обеспечивающие надежность и безопасность продукции», то есть ваты. При чем здесь навесной фасад, частью которого является вата и защитная мембрана?

Эта новация бала бы понятна, если бы содержалась в ТС на вентилируемый фасад. Но до сих пор нам неизвестно, чтобы какой-нибудь производитель фасада ввел бы в ТС категорический отказ от мембраны.

Какие характеристики ваты Роквул позволяют сделать такое революционное заявление? Разве вата перестала быть ватой? Нет: по приведенным в ТС техническим характеристикам видно, что это такая же вата, как и у всех. Она также поглощает влагу из воздуха, так же подвержена намоканию (до 1 кг воды на квадратный метр), а значит и конденсации пара и промерзанию. Она так же не имеет показателя сопротивления воздухопроницаемости, потому что сопротивления нет.

Тем не менее новость достигла лагеря проектировщиков и часто приходилось от них слышать, что теперь мембраны уже не нужны.

В это же время в ответ на требование Круглого Стола разрабатывались, проходили испытания и выводились на рынок огнестойкие и негорючие мембраны: зарубежные (Тектотен) и отечественные (Тенд, Изолтекс).

Мембраны испытывали на огнестойкость в конструкциях навесных фасадов, которые получали оказатель пожарной безопасности К0. Мембраны получали Техническое свидетельство на применение строительстве, их вносили в ТС на НВФ как составную часть пожаробезопасной фасадной системы.

Вот пример, как ведет себя огнестойкая мембрана Изолтекс ФАС (объект на 24 км МКАД):

Искры от сварки не вызвали воспламенения, целостность мембраны сохранилась.

Были выставки, распространялась информация среди специалистов, публиковались обзорные статьи в различных изданиях. Был информирована о наличии таких мембран и пресс-служба Роквула. Но транснациональная компания была неумолима. В новых ТС повторялось недоказуемое утверждение о ненужности мембран.

Поскольку все это содержится в регулирующем правительственном документе, вопрос о применимости мембран снимался уже без всяких обсуждений и рекомендаций.

 

Директивный запрет мембран: второй административный барьер По странному стечению обстоятельств неожиданно, 7 апреля 2010 г., правительством Москвы запрещено применение ветрозащитных мембран из горючих материалов. И это после всех вышеперечисленных обсуждений и рекомендаций. Запретили в том числе мембраны, имеющие ТС на применение в строительстве.

Разумеется, Москомархитектура разослала это жесткое решение по проектным институтам из самых добрых побуждений. Но вряд ли такой максимализм был уместен, ведь за два года до этого сама же Москомархитектура весьма гибко и компромиссно решила вопрос пожарной безопасности.

К моменту запрета было известно о существовании пожаробезопасных мембран Тектотен и Изолтекс. Мембрана Изолтекс имела показатели горючести Г1, воспламенения В1, распространения пламени РП1. То есть, мембрана не воспламенялась, не распространяла пламени и не горела.

В письме о запрете мембран были использованы слова: мембраны из горючих материалов. Но термин горючесть – многоуровневый. Есть четыре класса горючести, и в каждом классе есть крайние точки, когда горючесть еще не Г1, или когда Г1 уже почти НГ. К тому же гораздо более важны показатели воспламеняемости от теплового излучения и особенно способность не распространять пламя.

До сих пор непонятно, зачем эволюционное развитие рынка пожаробезопасных материалов, в котором участвовали множество профессионалов, вкладывались деньги в научные исследования и разработки, было по большевицки тоталитарно нарушено? Были заморожены проекты, прошедшие экспертизу, одобренные пожарными, имеющие все согласования. На складах до сих пор лежат огнестойкие мембраны, произведенные под заказ согласованных проектов.

В шоке были и проектные институты: они-то понимают, что вату надо защищать. И как им теперь проектировать теплозащиту проектов?

До сих пор не отменено это безумное письмо добрых людей.

Судороги конкуренции: кому выгодно?

В погоне за конкурентными преимуществами, а вата без мембраны – несомненное преимущество, Роквул продолжал оформлять Технические Свидетельства, отменяющие мембраны, и ему это удавалось.

Эксперты продолжали помогать Роквулу формулировать недоказуемое. В последней редакции (ТС № 3088 от 22.10.10) отмена мембран сформулирована позаковыристее: в навесных фасадах «поверхность плит, обращенная в сторону воздушного зазора, как правило, не требует защиты ветрогидрозащитными мембранами». Уже «как правило“! Раз сказал чушь, два, а потом и доказывать не надо – уже сделали правило.

Поверхность плит… Помните дискуссию о эмиссии волокна? НИИСФ, несколько раз заморозив в холодильнике пакет с ватой, доказал, что эмиссии нет, поэтому не нужна и защита от эмиссии.

Но опять же, зачем здесь упоминание мембраны? Поставьте данные об эмиссии отдельной строкой в таблицу свойств и довольно. Но это невозможно: строительного госта про эмиссию нет. Нет утвержденной методики.

И это тоже интересно: нет методики и это даже хорошо! И мы вносим утверждения отдельным пунктом, да еще с рекламными формулировками насчет мембран: мембраны не нужны, значит наш продукт сэкономит вам затраты на мембрану и монтаж.

И такие формулы не приводят к ответственности формулирующего (это правилами не запрещено, это ведь могут быть новые данные науки!), но дают аргументы покупателям для предпочтения в конкурентной борьбе.

В этих документах содержится не только недоказуемые заявления. В том же абзаце опровергается сами эти недоказуемые заявления! Применять мембраны необходимо, если того требуют расчеты. А как мы уже знаем, именно расчетами доказана необходимость мембран. И не только расчетами, но и практикой.

Мембраны пришли к нам как продукт высоких технологий вместе с навесным фасадом. В Европе тоже понимают пожарную опасность полимерных мембран, но никто их не отменял: там нет пожароопасного человеческого фактора, но есть практика энергоэффективности, страхования ответственности от дефектов при эксплуатации. Роквул ни в Европе, ни в США, ни в Канаде, нигде не заявляет о ненужности мембран. Более того, сам производит ветрозащитную полимерную горючую мембрану.

Еще пару слов о противоречиях в документах Роквула. В п. 4.9 ТС требуется защитить вату пленкой, если монтаж фасада задержится более 90 дней. Очевидно, что пленка должна быть негорючая и светостойкая, значит дорогая. И это значит, что проблемы ваты дополняются еще одной, не менее острой. Но как же экономия на мембране, провозглашенная специалистом стройфизики? Не проще ли сразу смонтировать нормальную мембрану и забыть обо всех недостатках ваты? Сделать так, как это и делают в Европе и во всем мире?

Тем, кто таким образом добивается маркетингового эффекта, выгодно опираться на высказывания специалиста стройфизики (Достоинства и недостатки ветрозащитных пленок в вентилируемых фасадах. (31.01.2008 СтройПРОФИль» 1 (63):
«Вообще все положительные результаты использования ветрозащитных пленокв вентилируемых фасадах можно обеспечить альтернативными путями при ограниченном их применении.
В настоящее время применение ветрозащитных покрытий в вентилируемых фасадах обосновано недостаточно. Их применение обусловлено директивно.

Представляется целесообразным следующий порядок решения вопроса об использовании ветрозащитных пленок:

— выделить участки фасада, где следует устанавливать ветрозащиту, не обусловленную теплофизическими требованиями: например, по углам зданий, безусловно, надо ставить ветрозащитное покрытие;
— на остальных участках при проектировании фасадов необходимость устройства ветрозащиты следует
проверять теплофизическими расчетами, при этом можно использовать приведенные выше критерии.

Отсутствие ветрозащиты на некоторых участках можно компенсировать толщиной утеплителя. Конечно, это увеличит стоимость системы, но не намного, поскольку не придется платить за саму пленку и работы
по ее монтажу».

Призывы отказаться от мембран поневоле поддержали и отечественные производители ваты. Еще недавно статьи о фасадных конструкциях сопровождались иллюстрациями фасадной системы с ватой, укрытой мембраной. Теперь мембрана изъята из рекламы, хотя директивы об обязательном применении хотя бы там, где это нужно, мембраны никто не отменял.

Что характерно: после появления негорючих и огнестойких мембран уже никто не говорит про пожарную безопасность мембран. Проблема решена. В чем же дело?

Зачем нам пропагандируют эти кривые пути? Новые огнестойкие и негорючие мембраны дают возможность вернуться на прямую магистраль создания уникальных зданий с навесными фасадами и не терять время и не тратить силы на бесплодные дискуссии.

Энергоэффективность и последствия отказа от мембран Незащищенная ничем вата, смонтированная на стене и ожидающая, когда навесят облицовку фасада, представляет жалкое зрелище. Вот стена на объекте в г. Королёве МО

Видна огромная разница качества ваты под ветрозазащитной мембраной Тайвек и на незащищенной стене.

Куда делось водостойкое связующее, гидрофобизированная поверхность ваты, эффект отсутствия эмиссии?..

Вот объект на Ленинградском шоссе. Вот вата под простой ветрозащитной мембраной не самым высоким сопротивлением воздухопроницанию:

А так выглядит незакрытая мембраной стена:

Если мембрана не требуется, то собственно говоря, не требуется и вата. Как ЭТО — может быть теплоизолятором?

Поведение ваты в процессе эксплуатации наглядно демонстрирует тепловидение. Вот несколько примеров.

Частный дом с заботливо отделанным вторым этажом.

Тепловизор к сожалению, обнаружил температурную аномалию, вызванную типичным дефектом –проседанием теплоизоляции. В результате теплопотерь в данном месте возможно промерзание стены. Утеплитель под облицовкой «просел».

На следующих термограммах так называемые «трехслойные стеновые ограждающие конструкции с внутренним слоем из плитного эффективного утеплителя и лицевым слоем из кирпичной кладки».

При тепловизионном осмотре замечено, что практически 100% таких стен с разной степенью выраженности страдают проседанием или разрушением теплоизолирующего слоя, что видно на термограммах (оранжевые пятна).

Причем, сравнивая новые дома и находящиеся в эксплуатации более 5 лет, можно предположить, что этот процесс проседания-разрушения идет непрерывно.

На термограмме изображен угол комнаты в доме с 3х-слойными стенами

Синим цветом отмечена поверхность с температурой ниже точки росы. Другими словами, угол промерзает, на нем образуется конденсат, что ведет к повышенной влажности, образованию плесени, ухудшению микроклимата в квартире. В таких домах ограждающим конструкциям требуется восстановление теплоизолирующего слоя. Кстати, почему продолжается практика санации зданий, когда монтируют вату без мембран в навесных фасадах, в которых щели между плитками облицовки по всей стене в сантиметр шириной? Почему такой навесной фасад называется вентилируемым? Его точное название – навесной продуваемый фасад.

Заключение
  • Слабое место НВФ – вата.
  • Динамика деградации ваты непредсказуема.
  • Риски для всей системы энергосбережения не прогнозируемы.
  • Затраты на восстановление теплоизоляции неисчислимы
  • В проектах с незащищенной ватой заложены бомбы замедленного действия.

Негорючая мембрана и негорючая вата – естественные союзники с доказанной эффективностью теплоизоляции. Как идея отказа от эффективности теплоизоляции может сочетаться с законом Об энергосбережении и о повышении энергетической эффективности? Сочетание ваты и мембраны – самое экономичное решение. При этом есть выбор: НГ для элитного или Г1 для бюджетных вариантов домостроения.

 

Выводы:

  • Рекомендовать мэру Москвы поручить Москомархитектуре отменить запрет на применение мембран, имеющих ТС на применение в строительстве.
  • Рекомендовать ФЦС аннулировать пункты технической оценки ваты, не имеющие отношения к вате и опубликовать это решение на своем сайте.
  • Информировать проектные организации о принятых решениях.

Источник: Изолтекс

Ветрозащита утеплителя в навесных фасадных системах

09.04.2012

Утеплитель без ветрозащитной пленки теряет свои свойства. Расчетами доказана роль ветрозащитной мембраны в системе утепления НВФ.

Утепление здания начинается с утепления стен

В абстракции минеральная вата считается утеплителем, причем очень хорошим: в отличие от пенополистирола и пенополиуретана она не горит. Но сопротивление ваты воздухопроницанию нулевое. Это значит, что зимой, в экстремальные перепады температур, влажности и воздушного давления под облицовкой НВФ вата без ветрозащиты обречена на разрушение и быстро теряет теплозащитные свойства. Поэтому применение ветрозащитной мембраны для утеплителя – требование СНиП.

Заглянем на московскую стройку. Мы видим, что утеплитель без ветрозащитной мембраны разрушается еще во время монтажа подсистемы НВФ. Особенно заметно разрушение на углах и в межоконных проемах.

 

Как такое может быть, ведь утеплитель непростой, с особыми свойствами, от известного иностранного производителя, который утверждает: для его утеплителя «применение ветрозащитных мембран не требуется».

Ветрозащитная мембрана или человеческий фактор?

Плиты уложены не встык, мы видим многочисленные мостики холода. Крепления ваты забиты почти до стены, а значит, в этих точках уже теплоизоляции нет. Углы здания считаются самыми уязвимыми в процессе эксплуатации: перепад давления ветра здесь самый высокий. Межоконные проемы – на втором месте по опасности нарушения теплоизоляции: продольная инфильтрация воздуха начинается с незащищенных торцов минваты.

Чтобы минимизировать воздействие человеческого фактора, производители минваты рекомендуют положить еще один слой более плотной ваты, чтобы перекрыть дефекты и мостики холода. Но более плотная вата тоже воздухопроницаема, к тому же более теплопроводна. Дополнительный слой требует дополнительного, удвоенного крепежа, что ведет к удвоению мостиков холода. А человеческий фактор сделает все как было.

Ветрозащитная мембрана не нужна: стучимся в открытые двери?

Вместо лишнего слоя плотной ваты с меньшей теплозащитой гораздо дешевле и эффективнее применять ветрозащитную мембрану, которая переводит турбулентные потоки в ламинарные. Ветрозащитная пленка изготовлена на основе стеклоткани, имеет гладкую поверхность и отсекает насыщенный паром воздух вентилируемой прослойки от утеплителя. 

Ветрозащита утеплителя: бесконечная история

Мы видим удивительное количество образовавшихся дефектов, помимо того, что крепления сами являются мостиками холода. Зимой в местах таких дефектов происходит повышенная конденсация пара, выходящего из стены, многократные циклы промерзания-оттаивания утеплителя, быстрое разрушение зоны вокруг крепежа. И вот уже вата лежит свободная, освобожденная, намокающая, тяжелеющая. И наконец, отваливающаяся от стены и переходящая в свободное падение.

Но вентиляционный зазор упасть промокшей вате не даст. Вата застрянет в зазоре, начнет промерзать, конденсируя пар, поднимающийся вверх. Пар обойдет препятствие – но по слою еще не разрушенной ваты. Надо ли говорить, что пар сконденсируется и там.

Но и это еще не все. Поскольку теплоизоляция больше не работает, точка росы перемещается в газобетонные блоки, где и происходит конденсация пара, промерзает и оттаивает стена, появляется плесень и грибок, резко возрастает расход энергии на отопление.

Ветрозащита утеплителя Изолтекс

В качестве ветрозащиты утеплителя применяются паропроницаемые мембраны Изолтекс, обеспечивающие защиту от попадания влаги, ветра и конденсата в утеплитель. По ссылке представлен широкий ассортимент ветро- и влагозащитных мембран Изолтекс http://izoltex.ru/product/vetrovlagozashchita/


Распространенные ошибки при выборе кровельной изоляции и мембраны

Производители кровельных систем предъявляют различные требования к установке. Многие производители требуют, чтобы теплоизоляционные плиты помещались во влажный клей до того, как клей «покроется» или начнет высыхать. Некоторые производители рекомендуют, чтобы рабочий, укладывающий изоляционную или облицовочную плиту в клей, «проходил» по плитам (проходя через плиту после помещения ее в клей), а некоторые производители рекомендуют рабочим вкатывать плиту в клей с утяжелителем. пейзажный ролик.

Тем не менее, я узнал из личного опыта, что могут быть нежелательные результаты, если следовать этим предписанным производителем методам. Когда доски ходят или прикатывают садовым валиком, вспененный клей может не удерживаться в прочном контакте как с поверхностью подложки, так и с нижней стороной доски, уложенной сверху, пока клей-пена затвердевает. Об этом могут свидетельствовать уложенные доски с приподнятыми краями и углами, неровности досок, отсутствие прочного сцепления или ослабление досок при укладке досок поперек переходов в склонах, сверчках или седловинах. Любые приподнятые края или углы досок могут просвечиваться через готовую поверхность крыши или приводить к незакрепленным участкам изоляции или облицовочной плиты — или могут возникнуть обе эти проблемы. Во время ходьбы по крыше вы можете почувствовать ослабленные доски. Эти доски обычно смещаются вниз, когда вы наступаете на них, указывая на то, что они не приклеены к основанию под ними (см.0005 Рис. 4 и 5 ).

Эти условия могут быть еще более осложнены другими ошибками при установке, такими как установка крепежных деталей и пластин для удержания приподнятых краев и углов. Например, мембранная система из термопластичного олефина (ТРО), показанная в , рис. 6, , должна была представлять собой приклеенную мембрану из ТПО поверх приклеенного покрывного картона и приклеенного полиизо. Ремонт подрядчика с крепежом и фальцевыми накладками ввел в этот узел термомост, и крепеж пробил пароизоляцию. По моему личному опыту, если установленный крепеж и накладки устанавливаются на стык двух досок с помощью 2-в. (50 мм) шовных пластин и покрытых заплатками из ТПО-мембраны, также существует значительный риск того, что застежки и пластины не смогут удерживать незакрепленные или загнутые доски в течение длительного времени. Внедрение изоляционных пластин и крепежных элементов также означает, что эта сборка не подпадает под указанное гарантийное покрытие от града. Добавление металлических изоляционных пластин создает очень твердую поверхность непосредственно под кровельной мембраной. Гарантийные условия производителя кровли от града очень специфичны и требуют, чтобы основание крыши было приклеено, а не механически прикреплено. Эти условия также подвергают систему крыши риску повреждения сильным ветром. Конкретная система, изображенная на рис. 6, была указана в соответствии с FM 1-9.0 в соответствии со спецификацией FM Global 1-28.2 В другой статье этой серии объясняется, как можно использовать испытания на подъемную силу ветром для определения соответствия этим критериям.

В проектах, где моя фирма является зарегистрированным проектировщиком, мы регулярно рекомендуем, чтобы малоэтажные плиты с пенопластом были временно балластированы

краев или углов обложки.

с использованием ведер, наполненных клеем, шлакоблоками или другим переносным балластом, доступным на стройплощадках, например, ведрами, частично заполненными бетоном, старыми ящиками для инструментов, заполненными бетоном, или ведрами или ящиками с крепежными элементами или крепежными пластинами. Временный балласт предназначен для обеспечения равномерного сжатия шариков вспененного клея, распределения шариков вспененного материала и обеспечения того, чтобы верхняя панель оставалась в контакте с вспененным клеем и подложкой во время отверждения клея. На Рисунке 7 представлен пример результатов установки, когда приклеенная изоляция и облицовочная плита временно балластируются во время отверждения пенопластового клея. Есть минимальные визуальные признаки приподнятых, скрученных или чашевидных досок крыши.

Когда механически прикрепленная изоляция крыши указана или требуется известным проектировщиком для проектов, где не требуются гарантии от града, также существует риск того, что могут быть использованы нестандартные или не соответствующие требованиям методы монтажа. Схемы крепления должны быть установлены или указаны в соответствии со строительными нормами и требованиями FM, а также условиями гарантии производителя крыши.

Общие обнаруженные дефекты и проблемы, которые необходимо выявить, включают следующее (см. Рис. 8 и 9 ):

  • Крепления изоляции между двумя панелями. Каждое крепление и пластина должны быть полностью установлены на одну доску.
  • Использование неправильных крепежных пластин (т. е. стыковых пластин вместо изоляционных).
  • Крепеж, устанавливаемый в низкий желоб (желоб) металлического настила. Производители кровельных систем и FM требуют, чтобы крепежные детали проникали в верхнюю канавку металлического настила для максимального сопротивления выдергиванию. Крепления, установленные через нижнюю канавку, подвержены раскачиванию, ослаблению или даже выпадению из деки.
  • Крепления и пластины слишком близко к краям изоляционных плит или слишком далеко от края плит, по сравнению с требованиями производителя кровли.
  • Крепеж, изогнутый или забитый под углом к ​​поверхности крыши. Крепеж необходимо вбивать перпендикулярно поверхности крыши. Изогнутые или ослабленные крепежные элементы, а также крепежные элементы, которые не полностью сидят или перевернуты, должны быть заменены или исправлены в соответствии со спецификациями производителя.
  • Схемы крепления, не соответствующие требованиям стандартов SPRI, FM или ASCE 7.

ВЫБОР МЕМБРАНЫ

Наиболее распространенными типами термопластичных однослойных мембран являются ТПО согласно ASTM D6878, Стандартные технические условия для кровельных листов на основе термопластичного полиолефина 3; поливинилхлорид (ПВХ) в соответствии со стандартными техническими условиями ASTM D4434, для кровельных листов из поливинилхлорида 4; и кетон-этиленовый эфир (КЭЭ) ПВХ в соответствии со стандартными техническими условиями ASTM D6754, для кровельных листов на основе кетон-этиленового эфира .5

Большинство термопластичных мембранных листов доступны в нескольких толщинах, таких как 45 мил, 50 мил, 60 мил и 80 мил. ; Доступны еще более толстые мембраны, когда «флис» или другие подобные материалы ламинируются на нижней стороне мембраны.

Термопластичные мембранные листы армированы изнутри. Формируемая гидроизоляция, как правило, не армируется, чтобы ее можно было отформовать, чтобы она соответствовала проходкам, внутренним и внешним углам, скатным частям и сложным проходкам, таким как уголки или двутавровые балки.

Листы обычно бывают белого цвета, которые обладают высокой отражающей способностью и в большинстве случаев соответствуют критериям отражательной способности, определенным Советом по рейтингу холодных крыш (CRRC) Модель программы оценки продукции6; ANSI/CRRC S100, Стандартные методы испытаний для определения радиационных свойств материалов 7; Энергетическая Звезда8; и LEED.9

Эти мембраны также выпускаются в других стандартных, часто производимых цветах, включая коричневый и серый. Пользовательские цвета могут быть заказаны; уточните минимальный объем заказа у производителя кровли. Показатели отражательной способности по цвету могут различаться в зависимости от производителя.

Наряду с толщиной мембраны и отражательной способностью при выборе мембранной продукции для проекта необходимо учитывать следующие факторы:

  • Ширина листов
  • Использование флисовой подложки или самоклеящихся мембран
  • Желаемый рейтинг града
  • Предполагаемая вскрыша, предназначенная для системы, если таковая имеется
  • Сборка крыши и способ крепления
  • Бюджетные ограничения для проекта
  • Внешний вид, если крыша видна из других частей здания или соседних зданий
  • Требуется класс огнестойкости/классификация UL

ВОПРОСЫ С УСТАНОВКОЙ МЕМБРАНЫ

Погрузочно-разгрузочные пункты на крыше

Рисунок 10. Погрузочно-разгрузочная площадка на крыше.

Точки доступа к погрузке на крыше являются важной зоной, за которой следует внимательно следить. В некоторых коммерческих кровельных проектах могут быть другие профессии, которые получают доступ к крыше и загружают материалы и мусор на крышу и с нее. Во многих случаях для этих профессий используются те же площадки на уровне земли, что и подрядчик по кровельным работам, потому что эти площадки удобно расположены относительно места расположения крана на строительной площадке или подъемника для материалов (см. 9).0005 Рис. 10 ).

В местах погрузки всегда должны быть средства защиты крыши от повреждений. Свободно уложенная изоляция, покрытая фанерой или подобным материалом, является хорошей защитной мерой. Можно использовать фанерную обшивку поверх прокладочного листа или изоляционную плиту из экструдированного полистирола.

Однако все мы были в ситуациях, когда защитные меры не принимались. В этих случаях могут быть визуальные признаки повреждения кровельной мембраны, такие как царапины, проколы, обломки, вмятины в кровельном узле, поврежденные накладки и раздавленная изоляция. Это повреждение должно быть отмечено, датировано и временно устранено при обнаружении (см.0005 Рис. 11 ). Постоянный ремонт должен быть завершен после того, как клиент, владелец или генеральный подрядчик определили, что все погрузочно-разгрузочные работы прекращены.

Большинство коммерческих производителей кровельных материалов указывают, что на одну квадратную кровлю или площадь крыши площадью 100 футов2 (9,3 м2) следует устанавливать не более 10 заплат. Если на площади 100 футов2 (9,3 м2) находится более 10 заплат, необходимо установить одну большую заплату, чтобы скрыть или заменить повреждение. Решение о ремонте, покрытии или замене поврежденной мембраны зависит от серьезности повреждения, установленного производителем кровли.

Рекомендуется заделывать царапины на кровельной мембране, а также порезы и проколы. Эти царапины могут расти или расширяться через

Рис. 11. Повреждения и следы от нагрузки.

силы расширения и сжатия в циклах замерзания и оттаивания, а также нормальное расширение и сжатие при колебаниях температуры. Однослойные мембраны являются гибкими и испытывают динамические движения в течение всего срока службы. Поскольку мембрана вокруг царапин расширяется и сжимается, царапины могут проникать через армирование и нижний слой мембраны.

Монтажные швы термопластов

По моему опыту, процедура термосварки монтажных швов термопластов состоит из нескольких важных этапов. Генератор, используемый для питания роботизированного оборудования для шовной сварки, имеет первостепенное значение и должен соответствовать постоянной выходной мощности, требуемой в спецификациях производителя сварочного аппарата (см. , рис. 12 ). Этот генератор также нельзя использовать для питания какого-либо другого оборудования, пока он питает сварочный робот. Дополнительное энергопотребление генератора ручными сварочными аппаратами, шуруповертами или другими электрическими инструментами может привести к скачкам напряжения и падению мощности, что может отрицательно сказаться на качестве сварки в полевых условиях (см. 9).0005 Рис. 13 ). Спецификация постоянной мощности зависит от производителя сварочного аппарата. Пожалуйста, обратитесь к техническим данным производителя сварочного оборудования для конкретных требований к мощности генератора для сварочного оборудования горячим воздухом.

Другими факторами, влияющими на качество сварки в полевых условиях, являются солнечный свет, ветер, тень, температура окружающей среды и влажность. Крайне важно, чтобы назначенный оператор роботизированной сварки был тщательно обучен и знаком с используемым оборудованием.

Производители крыш рекомендуют субподрядчику выполнить пробную сварку перед сваркой реальных монтажных швов. Тестовые сварные швы состоят из следующих этапов: 

  1. Установите температуру и скорость сварочного аппарата.
  2. Выполнение пробных сварных швов с использованием отходов.
  3. Дайте испытательным сварным швам остыть, а затем попытайтесь разъединить их с помощью отслаивания.
Рисунок 14. Сравнение сварных швов. Слева направо: плохой сварной шов, неполный шов и хороший шов.

Хороший сварной шов определяется наличием сплошного участка усиливающей сетки шириной от 1,5 до 2 дюймов (от 38 до 50 мм), как показано на сетке с правой стороны 9.0005 Рис. 14 . Важно, чтобы назначенный оператор-сварщик выполнял эти пробные сварные швы каждый раз при запуске оборудования и после того, как оборудование достигло рабочей температуры. Время суток, прямой солнечный свет или непрямой солнечный свет (тень), сильный ветер или облачность или солнечный свет могут влиять на температуру, скорость и общее качество сварки.

Ручная сварка швов и деталей наплавки не менее важны, а часто даже важнее, чем роботизированная шовная сварка. Техники, выполняющие ручную сварку деталей крыши, должны быть хорошо обучены и иметь опыт работы с ручным сварочным аппаратом. Ручная сварка требует большого терпения и мастерства. С этим нельзя торопиться, так как любая попытка ускорить процесс может привести к некачественным сварным швам, что может привести к проникновению влаги в сборку крыши. На рис. 14 приведен пример некачественного (холодного) сварного шва. Холодный сварной шов может визуально казаться хорошим сварным швом/стыком, но минимальное давление шовного щупа или ветра может привести к тому, что холодный сварной шов разорвется и выйдет из строя.

Технические специалисты также должны выполнять пробные сварные швы, чтобы определить оптимальную температуру сварщика, правильную скорость, с которой нужно двигаться во время сварки, а также соответствующее давление, которое нужно оказывать с помощью 2-дюймовой сварки. (50 мм) ручной шовный валик. На рис. 15 показан пример ручной сварки. Типичное оборудование для ручной сварки можно увидеть на рис. 16 .

Все сварные швы, как на автомате, так и на ручной сварке, должны быть прощупаны к концу дня, ежедневно. Перед прощупыванием сварному шву необходимо дать остыть. Зондирование выполняется с помощью шовного зонда, поставляемого изготовителем кровли ( 9).0005 Рис. 17 ) или обычный съемник шплинта. Наконечник инструмента помещается вдоль кромки соединения и прикладывается легкое давление к месту соединения, в то время как инструмент вытягивается по всей длине соединения ( рис. 18 ). Любые дефектные (холодные) стыки или складки раскроются при минимальном давлении со стороны зонда. Все дефекты должны быть должным образом очищены и отремонтированы в соответствии со спецификациями производителя кровли.

Гэри Гилмор, RRO, REWO, CIT Level I

Гэри Гилмор, RRO, REWO, CIT Level I, является директором группы консультантов по крышам, Lerch Bates, в Техасе, где он отвечает за надзор и выполнение кровельных работ и ограждений зданий. оценки, инфракрасное сканирование, проектирование, анализ контрактной документации, наблюдения за обеспечением качества и услуги по тестированию производительности в полевых условиях. Гилмор имеет обширный опыт работы с владельцами, архитекторами, генеральными подрядчиками и торговыми подрядчиками, помогая им в выборе и установке кровельных и фасадных систем, которые соответствуют их конкретным потребностям проекта в отношении требований строительных норм и правил энергопотребления, типа здания и занятости, и ограничения по стоимости. Он имеет непосредственный опыт монтажа кровельных и облицовочных систем в полевых условиях, полученный в начале его карьеры в качестве подрядчика и представителя производителя в отрасли.

Это первая статья из серии статей о термопластичных кровельных системах.

ССЫЛКИ

1. Американское общество инженеров-строителей (ASCE). 2016. Минимальные расчетные нагрузки и связанные с ними критерии для зданий и других сооружений . ASCE 7-16. Рестон, Вирджиния: ASCE.

2. FM Глобал. 2021. Дизайн ветра . Листы данных по предотвращению потери имущества 1-28. Рестон, Вирджиния: Заводская компания взаимного страхования.

3. Международное ASTM. 2019. Стандартные технические условия на кровельные листы на основе термопластичного полиолефина . ASTM D6878/D6878M-19. Западный Коншохокен, Пенсильвания: ASTM International. дои: 10.1520/D6878_D6878M-19.

4. Международное ASTM. 2021. Стандартные технические условия на кровельные листы из поливинилхлорида . ASTM D4434/D4434M-21. Западный Коншохокен, Пенсильвания: ASTM International. дои: 10.1520/D4434_D4434M-21.

5. Международное ASTM. 2015. Стандартные технические условия для листовой кровли на основе кетон-этиленового эфира . ASTM D6754/D6754M-15. Западный Коншохокен, Пенсильвания: ASTM International. дои: 10.1520/D6754_D6754M-15.

6. Совет по рейтингу холодных крыш (CRRC). 2021. Программа оценки продукции Модель . КРРК-1. Портленд, Орегон: CCRC. https://coolroofs.org/documents/CRRC-1_Program_Manual.pdf.

7. CCRC. 2021. Стандартные методы испытаний для определения радиационных свойств материалов . ANSI/CRRC S100. Портленд, Орегон: CCRC. https://coolroofs.org/documents/ANSI-CRRC_S100-2021_Final.pdf.

8. Энергетическая звезда. нд «Поиск продуктов Energy Star». По состоянию на 16 сентября 2021 г. https://www.energystar.gov/productfinder/product.

9. LEED. https://www.usgbc.org/leed.

 

Инверсионная крыша по сравнению с обычной крышей

Кровельные покрытия

Монолитная мембрана 6125® (MM6125®) представляет собой толстую, прочную, гибкую самовосстанавливающуюся мембрану для использования в кровельных работах. MM6125 — это специальный состав очищенных асфальтов и синтетических каучуков. MM6125, оригинальная прорезиненная битумная мембрана, наносимая горячей жидкостью, успешно используется во всем мире ведущими архитекторами, инженерами и владельцами на всех типах горизонтальных и вертикальных конструкций, включая площади, парковочные площадки, плантации, туннели, мосты, глинобитные плиты, фундаментные стены и площади крыш… установив непревзойденный послужной список почти 50 лет.

Защищенная мембранная кровля Hydrotech (PMR)…

Традиционное мышление при проектировании крыш…

По мере того, как строительные конструкции становились больше, и соответствующие большие площади не могли быть эффективно покрыты крутыми крышами, технология появилась плоская крыша. Уклон водосброса исчез, а крышам потребовался новый элемент – гидроизоляция. Чтобы выполнить это требование, кровельная промышленность начала наносить битумную мембрану шваброй непосредственно на настил крыши. Поскольку стоимость топлива увеличилась еще в 19В 40-х годах к крыше было предъявлено еще одно требование – энергоэффективность. Необходимость противодействия потерям энергии продиктовала добавление изоляции крыши. Поскольку изоляционные материалы сорокалетней давности не были водостойкими, для защиты изоляцию приходилось размещать под гидроизоляционной мембраной. Эта система стала известна как обычная система изолированной сборной крыши. В обычной кровле изоляция защищена от внешней среды; однако мембрана отделена от настила крыши. Поскольку мембрана больше не находится в пределах умеренного температурного диапазона, близкого к температуре здания, она подвергается новым условиям и нагрузкам.

Обычные крыши подвержены… 

Традиционное устройство кровли может сделать гидроизоляционную мембрану уязвимой к экстремальным и часто внезапным перепадам температуры, высоким летним температурам крыши, более низким зимним температурам, ледяным лужам, ультрафиолетовым лучам, физическому насилию со стороны интенсивное пешеходное движение и регулярное техническое обслуживание. Воздействие всех этих элементов ослабляет целостность мембраны. Как только мембрана скомпрометирована, влага в конечном итоге проникнет в изоляцию и вызовет потерю ее теплоэффективности. ЕСТЬ ЛУЧШИЙ СПОСОБ… 

Для получения дополнительной информации о том, как сборка защищенной мембранной крыши может помочь вашему проекту, щелкните здесь, чтобы просмотреть сокращенную версию нашего Руководства по планированию. Полную версию можно запросить, отправив электронное письмо по адресу [email protected].

 

Типичные области применения на кровле

Садовая крыша® в сборе

Защищенная мембранная крыша (PMR)

Гидрогард®

Металлический настил PMR

The Ultimate Assembly®

Нетрадиционный здравый смысл в кровельных технологиях…

Защищенная мембранная крыша (PMR). ..

Лучшее решение возможно благодаря DuPont™ Styrofoam™ Brand Insulation, полистиролу с закрытыми порами, обладающему высокой влагостойкостью. стойкий. Помещенный поверх монолитной мембраны Hydrotech 6125®, он обеспечивает защиту от агрессивных кровельных условий.

Такое расположение кровельных материалов — настил крыши, гидроизоляционная мембрана, влагостойкая изоляция — сегодня обычно называют защищенной мембранной крышей (PMR) или изолированной мембранной сборкой крыши (IRMA). С такими крышами резко сокращается температурный диапазон и скорость изменения температуры мембраны. Просто поменяв местами изоляцию и мембрану — изоляцию поверх мембраны, а не под — можно устранить причину многих проблем с кровлей.

Преимущества

Преимущества сборки PMR…

В обычной кровле открытая мембрана может быть легко повреждена физическим воздействием. Злоупотребления, вызванные другими профессиями, во время строительства или после технического обслуживания крышных установок ОВКВ. .. или случайное попадание стрелы в воздух! Очевидно, что в сборке PMR изоляция и балластный слой поверх мембраны помогают защитить ее от физического воздействия.

Мать-природа тоже бывает жестокой! От резких перепадов температуры днем ​​и ночью, циклов замерзания и оттаивания, ультрафиолетового излучения и озона.

Исследование, проведенное Инженерным корпусом армии США в 1970-х годах, показало, что на установке PMR на Аляске температура кровельной мембраны оставалась в пределах 15 °F от температуры палубы… круглый год.

MM6125 Уникальные характеристики
  • MM6125 представляет собой термопластичный материал – однокомпонентный, 100% твердых веществ, БЕЗ растворителей означает отсутствие ошибок при отверждении на месте, отсутствие двухкомпонентного смешивания и отсутствие ограничений по летучим органическим соединениям.
  • MM6125 содержит не менее 40% переработанного сырья; подтверждено UL.
  • MM6125 приспосабливается ко всем неровностям поверхности и прочно сцепляется с приемлемым основанием (например, бетоном, сталью, деревом и т. д.), исключая боковую миграцию воды.
  • MM6125 полностью монолитный, без швов!
  • MM6125 обычно устанавливается толщиной 215 мил в сборку, армированную тканью. Это более чем в три раза толще большинства других гидроизоляционных мембран. Толщина является важным преимуществом, так как MM6125 демонстрирует способность к самовосстановлению и лучше приспосабливается к развивающимся трещинам в бетонной основе.
  • MM6125 можно устанавливать при температуре до 0 °F (при условии, что основание чистое, сухое, без снега и инея).
  • Детализация
  • MM6125 упрощена, с тройной защитой во всех критических местах.
  • MM6125 идеально подходит для установки на мертвом уровне; уклон не требуется, только положительный дренаж.
  • MM6125 был разработан для работы во влажной (погруженной) среде.
  • MM6125 врезки от одного рабочего дня к другому просты, идеально подходят для поэтапного строительства.
MM6125 Одобрения/сертификаты
  • Изготовлено в соответствии с ISO 9001:2015
  • CAN/CGSB 37.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *