Утепление керамзитом: Утепление пола керамзитом: чердака, бани, отзывы

Содержание

Керамзит как утеплитель пола: отзывы эккспертов и пользователей

Если необходимо применять керамзит как утеплитель пола, отзывы играют важную роль. Насколько эффективен тот или иной материал, можно понять, только проверив это на практике. Но прежде необходимо разобраться, что собой представляет керамзит, какова технология утепления пола в деревянном доме, гараже и других помещениях. Какой фракции использовать керамзит, чтобы утеплить пол? Какой лучше материал для пола под стяжку? Необходимо рассмотреть ответы на данные вопросы подробно.

Вид и свойства утеплителя

Керамзит изготавливают из натуральной глины, которую придают термической обработке. Благодаря этому материал становится прочным и надежным. Производят утеплитель в виде гранул, различные фракции которого используют для определенных целей. Фракций всего три:

  • песок;
  • щебень;
  • гравий.

Последний является самой крупной фракцией с гранулами диаметром 20-40 мм. У них пористая структура и плотная оболочка. Это придает материалу прочность и позволяет сохранять тепло. Ячейки воздуха образуются благодаря вспучиванию глины. Такая структура позволяет получить теплопроводность ниже, чем у пенополистирола.

Керамзитовый щебень более крупный получают путем дробления гравия. Размер крупинок, которые имеют угловатую неправильную форму, может достигать 10-20 мм.

Первую фракцию в основном применяют при изготовлении сухих смесей, чтобы повысить их теплоизоляционные показатели. Размер песчинок составляет 5-10 мм. Также его добавляют в более крупные фракции, чтобы избежать пустот, которые неизбежно образуются между крупными гранулами.

Песок является побочным продуктом при производстве двух базовых фракций. Поскольку у него высокая теплопроводность, его применяют при изготовлении керамзитобетона.

Специалисты рекомендуют проводить утепление пола керамзитом различных фракций. Это позволит материалу проникать во все труднодоступные места и заполнять пустоты между гранулами. Так теплоизоляция будет наиболее эффективной. Согласно отзывам потребителей, утеплять пол керамзитом в деревянном доме или гараже следует только целыми гранулами теплоизолятора. Это позволит получить качественный слой термоизоляции.

Керамзитобетоном реже пользуются для утепления пола по грунту под стяжку. Он может быть 4 разновидностей:

  1. Теплоизоляционный (до D700).
  2. Перегородочный (D700‒D1400).
  3. Стеновой (D1400‒D2000).
  4. Облицовочный.

Как правило, его используют для монолитного строительства.

Среди преимуществ материала необходимо отметить следующие:

  • технология утепления керамзитом достаточно проста и не требует специальных навыков, знаний;
  • обладает относительно низкой стоимостью;
  • экологически чистый;
  • утепление пола керамзитом можно проводить прямо по грунту, предварительно уложив гидроизоляцию;
  • не поддается гниению, не теряет своих теплоизоляционных свойств под влиянием высоких или низких температур, не горит;
  • его не трогают грызуны;
  • утепление полов керамзитом позволяет получить ровное напольное покрытие;
  • переносит большие нагрузки, что позволяет утеплять полы не только в частном доме, но и в гаражах, промышленных помещениях.

Слой керамзита определяется различными параметрами. Однако толщина должна быть не менее 20 см, чтобы обеспечить качественную защиту от холода. К недостаткам относится низкая влагоустойчивость керамзита. Поэтому очень важно качественно выполнить гидро- и пароизоляцию утепляемого помещения.

Характеристики и сфера использования

Необходимо выделить следующие параметры теплоизолятора:

  1. Коэффициент теплопроводности материала составляет 0,16 Вт/мк, что ставит его в один ряд с пенопластом и минеральной ватой. Это один из самых низких показателей среди утепляющих материалов. Слой в 10 см позволяет заменить 30 см дерева.
  2. Высокий показатель прочности. Данный материал отлично подойдет, если возникает вопрос, как утеплить пол в гараже. Его плотность колеблется от 250 до 600 кг/м³.
  3. Поскольку термоизолятор состоит из глины, срок эксплуатации практически не ограничен.
  4. Он не подвержен химическому воздействию, огню или морозу.
  5. При высокой прочности обладает малым весом. Это позволяет избежать усиленных конструкций во время засыпки материала.
  6. Технология укладки достаточно проста и позволяет проводить утепление керамзитом своими руками.

Укладывают этот материал на пол и другие поверхности:

  • проводят утеплениу пола по земле со стяжкой;
  • заполняют пространство под настилом из досок;
  • на пол чердака, чтобы провести теплоизоляцию потолка помещения;
  • в специальный короб, чтобы утеплить стены.

Однако чаще всего используют керамзит для утепления пола. Необходимо рассмотреть технологию теплоизоляции пола данным материалом в частном доме.

Технология утепления

Существует 3 способа утепления:

  • сухой;
  • мокрый;
  • комбинированный.

Утепление деревянного пола керамзитом обычно происходит сухим методом. Для этого теплоизолятор насыпают на покрытие между лагами, на пол или по маякам, а затем настилают черновой пол. Это могут быть:

  • ДСП;
  • фанера;
  • МДФ;
  • доски.

Чтобы утеплить пол керамзитом мокрым способом, необходимо сначала смешать в определенных пропорциях материал с бетоном. Затем полученную смесь выложить между брусьями или заранее установленными маяками. Такой способ хорош, когда выполняется утепление помещения со значительным перепадом уровня пола.

Поскольку в данном методе используется бетон, теплопроводные качества керамзита ухудшаются.

Комбинированный способ предусматривает использование сухой и мокрой укладки. Сначала на покрытие засыпают керамзит в сухом виде, а затем утепленная поверхность заливается цементным раствором и выравнивается.

Когда смесь высохнет, делают обычную финишную стяжку. Благодаря цементному раствору утеплитель не деформируется. Если планируются значительные нагрузки на пол, то его дополнительно армируют специальной сеткой.

Утепление деревянного пола

В частном доме для утепления пола керамзит является лучшим материалом. Для его укладки понадобятся:

  • гвоздодер;
  • ножовка;
  • рулетка;
  • маркер или карандаш;
  • строительный уровень;
  • лопата;
  • молоток;
  • дрель;
  • саморезы;
  • песок;
  • гидроизоляция;
  • демпферная лента.

Сначала необходимо удалить предыдущий настил. Лаги нужно осмотреть и, если они больше непригодны, заменить. Устанавливать их следует в одной горизонтальной плоскости. С поверхности удаляют мусор, пыль желательно убрать пылесосом. Все трещины нужно зашпаклевать. Если они слишком большие, то повреждение необходимо расширить для заливки бетоном.

Перпендикулярно трещине делают небольшие углубления для армирующих прутков. Они укладываются в ложбинки, и все заливается цементно-песчаной смесью.

Углы не должны содержать выступающих элементов. Стыки пола и стен задувают монтажной пеной. Затем пол засыпают песком и утрамбовывают. Если применяют обмазочную гидроизоляцию, то песок не используют. Если рулонную, то ее укладывают поверх песка.

Для этого можно использовать полиэтиленовую пленку или специализированную мембрану. Стелить материал необходимо таким образом, чтобы края заходили друг на друга на 10-15 см. Все стыки заклеивают строительным скотчем. Лаги должны находиться под гидроизоляцией. Пленку необходимо закрепить на брусьях с помощью строительного степлера.

Обмазочную гидроизоляцию следует наносить на бетон, который предварительно очищают от грязи и пыли. Водоотталкивающий материал должен заходить на стены на высоту 15-20 см. Чтобы обеспечить качественную защиту, гидроизоляцию наносят в несколько слоев после полного высыхания предыдущего. После застывания последнего слоя укладывают демпферную ленту, чтобы предотвратить деформацию стяжки.

Если лаги пришлось полностью удалить, необходимо установить новые. Деревянные брусья и рейки должны соотноситься своими размерами с утепляемым покрытием. Перед установкой их нужно обработать антисептиком и дать высохнуть. Деревянный каркас определяет толщину слоя теплоизоляции и составляет минимум 10 см. По периметру брусья должны находиться на расстоянии 2-3 см от стен. Лаги должны отстоять друг от друга на 50-100 см. Все элементы нужно выставлять по уровню. Фиксация брусьев происходит с помощью угловых металлических пластин к полу. Крепежи располагают с шагом 0,5 м.

Затем перемешивают керамзит разной фракции и засыпают его между лагами. Чтобы гранулы были уложены как можно плотнее, их расправляют руками и аккуратно утрамбовывают. Сверху снова укладывают гидроизоляционный слой внахлест и фиксируют его степлером. На водоотталкивающий слой застилают черновой пол, а затем финишное покрытие.

Утепление по грунту

Использование керамзита для утепления пола по грунту оправдано, если соблюдать технологию укладки материала. Сначала землю следует выровнять, уплотнить и застелить гидроизоляционной пленкой. Сверху засыпают щебень или гравий слоем 15 см. Затем – песок, который нужно утрамбовать, чтобы избежать просаживания материала. Последним насыпают керамзит слоем 20-30 см. Чтобы обеспечить плотную насыпь, используют смесь из различных фракций.

Затем поверхность выравнивают, чтобы она была в одной горизонтальной плоскости. Сверху укладывают деревянный пол или делают бетонную стяжку. Все зависит от предназначения помещения. Для гаража необходимо залить керамзит цементно-песчаным раствором, чтобы обеспечить целостность утеплителя.

Многочисленные положительные отзывы пользователей указывают на то, что керамзит является качественным утеплителем пола. При соблюдении технологии укладки он выдает высокие показатели по сохранению тепла. Однако использовать его предпочтительнее только в частных домах, гаражах или мастерских. Для многоэтажных домов керамзит не подходит в силу своего веса. Исключением являются первый этаж многоквартирного дома, который слишком близко находится к земле.

Как правильно выбрать керамзит для утепления: вес и фракции

Современный дом невозможно представить без утепляющих элементов. И это определяет широкое предложение необходимых материалов, как по форме, так и по составу.

Одним из проверенных и хорошо себя зарекомендовавших является керамзит. Популярность ему обеспечивает доступность, экологическая чистота, простые способы обработки.

В качестве утеплителя он подходит “от неба до земли”. Гранулами утепляют крышу и стены, засыпают под пол в тех же целях, обеспечивают теплоизоляцию фундамента.

Что такое керамзит: фракции и их свойства

Термин “керамзит” подразумевает несколько разновидностей утеплителя, объединённых общим исходным сырьём для производства. Выделяются гравий трёх фракций, песок и щебень.

Гравий выглядит как округлые или овальные гранулы. Производится обжигом пород легкоплавкой глины во вращающихся печах. Особенности применения определяются диаметром фракции:

  • Гравий керамзитовый фракции 20 — 40 мм. Обладает наименьшей насыпной плотностью. Употребляется там, где нужен толстый теплоизолирующий слой: отсыпка фундаментов и погребов, засыпка перекрытий на чердаках.
  • Гравий керамзитовый фракции 10 — 20 мм. Служит утеплителем для кровли, полов в доме и стен с колодцевым способом кладки.
  • Гравий керамзитовый фракции 5 — 10 мм. Идёт на засыпку в качестве основания под “тёплый” пол. Зёрна этой фракции используются при утеплении фасада, когда масса из небольшого количества цемента и керамзита заливается между кладкой и облицовочным слоем.

Песок получают отсевом глинистой мелочи и дроблением больших кусков керамзита в шахтных печах. Области применения:

  • Песок керамзитовый фракции до 5 мм. Незаменим при наведении цементных стяжек полов.
  • Песок керамзитовый фракции до 3 мм. Позволяет получить уникальный “тёплый” кладочный раствор. Теплопроводность такого раствора составляет 0,34 Вт/(м*С), а у смеси на основе кварцевого песка – 1,15 Вт/(м*С).

Щебень тоже выходит от дробления крупных частей запекшейся глины. Используется как наполнитель в производстве бетонных конструкций меньшей удельной плотности и лучшей тепло- и звукоизоляцией.

Преимущества и недостатки материала

В результате анализа этих разновидностей керамзита напрашивается вывод, что именно как утеплитель лучше выбрать гравий. Его преимущество подтверждается комплексом свойств:

  1. Долговечность. Сохраняет свои качества в течение длительного времени.
  2. Огнеупорность. Материал абсолютно не горюч.
  3. Химическая инертность. Не подвержен воздействию кислот и прочих химреактивов.
  4. Биостойкость. Устойчив к образованию грибка и не даёт проникать грызунам.
  5. Морозоустойчивость. Стабилен при колебаниях температур. Переносит более двадцати смен промерзания и оттаивания.
  6. Небольшая насыпная плотность. От 250 до 800 кг/м3. Чем крупнее фракция, тем меньше плотность.
  7. Высокая прочность.
  8. Хорошая тепло- и звукоизоляция. Следствие низкой теплопроводности, порядка 0,16 Вт/м и пористости.
  9. Экологическая чистота. Не выделяет вредных веществ.

Стоит отдельно рассмотреть реакцию керамзита на воду. У него солидная водостойкость и, если гравий просушить после смачивания, все параметры восстановятся.

Но в то же время керамзит обладает заметным влагопоглощением. Пропитанный влагой гравий прибавляет в весе и теряет в изолирующих качествах. Поэтому не забывайте про гидроизоляцию.

Важно! При утеплении горизонтальных и наклонных поверхностей керамзитовым гравием методом сухой насыпки применяйте для пароизоляции плотную полиэтиленовую плёнку или рулонный материал на основе битума. Листы для герметичности укладываются внахлёст, а на боковых стенках подгибаются до уровня засыпки.

Сравнить технические характеристики различных видов утеплителей поможет таблица 1.

Таблица 1. Основные технические характеристики некоторых популярных утеплителей
Наименование утеплителя Удельный вес, насыпная плотность, кг/м3 Теплопроводность, Вт/(м*С) Коэффициент влагопоглощения,%
Керамзит (гравий) 250 0,099 10-20
То же 300 0,108 10-20
350 0,115 10-20
400 0,12 10-20
450 0,13 10-20
500 0,14 10-20
600 0,14 10-20
Пеностекло 200-400 0,07-0,11 0,05
Маты из стекловолокна 150 0,061 10-130
Плиты минераловатные 40-180 0,036 50-225
Пенополиуретан 40-80 0,029-0,041 18-50
Пенопласт 125 0,052 3-5

Таблица построена на основе данных СП-23-101-2004 и рекламных сайтов.

Расход гравия определить не сложно, учитывая его сыпучую форму. При засыпке больших массивов необходимо просто вычислить потребный объём. А на утепление поверхностей тратится 0,1 куб. м на слой в 10 см на 1 м2.

Положительным моментом применения керамзита при мероприятиях по утеплению жилища следует признать:

  • Гарантию, что выполнив все работы правильно, дом будет утеплён на весь срок эксплуатации.
  • Материал не выделяет вредных веществ.
  • Возможность сделать всё своими руками. Требуются минимальные навыки.

Коэффициент теплопроводности керамзитового гравия несколько выше, чем у современных синтетических и минеральных утеплителей. Отсюда вытекает основной недостаток, который проявляется в значительной толщине утепляющего слоя и увеличении толщины стен. Желательно учесть этот казус на этапе проектирования.

Как выполняются работы по утеплению керамзитом

Гравий керамзитовый очень простой в работе материал. Он не требует какого-то специнструмента. Нужны будут лопаты, вёдра (носилки), брус-трамбовка, уровень строительный, правило, рулетка, маячки.

Из расходуемых материалов: паро- или гидроизоляция, ленты и т. п. для проклейки швов, цемент на приготовление “молочка”.

Фундамент

Для фундамента нужна термоизоляция с целью сохранения от годичного колебания температур. Технология его защиты посредством отсыпки керамзитом следующая:

  1. Вокруг готового фундамента роется траншея глубиной, соответственно величине промерзания грунта. Ширина траншеи не менее 50 см.
  2. В образовавшейся полости ставится опалубка из подручных материалов (доски, листы шифера).
  3. По дну и боковым поверхностям проводятся работы по гидроизоляции (плёнка, рубероид и т. д.).
  4. Засыпается керамзитовый гравий до нулевого уровня, уплотняется. Выравнивается поверхность.
  5. Сверху утеплитель тоже изолируется от влаги.
  6. Затем вокруг фундамента делается отмостка или насыпается тонкий слой грунта.

Пол

Изолировать пол на бетоном основании от холода снизу получится в результате поэтапного выполнения таких операций:

  1. Поверхность тщательно готовится. Убирается весь сор и нивелируются всяческие неровности.
  2. Обеспечивается пароизоляция. Плёнка по периметру загибается на стену на высоту слоя керамзита.
  3. Маяками обозначается заданный уровень. Зафиксировать рейки маяков можно небольшими комками раствора.
  4. Керамзит засыпается когда схватится раствор под планками маячков. Лучше брать гранулы разных фракций, для получения более прочного слоя.
  5. Насыпь выравнивается по маячкам рейкой или правилом. А затем поливается сверху “цементным молочком”.
  6. Завершающий этап – цементная стяжка. Желательно перед ней уложить на керамзит металлическую сетку армирующую. Толщина стяжки выбирается не менее трёх сантиметров.

Стены

Наружные стены в доме отвечают за сохранение тепла в наибольшей степени. Но технология утепления их керамзитом сложнее, чем для пола или потолка. Возводить такие стены должен профессиональный каменщик.

Кладка ведётся в два слоя: внутренний (основной) и наружный из облицовочного кирпича. Зазор между кладками около десяти сантиметров, куда и засыпается керамзит. Между кладками обязательны перемычки-связки.

Потолок

Деревянный потолок можно утеплять разными материалами, в том числе и керамзитом. Вначале потолок надо подготовить. Проверить балки и потолочные доски. Заменить негодные и при необходимости перебить доски плотнее. Ведь с утеплением увеличится и нагрузка.

Порядок действий затем такой:

  1. Накрываем конструкцию пароизолирующим материалом. Стыки надо проклеить. Края подогнуть на высоту засыпки.
  2. Засыпать керамзит на высоту балки.
  3. Нанести на слой гравия цементную стяжку или в крайнем случае прикрыть гидроизоляцией.
  4. Если чердак будет использоваться как жилое помещение или для хранения вещей настелить поверху половую доску.

Из всего вышесказанного можно заключить, что керамзит по праву занимает одно из ведущих мест среди утеплителей.

Как получается и применяется экологически чистый утеплитель керамзит – смотрите на видео:

Утепление пола керамзитом – пошаговые инструкции, фото

Для страстных сторонников использования в строительстве экологических материалов, вопрос, можно ли использовать керамзит для утепления пола, наверняка покажется странным – конечно же, да! Для его производства используются абсолютно природные материалы – глина и сланцевые породы, которые спекаются и гранулируются во вращающейся цилиндрической печи при высокой температуре. В результате получаются гранулы разного размера.

Содержание статьи

  • Подробнее о керамзите
  • Разновидности керамзита
  • Какой керамзит лучше для утепления пола?
  • Преимущества и недостатки керамзита
  • Способы утепления керамзитом
    • Сухое утепление керамзитом
    • Мокрая укладка керамзита
    • Комбинированный способ
  • Утепление керамзитом под деревянный пол на бетонное основание
    • Материалы и инструменты
    • Демонтаж покрытия
    • Подготовка поверхности
    • Гидроизоляция
    • Установка лаг
    • Засыпка керамзита
    • Монтаж напольного покрытия
  • Утепление керамзитом под деревянный пол по грунту
  • Утепление керамзитом под бетонное основание
    • Подготовка пола
    • Установка маяков
    • Засыпка керамзита
    • Армирование
    • Выполнение стяжки
  • Керамзитобетонная стяжка

Но керамзит хорош не только своей высокой экологичностью. Следует отметить также его низкую стоимость в сравнении с другими утеплительными материалами, а также лёгкость и быстроту его применения, ведь для этого не требуется никакого специального оборудования.

Подробнее о керамзите

Слово «керамзит» имеет греческие корни и переводится как «обожжённая глина». Материал этот чрезвычайно лёгкий, имеет ячеистую пористую структуру, а его гранулы – округлую форму. В процессе обжига легкоплавкие глины, в которые добавлены торф, опилки и солярка, вспучиваются. Керамзит часто используется в строительстве в качестве подсыпки в бетон в случаях, когда его нужно сделать легче.

На теплоизолирующие свойства керамзита влияют:

  • размер гранул;
  • прочность гранул;
  • плотность материала.

По насыпной плотности (или объёмному весу) различают 10 марок керамзита (от 250 до 800). Под номером марки скрывается насыпной вес материала, выраженный в килограммах на кубометр. Например, кубометр керамзита марки 250 весит именно столько в килограммах.

Чем больше пористость материала, тем меньше его плотность и тем более высокие у него теплоизолирующие свойства, что очень важно при выборе, какой керамзит лучше для утепления пола.

Различная насыпная плотность получается при разных методах и режимах обработки исходного сырья. Насыпную плотность определяют, заполняя специальные мерные сосуды. Обычно самая крупная фракция имеет наименьший объёмный вес.

Разновидности керамзита

Керамзитовый песок

Он образуется после обжига остатков глины или путём измельчения крупных фракций керамзита. Размеры частиц здесь – не более 5 мм. Этот песок вместе с крупными фракциями применяется при утеплении межкомнатных перегородок или когда требуется утепление пола керамзитобетоном. Также он служит наполнителем для цементного раствора.

Керамзитовый гравий

Он представляет собой округлые зёрна размером 5-40 мм с пористой структурой, которые получаются в пирогенных печах при вспучивании сверхплавкой глины. Это огнеупорный, морозостойкий и водостойкий материал.

Керамзитовый щебень

Он угловатый, не имеет определённой формы, размерами похож на гравий. Его получают дроблением крупных кусков керамзита, а используют вместе с прочими видами для получения лёгкого бетона, если предполагается утепление бетонного пола керамзитом.

Специалисты рекомендуют использовать смесь разных фракций керамзита для утепления пола. Так, для жилых помещений рекомендуется смешивать гранулы размером 10 мм с более мелкими (5 мм) или даже с керамзитовым песком.

Какой керамзит лучше для утепления пола?

При классификации керамзита за основу может выбираться размер его гранул. Деление на фракции здесь следующее:

  • Фракция от 5 до 10 мм применяется для изготовления керамзитобетонных блоков и при заливке стяжек.
  • Гранулы от 10 до 20 мм являются ответом на вопрос, керамзит какой фракции используют для утепления пола или перекрытий в домах.
  • Фракцией от 20 до 40 мм утепляют подвалы, крыши, полы гаражей и теплотрассы.

Если в стяжку класть вторую и третью фракции, то её толщина при этом возрастёт.

Преимущества и недостатки керамзита

Преимущества

К плюсам керамзита можно отнести:

  • хорошую теплоизоляцию и звукоизоляцию;
  • огнеупорность;
  • высокую прочность;
  • долговечность;
  • морозоустойчивость;
  • экологичность.

Утепление пола керамзитом под стяжку может быть выбрано по ряду причин:

  • Керамзит исключителен тем, что его можно насыпать на любое основание, даже на землю, непосредственно на которую пенопласт или минеральную вату класть нельзя, поскольку они быстро утратят свои полезные качества.
  • У керамзита самая большая прочность среди прочих утеплителей.
  • Экологичный состав обеспечивает керамзиту безопасное использование, поскольку он ничего не выделяет в воздух.
  • Благодаря своей негорючести керамзит не имеет никаких ограничений с точки зрения пожарной безопасности, он даже может служить барьером для открытого пламени.
  • Керамзит является наиболее дешёвым утеплителем, поэтому уже давно и очень широко применяется утепление пола керамзитом в частном доме, а также стен и потолка. Кроме частных строений, он широко применяется в производственных и зданиях иных назначений.

Недостатки

Существенным недостатком утепления пола керамзитом является его сильная гигроскопичность. Когда его гранулы активно напитаются водой, то полностью теряют свои теплозащитные свойства, причём долго не отдают влагу обратно. Отсыревший, отяжелевший керамзит начинает проседать, причём неравномерно, что приводит к деформации пола, что нужно учитывать, если проводится утепление керамзитом и стяжка полов 1 этажа. Чтобы этого избежать, при обустройстве полов нужно проводить надёжную гидроизоляцию.

Способы утепления керамзитом

Строители пользуются тремя способами внесения керамзита:

  • мокрым;
  • сухим;
  • комбинированным.

Чтобы технология утепления полов керамзитом была более понятной, следует разобраться с каждым вариантом подробнее.

Сухое утепление керамзитом

Так обычно производится утепление пола керамзитом в деревянном доме.

  1. Материал засыпается между маяками или лагами, а над ним монтируется черновой пол из фанеры, ДСП или обычных досок.
  2. Чтобы защитить утеплитель от воздействия влаги, под него нужно обязательно подстелить гидроизоляционный материал.

Чтобы увеличить плотность засыпки гранул, рекомендуется брать их разные фракции, и смешивать их перед засыпкой.

Это очень быстрый способ утепления, который не требует больших трудозатрат.

Видео о сухом способе утепления пола керамзитом:

Мокрая укладка керамзита

Здесь делается стяжка из керамзитобетона. Жидкий бетон смешивается с керамзитом, после чего им заполняется объём между маяками.

Это очень удобный способ при работе с полами, имеющими большие перепады высот, и для которых необходима толстая выравнивающая стяжка. Керамзит сильно облегчает её, что позволяет значительно снизить нагрузку на основание.

Кроме того, стяжка быстрее сохнет и меньше трескается. Но использование мокрого способа приводит к тому, что теплопроводность набравшего влагу керамзита сильно увеличивается.

Комбинированный способ

Утепление бетонного пола керамзитом под стяжку делается так:

  1. Между маяками засыпается сухой керамзит.
  2. Затем он разравнивается.
  3. Самый верхний его слой поливается жидким цементным раствором.
  4. Когда же тот высыхает, сверху делается обычная стяжка.

Цементный раствор образует корочку на верхнем слое керамзита и не позволяет при заливке стяжки деформировать нижние слои.

Если при эксплуатации пола предполагается большая нагрузка, то можно также дополнить конструкцию армирующей сеткой.

Утепление керамзитом под деревянный пол на бетонное основание

Материалы и инструменты

Чтобы сделать утепление деревянного пола керамзитом, понадобятся:

  • электролобзик или ножовка;
  • гвоздодёр;
  • карандаш;
  • рулетка;
  • молоток;
  • строительный уровень;
  • электродрель;
  • лопата;
  • саморезы;
  • демпферная лента;
  • обмазочный материал или плёночная гидроизоляция;
  • песок.

В данном примере рассматривается утепление пола первого этажа керамзитом по бетонному основанию.

Демонтаж покрытия

  1. Необходимо снять доски пола и вынести их из комнаты.
  2. Внимательно осмотреть лаги и проверить их положение уровнем.
  3. Подгнившие лаги нужно заменить, а новые выставить по уровню.
  4. Если брусья находятся в хорошем состоянии, не деформированы и не имеют прогибов, то их можно оставить.
  5. Если повреждения незначительные, достаточно заменить отдельные брусья, а если они прогнили или расшатаны, то нужно снять всё вплоть до бетона.

Подготовка поверхности

  1. Основание пола освободить от мусора, небольшие трещины затереть и осмотреть углы – если там есть глубокие трещины, то их нужно заполнить пеной или замазать раствором.
  2. Стыки по периметру стен и пола следует также заполнить пеной.
  3. Затем на основание нужно насыпать слой песка и тщательно его утрамбовать, но если используется обмазочная гидроизоляция, то в песке нет необходимости.

Гидроизоляция

  1. Специальную мембрану или полиэтиленовую плёнку нужно так расстелить на полу, чтобы она на 7-10 см закрывала стены своим излишком.
  2. Лаги при этом также должны оказаться под плёнкой.

Когда ширины полотна не хватает, то можно настилать несколько кусков внахлёст, а стыки между ними закрепить строительным скотчем.

  1. Гидроизоляцию зафиксировать на брусьях степлером, предварительно хорошо заправив её в углублениях между лагами
  1. Если используется обмазочная гидроизоляция, то смесь необходимо наносить на бетон, который очищен от пыли, в том числе и участки стен возле пола. При этом варианте лаги должны оказаться поверх защитного слоя. Обмазывать можно жидкими полимерами, битумной мастикой, мастиками на полимерно-цементной основе и битумно-полимерными смесями. Состав наносить следует в 2-3 слоя с промежутками в 3 часа, поэтому подобная гидроизоляция займёт много времени.
  1. В конце нужно на высоте чернового пола по периметру стен зафиксировать демпферную ленту, которая будет противостоять растрескиванию и деформации стяжки при температурных перепадах.

Установка лаг

  1. Если старые лаги пришлось полностью демонтировать, то необходимо смонтировать новые. Для этой цели подойдёт прочный деревянный брус или доски, которые нужно обрезать по длине пола, после чего пропитать антисептиком и полностью высушить.
  2. Деревянный каркас на полу должен быть не ниже 10 см.
  3. Крайние лаги должны располагаться в 2-3 сантиметрах от стен, а шаг между соседними лагами должен быть в пределах 50-100 см.
  4. Все лаги нужно выставить параллельно друг другу и на одном уровне, чтобы их верхние поверхности все вместе лежали на одной, строго горизонтальной плоскости.
  5. Лаги нужно крепить к полу с помощью металлических уголков: одну сторону уголка прикрутить шурупами или саморезами к лаге, а вторую – к полу.
  6. Крайние уголки должны оказаться в 2-3 см от краёв лаг, а шаг между соседними уголками – в пределах 50 см.

Засыпка керамзита

Перед тем как сформировать слой керамзита для утепления пола, нужно смешать его крупную и мелкую фракции, после чего засыпать его между лагами.

Вопрос, какой слой керамзита для утепления пола здесь необходим, решается просто – после того, как его разровняют до устранения всех пустот и утрамбуют (аккуратно, чтобы не раздавить гранулы), уровень керамзита должен быть не выше верхнего края лаг.

Сверху останется постелить гидроизоляцию и зафиксировать её степлером.

Монтаж напольного покрытия

К выступающим из слоя утеплителя брусьям нужно прикрепить черновой пол, составленный из досок, ДСП или фанеры, после чего уже можно уложить финишное покрытие. Торчащую возле стен плёнку можно обрезать ножом и закрыть декоративными плинтусами зазоры.

Утепление керамзитом под деревянный пол по грунту

Иногда вместо бетонного основания под полом находится грунт, в этом случае требуется провести утепление пола керамзитом по грунту в такой последовательности:

  • Выровнять и утрамбовать грунт.
  • Насыпать примерно 10 см гравия.
  • Засыпать гравий песком и плотно его утрамбовать.
  • Далее насыпать утеплитель, при этом толщина слоя керамзита должна быть 15-25 см.
  • Выровняв слой утеплителя, необходимо залить его сверху бетоном.
  • Можно укладывать деревянный пол.

Утепление керамзитом под бетонное основание

Подготовка пола

В данном случае выполняется стандартная подготовка основания пола:

  1. Нужно демонтировать старое покрытие, заделать все щели, очистить поверхность от пыли.
  2. После этого на основание настелить плёнку или покрыть жидкой гидроизоляцией. Чтобы закрыть все стыки по периметру пола, плёнку нужно обязательно завести на стены.
  3. В конце на уровне будущей стяжки нужно закрепить демпферную ленту, после чего можно переходить к утеплению.

Установка маяков

Здесь требуются металлические маяки, лучше всего для этого подходят П-образные рейки из алюминия.

  1. Для фиксации маяков нужно замешать немного гипсового или цементного раствора.
  2. Первую рейку нужно уложить на раствор под стеной, расположенной напротив дверного проёма. Её положение нужно тщательно выверить уровнем, и при необходимости приподнять или вдавить в раствор.
  3. Расстояние между маяками должно составлять 50-100 см, а высота каждого – не более 10 см.

Засыпка керамзита

Для начала нужно посчитать, сколько нужно керамзита для утепления пола. По стандарту на 1 кв. м площади нужно 0,01 куб. м керамзита при толщине его слоя в 1 см. Т. е. необходимое количество зависит от толщины предполагаемого слоя утеплителя и площади помещения.

Толщина керамзита для утепления пола:

  • На 1-м этаже и над неотапливаемыми помещениями – 10 см.
  • На 2-м и выше этажах в жилых помещениях – 3-4 см.

Например:

  • В комнате площадью 20 кв. м нужно 10 см толщины утеплителя (керамзита).
  • При толщине 10 см керамзита его нужно 0,1 куб. м на 1 кв. м площади.
  • На 20 кв. м площади понадобится 0,1 * 20 = 2 куб. м керамзита (1 куб. м керамзита = 400 кг).
  1. Полученное количество нужно приготовить, смешав разные его фракции.
  2. Затем этой смесью нужно заполнить всё пространство между маяками, выравнивая материал куском фанеры или правилом.
  3. Особенно тщательно нужно заполнять стыки и углы, чтобы там не оставалось пустот.
  4. Затем керамзит нужно аккуратно, чтобы не повредить гранулы, утрамбовать.

Армирование

Сверху на утеплитель положить крупноячеистую металлическую сетку, которая везде должна отстоять от стен на 4-5 см. Сетка должна быть без острых выступающих краёв, выпуклостей или вмятин.

Выполнение стяжки

  1. Смесь для стяжки должна состоять из 1 части цемента и 3 частей просеянного песка, которые нужно хорошо вымешать с водой до получения ровной густой консистенции, после чего вылить её порциями между направляющими на полу.
  2. Смесь нужно разравнивать длинным правилом, проводя им вдоль маяков и удаляя её излишки.
    После этого нужно дождаться, пока бетон не наберёт достаточную прочность, позволяющую стелить пол.

Данное утепление пола керамзитом предполагает, что стяжка напрямую, без дополнительной изоляции, укладывается на утеплитель.

Видео об утеплении пола керамзитом под стяжку:

Керамзитобетонная стяжка

Если черновой пол очень неровный или нужно значительно поднять уровень пола, то для этого требуется керамзитобетонная стяжка:

  1. Поначалу поверхность также нужно очистить от грязи и пыли.
  2. Затем пройтись пеной по стыкам и щелям, положить гидроизоляцию.
  3. Далее можно приступать к основному процессу.
  4. Закрепить на полу металлические маячки с помощью цементного раствора.
  1. Смешав цемент и просеянный песок в пропорции 1:2, добавить туда 3-5 частей керамзита (это зависит от предполагаемой нагрузки на пол) и 1 часть воды.
  1. Заполнить смесью пространство между маячками на 2-3 см ниже их уровня.
  1. Поверхность уплотнить и выровнять, для чего всплывшие гранулы вновь утопить в растворе.
  2. Как только стяжка слегка схватится, приготовить обычный бетон без добавок и залить поверх стяжки, после чего правилом выровнять по маячкам.

Стяжка должна сохнуть 3-4 недели. В первые дни её поверхность нужно поливать водой, чтобы на ней не образовывались трещины. В результате получится тёплое и прочное основание, способное долго прослужить. Когда по поверхности стяжки можно будет ходить, её следует покрыть гидробарьером или плёнкой.

Каким способом Вы делали утепление пола керамзитом, и почему выбрали именно его? Ответ напишите в комментариях – нам важен ваш опыт.

Утепление пола керамзитом под стяжку

Сегодня в реализации есть большой выбор современных материалов, по своим теплосберегающим показателям они отвечают требованиям действующих нормативных актов. Керамзит не считается новым утеплителем, он применяется в строительстве многие десятилетия.

Как утеплять керамзитом бетонный пол

Почему именно его в некоторых случаях рекомендуется использовать для утепления пола под стяжку?

  1. Это единственный утеплитель, который можно класть на любые основания, в том числе и на землю. Ни минеральную вату, ни пенопласт на землю не положить, это строго запрещается рекомендованными технологиями.
  2. Керамзит имеет самые высокие значения физической прочности. По этим показателям намного опережает широко используемые современные аналоги.
  3. Экологичность. Керамзит изготавливается из глины, никаких вредных химических соединений в воздух не выделяет.
  4. Негорючесть. Пожарными организациями допущен к употреблению без ограничений, допускается применение в качестве барьера открытого огня.
  5. Низкая стоимость. Это самый дешевый утеплитель универсального использования. Его применяют для утепления полов, потолков и стен. Может применяться как в жилых, так и в производственных или коммерческих зданиях.

Характеристики керамзита

Технические характеристики керамзита

В зависимости от размеров керамзит делится на несколько фракций: песок (5–10 мм), щебень (10–20 мм) и гравий (20–40 мм). Керамзит получается после обжига легкоплавких вспучивающихся марок глины, имеет пористую структуру. Технология производства позволяет использовать различные специальные добавки для улучшения эксплуатационных показателей. По характеристикам насыпной плотности материал делится на десять сортов, обозначаются цифрами от 250 до 800, указывающими вес одного кубического метра в килограммах.

Виды керамзита

Содержание статьи

Алгоритм утепления пола керамзитом под стяжку

Технология состоит из нескольких этапов, каждый имеет свои особенности и требования строительных норм и правил. Стяжка пола с керамзитом делается из трех слоев: сухой керамзит, бетонная смесь с утеплителем и чистая цементно-песчаная стяжка. Как делать утепление?

Шаг 1. Подсчитать объем материала. Сделайте замеры пола, при этом нужно иметь в виду, что толщина сухого керамзита должна быть не менее 10 сантиметров.

Выбор и расчет керамзита

Важно. Для повышения эффективности утепления рекомендуется использовать одновременно несколько фракций керамзита. Мелкие фракции заполнят воздушные камеры и сделают утеплитель более плотным и устойчивым к нагрузкам.

Во время подбора фракций рекомендуется учитывать максимальные усилия на утеплитель. Если полы делаются для промышленных зданий, то верхняя фракция должна быть самой крупной (20–40 мм), одновременно увеличивается и толщина слоя.

Шаг 2. Подготовить поверхность основания. Если утеплитель будет использоваться по земле, то ее нужно выровнять, насыпать слой щебня толщиной ≈ 5 см, сверху слой песка толщиной примерно 5 см. Основание нужно тщательно утрамбовать.

Щебневая подушка

Если утеплитель используется на бетонное основание, то нужно убрать старые покрытия и строительный мусор. При обнаружении больших трещины их обязательно следует заделать любыми растворами.

Подготовка основания пола для стяжки

Керамзит позволяет утеплять наклонные поверхности, выравнивание поверхности делается утеплителем. Это намного ускоряет и удешевляет строительные работы.

Шаг 3. Сделать гидроизоляцию. Один из недостатков керамзита – существенное снижение характеристик теплосбережения при повышении относительной влажности. Материал пористый, впитывает воду. Наличие воды в гранулах в разы повышает коэффициент теплопроводности. Но не все теплоизоляционные материалы можно использовать для гидроизоляции. Утеплитель гранулированный, создает существенные точечные усилия на гидроизоляционные материалы. В этих местах появляются большие риски повреждения пленочных гидроизоляционных материалов: полиэтиленовой пленки, нетканых материалов и т. д.

Рулонная гидроизоляция

рулонная гидроизоляция

Если основание бетонное, то его нужно изолировать мастиками на основании модифицированных битумов. Марки особенного значения не имеют, все они отлично выполняют свои задачи. Профессиональные строители рекомендуют наносить не менее двух слоев мастики, тщательно обрабатывать наиболее проблемные места. Керамзит можно насыпать только после того, как мастика полностью высохнет, конкретное время зависит от марки.

Жидкие водоотталкивающие материалы и мастики

Немного сложнее делать гидроизоляцию по земле. Финишным основанием служит утрамбованный песок, он под нагрузкой может давать неравномерную усадку. В качестве гидроизоляционных материалов на таких основаниях нужно использовать наиболее прочные материалы. Оптимальным считается рубероид с двумя слоями покрытия модифицированным битумом.

Гидроизоляция рубероидом

Шаг 4. Насыпать слой керамзита. По периметру помещения при помощи гидроуровня или лазерного уровня нужно сделать метки. Одна метка – высота керамзита, вторая – высота цементной стяжки и третья – высота чистового полового покрытия. Толщина слоев должна отвечать требованиям проектной документации или сделанным самостоятельно расчетам. При помощи длинной рейки (правила) выровнять поверхность насыпанного утеплителя.

Засыпка керамзита

Отсыпка керамзитового слоя

Практический совет. Ходить по поверхности керамзита во время производства других строительных работ очень неудобно, он проваливается под ногами. Для того чтобы облегчить дальнейшие работы и улучшить несущие показатели стяжки, рекомендуется на сухой керамзит положить армирующую сетку. Конкретные параметры сетки выбираются с учетом возможных максимальных нагрузок.

Слой керамзита должен быть ровным

Поверх керамзита уложена сетка

Проверьте положение утеплителя, при необходимости выровняйте большие возвышения или засыпьте углубления.

Шаг 5. Подготовьте раствор для черновой стяжки. Делать его нужно из двух-трех частей керамзита и одной части цементно-бетонной смеси обычного состава. Этот слой служит для фиксации покрытия и дополнительно утепляет пол. Толщина этого слоя в пределах 5–8 сантиметров.

Стяжка пола с керамзитом

Технология укладки стяжки имеет свои особенности

  1. Для маяков надо брать специальные металлические элементы с широким основанием, планки следует приобретать в строительных магазинах. Если нет такой возможности, то их придется сделать самостоятельно из реек или досок. Длина маяков примерно 1,5–2,0 метра, рейки должны быть максимально ровными. Сбейте доски буквой Т, основание нужно положить на керамзит.
  2. Не пытайте сделать заливку идеально ровной, рейки шатаются, вести правило на постоянной высоте невозможно. Окончательное выравнивание делается вторым слоем толщиной ≈ 2 см. Если объем раствора большой, то для хождения по керамзиту положите несколько досок, сделайте временную тропинку.
  3. Постарайтесь взять длинное правило, работайте как можно дальше от маяков, это поможет уменьшить их «шатание».
  4. По периметру помещения между стеной и стяжкой используются специальные прокладки для гашения тепловых расширений стяжки.

Бетонная стяжка с керамзитом

Первый маяк нужно делать на удалении 30 сантиметров от стены, расстояние между следующими зависит от длины правила, они должны располагаться примерно на тридцать сантиметров ближе.

Можно дополнительно зафиксировать маяки гипсовыми или цементными растворами. Это несколько облегчит производство работ, но их все равно следует делать очень осторожно. Маяки устанавливайте под уровень, если есть лазерный прибор – отлично. Работать с ним очень удобно, намного ускоряется выполнение всех строительных работ и повышается их качество.

Маяки, фиксация раствором

Не стоит слишком надеяться на утепление пола раствором, сделанным с использованием керамзита. Во время приготовления гранулы утеплителя наполняются водой, проводимость тепла увеличивается в разы, эффективность такого утеплителя довольно низкая. Используйте приготовленный раствор только для фиксации верхнего слоя. Этот метод применяется для укрепления верхнего слоя утеплителя и облегчения работ по окончательному выравниванию стяжки.

Заливка пола

После заливки нужно дать время для застывания раствора. Если для обыкновенных стяжек достаточно суток, чтобы можно было продолжать выполнять работы по монтажу половых покрытий, то в варианте использования керамзита время ожидания увеличивается минимум до семи дней. Дело в том, что цементный раствор не имеет сплошной площади опоры, а отдельные гранулы керамзита очень подвижны.

Упрощенная технология утепления пола керамзитом под стяжку

Среди достоинств утепления керамзитом следует назвать еще одну – возможность прятать в утеплителе все инженерные коммуникации. Это повышает безопасность эксплуатации, минимизирует вероятность возникновения аварийных ситуаций из-за механических повреждений или нарушения рекомендованных условий эксплуатации. Кроме того, при этом не ограничивается доступ к трубопроводам или электрическим кабелям в случае необходимости.

Главное отличие – этот метод не требует делать выравнивающую финишную стяжку. Керамзит смешивается с цементно-песчаным раствором в пропорции 1:5, этой массой одновременно делается утепление и стяжка.

Пошаговое выполнение керамзитной стяжки пола

Керамзитобетонная стяжка

Преимущества – работы ускоряются в несколько раз, наличие гидроизоляции не является критическими. Керамзитные гранулы защищены от проникновения дополнительной влаги цементным составом. Еще один плюс – утепление не боится циклических статических и динамических нагрузок. Для повышения несущих способностей можно заливать двумя слоями, между ними укладывать армирующую сетку.

Недостатки – пониженные свойства теплоизоляции, необходимость увеличивать минимальную толщину утеплителя и повышение нагрузок на несущие основания. Метод рекомендуется применять во время утепление пола по грунту.

керамзит

Практические советы

Для повышения прочности стяжки по керамзиту рекомендуется ее дважды в сутки смачивать водой. Делать это надо внимательно, не заливать водой, не допускать намокания сухого керамзита. Полив значительно улучшает физические показатели прочти стяжки, химические реакции цементного раствора протекают в благоприятном режиме. Поливать стяжку нужно два–три дня, конкретное время зависит от погоды. При высокой температуре количество намачиваний увеличивается, нельзя допускать полного высыхания верхнего слоя стяжки.

Смачивание стяжки обычной водой нужно для того, чтобы пол получился ровным

Если условия эксплуатации здания требуют увеличенную высоту утеплительного слоя из керамзита, то его можно укладывать мешками. Пластиковые мешки повышают устойчивость положения гранул, керамзит не рассыпается под ногами мастера, нет надобности пользоваться специальными дополнительными приспособлениями и устройствами. Для окончательно выравнивания плоскости насыпки сверху добавляется слой мелких фракций толщиной 2–3 см. Такая технология позволяет на 30% уменьшать время.

Керамзит в мешках

При возможности не пользуйтесь технологиями утепления пола керамзитом с использованием цементного молочка. Прочность основания увеличится, но значительно уменьшится эффект теплосбережения. Есть много других строительных приемов для увеличения показателей несущей способности без снижения теплозащиты пола.

Керамзит проливают цементным молочком

Утепление керамзитом очень выгодно делать в хозяйственных пристройках или гаражах. Особенно если строительная площадка неровная, а заниматься земляными подготовительными работами по различным причинам невозможно. Керамзит самостоятельно выровняет перепады основания по высоте до десяти сантиметров, увеличение количества материала не оказывает заметного влияния на изменение первоначальной сметной стоимости объекта.

Ощутимый эффект утепления пола керамзитом можно достичь при толщине слоя утеплителя не менее 15 сантиметров. Это нужно иметь в виду во время выбора типа основания для стяжки. Не все помещения позволяют создавать половые покрытия за счет такого значительного уменьшения высоты зданий.

Чем герметичнее верхняя гидроизоляция, тем выше показатели теплоизоляции. Она увеличивается за счет отсутствия конвекции воздуха, гидроизоляция служит надежным препятствием для перемещения теплых и холодных воздушных масс. Оптимальный метод для верхней гидрозащиты стяжки пола – обыкновенная полиэтиленовая пленка.

Видео – Утепление пола керамзитом под стяжку

по грунту, под стяжку, по лагам

Керамзит является единственным утеплителем, который не требует каких-либо навыков строительных работ. Каждому под силу выполнить утепление пола данным материалом быстро и качественно. Его рассыпчатая структура позволяет гранулам легко проникать в любую полость, не оставляя тем самым места для образования мостиков холода.

Керамзит получают в процессе обжига глины при значительных температурах без добавления каких-либо синтетических веществ. Он представляет собой пористый строительный материал из керамических компонентов.

Свойства материала

Для изготовления керамзита применяют только природные материалы. В качестве основы используют глину, которая проходит стадии обработки – очистку и просушку. По окончании измельченную массу помещают в специальную печь, где под действием высоких температур формируется пористая структура. Область термической обработки постоянно вращается и в зависимости от скорости формируются различные типы керамзита.

 

В результате этого процесса получают три вида теплоизоляционного материала:

  1. Песок. Применяется для производства керамзитобетона и других, аналогичных ему строительных материалов. Характеризуется небольшими размерами фракций – до 5 мм. В качестве утеплителя не используется.
  2. Гравий. Для его изготовления предварительно формируются глиняные заготовки определенной величины. В результате обжига они приобретают размеры от 20 до 40 мм. Благодаря хорошим показателям сопротивления теплопередачи применяется для формирования теплоизоляционного слоя.
  3. Щебень. Почти полностью аналогичен вышеописанной группе, исключая размеры — от 10 до 20 мм. Однако отличается формой — она имеет больше открытых ячеек, что не является оптимальным вариантом для утепления пола керамзитом под стяжку. Большая вероятность насыщения слоя влагой.

Для укладки теплоизоляционной подушки рекомендуется использовать гравий с различным типом фракции – от 10 до 20 мм. В связи с особыми эксплуатационными свойствами утеплителя следует рассмотреть общие требования по его укладке.

Основные характеристики и достоинства


Отличается своей:

  • легкостью,
  • высокой прочностью,
  • отличной звуко- и теплоизоляцией,
  • огнеупорностью,
  • устойчивостью к воздействию влаги,
  • морозоустойчивостью,
  • на нем не развиваются ни грибы, ни плесень,
  • экологичностью и долговечностью.

Сегодня производится также тип, имеющий пониженное влагопоглощение.

Благодаря режиму и технологии обработки глины, поры внутри гранул наполняются воздухом. Это и обеспечивает материалу такие важные характеристики, как низкий объемный вес, иначе говоря, насыпная плотность и высокие теплоизоляционные свойства.

  • Плотность. Величина насыпной плотности колеблется в интервале 200÷800 кг/м³, то есть он легче и теплее, чем бетон. По плотности делится на десять позиций.
  • Размер. На возможности использования влияет также его размер. Поскольку добиться в процессе производства идеальной гранулы, можно сказать, невозможно, материал по размеру классифицируют по фракциям на группы:
  • песок –5–10;
  • щебень – 10–20;
  • гравий – 20–40.

Максимальная погрешность от указанных параметров может составлять на всю партию только 5%.

  • Прочность. Это один из важнейших показателей в строительстве, поскольку позволяет рассчитать нагрузки, переносимые конструкциями.
  • Теплозащита. Керамзит обладает хорошей теплозащитой: слой в 25 см эквивалентен в этом отношении со слоем полистирола в 18 см (R – 2,7; U – примерно 0,37). Поэтому утепление пола керамзитом подходит для грунтового пола и может служить для бетонной стяжки основанием. Стандартная или упрощенная технология, рекомендуется выполнять с добавлением пенопластовой крошки. Полы в жилых зданиях обычно теплоизолируют при помощи смесей гранул различных фракций.

На заметку

Если в доме есть подвал, утепление пола первого этажа выполняют, обязательно предварительно сделав теплоизоляцию подвального помещения.

Упрощенная и стандартная технологии


Утепление проводят в процессе строительства дома, непосредственно до заливки стяжки, в крайнем случае – при капитальном ремонте.

Главным правилом при выполнении теплоизоляции пола является точно рассчитанная толщина керамзита. Ее должно быть достаточно для обеспечения тепловой защиты дома: для бетонного выполняют слоем самое меньшее в 10 см, а грунтового – до 30 см.

Стандартное — под стяжку

  • На грунт или бетонное перекрытие укладывается пароизоляционный слой. В этом качестве может выступать рубероид, пленка, специальная пароизоляционная или обычная полиэтиленовая.
  • Материал укладывают нахлестом и соединяют при помощи скотча в единое целое. Настил пароизоляции выполняют «коробочкой», то есть верхние края ее должны заходить на стену чуть выше, чем планируемый уровень пола. Излишки обрезают после завершения заливки стяжки.
  • До начала работ по теплоизоляции пола по нему устанавливают «маячки».
  • Для обеспечения горизонтальности используют строительный уровень, а для их закрепления – небольшие куски цементного раствора. Керамзит засыпают после его затвердения.

На заметку

Утеплитель должен быть по крайней мере двух фракций, тогда гранулы помельче заполнят промежутки между крупными.

  • Готовится «цементное молочко»: цемент, разбавленный водой, с добавлением грунтовки, которое проливают на пол, засыпанный керамзитом. Поверх укладывают армирующую сетку из металла, которую заливают финишной цементной стяжкой, высота примерно 3 см. Получившееся основание способно выдержать существенные нагрузки и хорошо удерживает тепло.
  • Хотя по подобному полу уже через неделю можно ходить, однако свою окончательную прочность он набирает не раньше месяца.
  • Готовность основания к продолжению работ можно проверить с помощью стеклянной банки. Ее переворачивают и кладут на пол. Если она не запотеет, можно смело укладывать гидроизоляционный слой и настилать финишное напольное покрытие.

На заметку

Керамзитовый слой порядка 12–15 см увеличивает высоту чернового пола, и это необходимо учесть в проекте дома.

Упрощенная технология: дешевле, быстрее


Главное отличие данного способа в отсутствии цементной стяжки. В этом случае теплоизоляционный слой из керамзита может быть тоньше. Весь процесс обходится дешевле, чем стандартное, требует значительно меньше времени. Укладку гидроизоляции и напольного покрытия можно осуществить сразу же после устройства слоя – его выполняют так же, как и стандартное.

Такая технология называется «сухой» стяжкой. На получившееся основание укладывают гипсоволокнистые листы, пазы между которыми промазывают клеящей мастикой или клеем, параллельно закрепляя их саморезами.

Утепление по лагам

Это один из популярных способов теплоизоляции в доме. По одному из вариантов — основание выравнивают, залив нетолстый слой цементной стяжки. После чего, дав ей высохнуть, укладывают пароизоляционный материал, скажем, пергамин. Затем по всей площади засыпают равномерным слоем керамзит. Но этот метод создает некоторые неудобства, поскольку обеспечить ровную поверхность и равномерность слоя бывает непросто. Более приемлемым в этом смысле является другой – по лагам.

Вдоль комнаты укладывают деревянные бруски, пропитанные антисептиком, строго следя за горизонтальностью плоскости выставленного каркаса (регулировать можно при помощи деревянных подкладок). Крепят их шагом в полметра при помощи саморезов. В образованные участки засыпают керамзит точно до верхней кромки брусков. Это и есть показатель ровности и равномерности уложенного материала. Так как нагрузки на утепляющий слой не будет – обработка поверхности бетонным раствором не нужна. После чего всю конструкцию покрывают гидроизоляционным материалом, например,полиэтиленовой пленкой.

На такой пол сразу же можно укладывать доски, фанеру, ДСП, плиты ОСБ или залить стяжкой. Затем на их поверхности устанавливают отделочный материал. Кстати, по этой технологии выполняют и утепление пола лоджии под плитку.

Утепление пола первого этажа проводится по такой же технологии. При этом добавочный вес всего теплоизолирующего слоя существенно меньше, чем для бетонной стяжки. Такой метод применим также для чердачных помещений

Теплоизоляция в мешках

Для пола по грунту рассыпать керамзит не рекомендуется. Это связано с усадкой теплоизолирующего материала. Но можно  сначала сделать бетонное или деревянное основание, на которое будет засыпаться теплоизолятор. Исключение составляет технология утепления фундамента дома, когда вокруг него делает траншея, заполненная керамзитовой смесью.

Теплоизоляцию пола по грунту керамзитом можно проводить прямо в упаковке – достаточно уложить на слой уплотненного песка мешки с гранулами фракции 10-20 мм. На квадратный метр предварительно выровненной и утрамбованной поверхности необходимо где-то три мешка. Они должны быть заполнены так, чтобы слой по толщине равнялся 15-20 см. Мешки после укладки аккуратно надрезают или продырявливают. Делать это нужно так, чтобы воздуха внутри не осталось, но и сами гранулы не просыпались. Свободное пространство между мешками заполняется рассыпным наполнителем более мелкой или той же фракции. Работы продолжают по уже известной схеме.

На заметку

Такая технология больше подходит для грунтовых полов в нежилых постройках, скажем, в мастерской, гараже, летней кухне и т. д[

Несмотря на более чем средние теплоизоляционные параметры, применение керамзитовых гранул в некоторых случаях является единственно возможным вариантом. В особенности это касается пожароопасных помещений – бань, котельных. Альтернативой этому виду может быть лишь базальтовая вата. Но ее стоимость существенно выше, а механическая прочность меньше.

© 2021 prestigpol.ru

утепление под стяжку, какой керамзит лучше в деревянном доме, как утеплитель по грунту, какой слой нужен по лагам, сколько нужно, фото и видео

Содержание:

Керамзит успешно справляется со многими задачами в строительстве и ремонте. Чаще его используют при монтаже пола для тепло- и звукоизоляции, однако прочность , долговечность и небольшая стоимость материала находят применение и при утеплении потолков и стен. Керамзит как утеплитель пола может использоваться в разных вариантах: в составе песчано-цементной стяжки или в качестве сухой засыпки. Универсальный материал не оставляет конкурентам шансов — его используют для устройства черновых полов на любых основаниях: бетонных, деревянных и даже на грунте.


Выбор в пользу керамзита делают поклонники натуральных материалов, ведь в керамзите нет химических ингредиентов. Это абсолютно натуральный материал, он безвреден для здоровья, так как производят его из глины методом обжига. Под воздействием температуры (1000°C) глина приобретает пористую структуру, а технология прокрутки в печном барабане придает материалу форму округлых фрагментов, с которыми удобно работать и формировать нужную толщину слоя в сэндвиче пола.

Когда выбирают керамзит

Ассортимент теплоизолирующих материалов на современном рынке настолько велик, что бывает трудно остановиться на каком либо одном. Однако стоит узнать весь комплекс свойств этого уникального материала, чтобы понять, что нет лучше варианта, кроме как утеплить пол керамзитом.

Перечень свойств, благодаря которым этот простой материал лидирует среди конкурентов:

  • Низкая теплопроводность — пористый материал содержит пузырьки воздуха, которые обеспечивают качественную теплоизоляцию. Слой керамзита в 10 см превосходит по параметрам теплопроводности аналогичную деревянную поверхность в 3 раза, а кирпичную кладку в 10 раз.
  • Звукоизоляция — свойство востребовано в квартирах многоэтажных домов, керамзитный пол послужит надежным препятствием для проникновения шума от соседей снизу, одновременно препятствуя распространению звуков в противоположную сторону.
  • Прочность материала позволяет использовать его в нижнем слое пирога пола без дополнительных опорных конструкций (керамзит выпускается разных марок прочности от 250 до 600).
  • Устойчивость к гниению и грибкам, плесени (в отличие от древесно-стружечных материалов) увеличивает срок службы пола, его долговечность.
  • Химическая инертность — керамзит натуральный материал, не выделяет никаких веществ в окружающую среду, а также сам устойчив к воздействию химических веществ.
  • Термостойкость — качество актуально в плане пожаробезопасности.
  • Морозостойкость — керамзит не теряет свойств при экстремально низких температурах.
  • Малый вес — позволяет производить утепление пола керамзитом под стяжку в домах, где нежелательна большая нагрузка на перекрытия (прочитайте: “Делаем утепление пола под стяжку – практические советы”).
  • Гранулированная фракция материала обеспечивает удобство работы с ним — с засыпкой справится один человек, не обладающий строительными навыками.
  • Невысокая стоимость — дополнительный бонус для материала, обладающего комплексом отличных качеств.


Единственный минус керамзита — его способность долго держать влагу. Этот недостаток легко нивелировать, соблюдая технологию устройства пола с керамзитом, тщательно проклеивая гидроизоляционный слой.

Подготовка — важный шаг

Подготовка основания под засыпку керамзитом начинается с очистки поверхности. Чистое основание оценивают на кривизну и перепады плоскости. Это делают для того, чтобы увидеть, какой слой керамзита нужен для утепления пола, выравнивания поверхности и расчета требуемого количества материала.

Оптимальная толщина слоя 80 – 100 мм, для определения нужного количества гранул делают отметку на стене на высоту 8 см в самой высокой точке комнаты, от которой затем с помощью уровня отмечают горизонтальную линию по периметру комнаты.

Среднее значение высоты засыпки получают, измеряя расстояние до горизонтальной линии в нескольких местах, которое затем делят на количество замеров. Так, если сделано три замера со значениями 10, 15, 8 см, то средняя высота засыпки будет (10+15+8):3=11 см. Затем площадь комнаты (ширина x длину) умножают на высоту (среднее значение), полученная цифра обозначает, сколько нужно керамзита для утепления пола этого помещения.


Внимание: практики рекомендуют приобретать материала на 10 % больше рассчитанной цифры, чтобы обезопасить себя от необходимости прервать работы из-за погрешности в вычислениях и нехватки горсти утеплителя.

Собственно подготовка сводится к следующим действиям:

  1. Заделка трещин, выбоин раствором (для бетонных перекрытий).
  2. Гидроизоляция основания. Для этого используют любые доступные технологии и материалы: специальную мастику, приготовление гидроизоляционного раствора из полимерных сухих смесей. Если производится утепление пола керамзитом по грунту, то оптимальным решением будет полиэтиленовая пленка (не тоньше 100 микрон) или рулонный материал (рубероид). Читайте также: “Как сделать теплый пол по грунту – пошаговое руководство”.
  3. Устройство маяков — металлические профили устанавливают по уровню и закрепляют раствором.

Примечание: маяки не нужны (п. 3), если производится сухое утепление пола керамзитом по лагам старого пола, которые не планируют демонтировать, а собираются использовать для настила нового деревянного покрытия

Методы утепления пола керамзитом

Существует несколько способов утепления и выравнивания пола керамзитом. Выбор делают исходя из особенностей:

  • Поверхности;
  • Допустимой нагрузки на основание;
  • Назначения помещения.


Так, сухая керамзитная подушка легче, чем керамзитная стяжка аналогичной толщины. Теплоизоляционные свойства сухого керамзита тоже выше, а вот прочность поверхности и способность выдерживать нагрузки лучше у керамзитобетонных полов, устроенных «мокрым» методом приготовления раствора.

Сухая засыпка для деревянного пола

Деревянные полы кладутся на лаги — горизонтально расположенные бруски. Если в процессе демонтажа старого деревянного пола выяснилось, что лаги хорошо сохранились и не требуют замены, то не стоит их убирать, прибавляя себе работы. В этом случае проще провести утепление пола керамзитом по лагам.

Для этого гидроизоляцию укладывают в промежутки между лагами. Затем засыпают слой керамзита, на который укладывают фольгированную пароизоляцию. Для дополнительного тепла сверху можно положить еще слой другого утеплителя (пенопласт, пенополистирол) вровень с верхним краем лаг. Затем настилается деревянный пол, рейки которого прибивают к лагам. Читайте также: “Утепление пола в деревянном доме снизу – как сделать и что использовать”.

В случае, если предполагается полный демонтаж деревянного пола и устройство бетонной стяжки, для последующей отделки декоративным покрытием (плиткой, ламинатом), следует позаботиться о маяках. Без правильно выставленных направляющих не получить ровной поверхности, необходимой для отделки напольным покрытием. Слой сухого керамзита проливают цементным молочком для закрепления гранул. После затвердения молочка поверхность выравнивают по маякам цементно-песчаным раствором.


Так как утеплить пол керамзитом в достаточной мере не всегда возможно (в холодных регионах при укладке на грунт), в пирог пола включают дополнительный слой утеплителя из пенопласта. Листы пенопласта приклеивают к керамзитовой подушке и покрывают стяжкой (прочитайте: “Утепление пола пенопластом под стяжку – инструкция по укладке”).

Аналогичная технология используется для утепления и звукоизоляции пола в квартирах с бетонными основаниями. Необходимое условие — высокие потолки. Если в доме низкие потолки, то слой керамзита со стяжкой сделают их еще ниже, что повлияет на комфортность проживания. В этом случае лучше рассмотреть варианты с другими материалами, которые, скорее всего, обойдутся дороже, но не украдут пространство.

Сухой и быстрый метод — чистая работа

Простота укладки такого пола позволяет сделать его самостоятельно и быстро. Идеально подходит для квартиры в многоэтажном доме, так как вес конструкции небольшой, не требуется замешивания раствора для стяжки.

Порядок работы:

  • Освобождают пол от мусора и пыли.
  • Укладывают гидроизоляционный слой. Если гидроизоляция жидкой, текучей консистенции (мастика, цементно-полимерный раствор), то сначала замазывают трещины и щели для предотвращения затекания жидкости в перекрытия.
  • Устанавливают маяки.
  • Засыпают керамзит, по ходу дела его тщательно трамбуют.
  • Укладывают листы фанеры (ДСП, OSB) в два слоя. Первый слой скрепляют между собой клеем, второй прикручивают к нижним полотнам саморезами.

Сухое основание такого пола подходит для отделки любыми декоративными покрытиями: от линолеума до ламината.


Керамзит выпускается нескольких классов прочности и 4-х видов размеров гранул, поэтому неопытные домашние мастера часто спрашивают: «какой керамзит лучше для утепления пола?», чтобы обеспечить полу наилучшую защиту от холода.

Следует знать, что несмотря на то, что теплосберегающие качества выше у керамзита крупной фракции, сухую стяжку нужно монтировать из смеси материала с разными значениями размеров. Это позволит получить прочное основание, в котором мелкие гранулы заполнят пространство между крупными, обеспечат плотное и прочное покрытие. Для квартир обычно используют средний (1 – 2 см) и мелкий гравий (0,5 – 1 см).

Устройство пола керамзитобетонной стяжкой

Керамзит как утеплитель пола в деревянном доме не имеет конкурентов благодаря своей универсальности. Его можно использовать в качестве добавки в цементно-песчаную стяжку для устройства бетонного пола в хозяйственных постройках: гараже, бане. В отличие от сухого основания, керамзитобетонная стяжка обладает повышенной прочностью, износостойкостью с сохранением хороших теплоизоляционных качеств.


Устройство пола «мокрым методом» состоит в том, что на подготовленную обычным способом поверхность выкладывают водный раствор, приготовленный из песка, цемента, керамзита (соотношение 2:1:3). По мере выкладывания стяжку «прихлопывают» тяжелым полотером или специальной трамбовкой. Это позволит получить ровную поверхность без шероховатостей, образованных торчащими керамзитными гранулами.

Рекомендации при использовании керамзита

Нюансы, которые нужно знать при утеплении пола керамзитом своими руками:

  • Если приоритетным является теплосберегающий эффект, то используют сухой керамзит. Сухая подушка лучше хранит тепло.
  • Технология исполнения сухого метода зависит от того, какой слой керамзита для утепления пола является достаточным в конкретных условиях. Если толщина подушки велика (более 10 см), то стоит насыпать два слоя, разделив их листами ГКЛ. фанеры и т.д. Такое исполнение обеспечит устойчивость покрытию.
  • Для закрепления маяков в раствор можно добавить гипс или алебастр — это ускорит схватывание и позволит начать работы по засыпке керамзита сразу после выставления направляющих.
  • Использование гранул разного размера обеспечивает лучшее сцепление и, соответственно, большую прочность.
  • Армирование металлической сеткой керамзитного слоя повышает надежность и прочность конструкции.
  • Окончательной прочности керамзитно-бетонная стяжка достигает через 4 недели, поэтому не стоит подвергать ее чрезмерным нагрузкам сразу, несмотря на то, застывает она буквально на второй день.


Утепление деревянного пола керамзитом или выравнивание бетонного основания в квартире своими руками позволит сэкономить денежные средства. Их можно будет использовать на дорогое декоративное покрытие, которое станет украшением интерьера и великолепным фоном для домашних фото и видео.

Какую гидроизоляцию выбрать

Ценовой диапазон материалов этой категории настолько же велик, как и их разнообразие:

  • Битумные мастики;
  • Полимерные смеси;
  • Резиновые гидробарьеры;
  • Полиэтиленовая пленка;
  • Рулонные материалы различного состава.


Выбирая гидроизоляцию, соответствующую финансовым возможностям, стоит помнить, что:

  1. Жидкие смеси и мастики требуют чистого и прочного основания, а иногда и грунтования. Ведь они должны образовать надежное сцепление с поверхностью.
  2. Рулонные материалы укладываются свободно, поэтому они незаменимы для гидроизоляции керамзита, уложенного на грунт. Необходимо следить, чтобы полосы внахлест не менее 10 см, для некоторых типов гидроизоляции этой группы производители рекомендуют проклеивать наложенные друг на друга края полос. Читайте также: “Как сделать полы из керамзита своими руками”.

Гранулы силикагеля — еще один вариант гидроизоляции. Его рассыпают тонким слоем (1 см) под керамзит или смешивают с сухой засыпкой из расчета 1 к 10. Отличный абсорбент не пользуется популярностью из-за его горючести, химического состава, взрывоопасности. Однако при определенных условиях (толстый пирог пола с надежной преградой для паров силикагеля) способ имеет право на существование.

Как утеплить крышу керамзитом | Строительный портал

Чтобы с наступлением зимы в доме всегда было тепло и уютно необходимо заранее позаботиться об утеплении крыши. На сегодняшний день все больше людей выбирают в качестве утеплителя керамзит. Он повсеместно доступен и недорого стоит, а так же экологичен и обладает прекрасными эксплуатационными качествами.

  1. Что такое керамзит, его преимущества и недостатки
  2. Инструменты и материалы, необходимые для утепления крыши керамзитом
  3. Паро- и гидроизоляция для керамзита
  4. Утепление крыши керамзитом

Что такое керамзит, его преимущества и недостатки

Керамзит – это легкий пористый, материал в виде небольшого размера гранул, получаемый путем обжига глины. Он завоевал популярность, как среди профессиональных строителей, так и среди домашних мастеров, благодаря следующим техническим показателям:

  • высокая тепло- и шумоизоляция;
  • морозостойкие качества;
  • огнеупорные качества;
  • прочность, неподверженность гниению;
  • долгий срок службы, неподверженность перепадам температур.

Керамзит, цена которого гораздо ниже цены остальных теплоизоляционных материалов, способен прослужить, в отличие от них, долгие годы. Основными его преимуществами являются:

  • высокая теплопроводность;
  • небольшой вес;
  • неподвержен воздействию химически агрессивных сред;
  • не выделяет в атмосферу отравляющих веществ;
  • это единственный теплоизоляционный материал, при работе с которым не требуются специальные знания, умения и опыт.

Но у данного материала есть и свои недостатки, хотя их и немного:

  • чтобы достичь высокого уровня тепло- и шумоизоляции нужно выкладывать материал довольно толстым слоем;
  • неустойчив к воздействию влаги, поэтому при утеплении сырых помещений следует применять специальную пленку для гидроизоляции;
  • довольно хрупкий материал, а повреждение гранул ведет к снижению качества теплоизоляции.

Инструменты и материалы, необходимые утепления крыши керамзитом

Для того чтобы самостоятельно утеплить кровлю понадобятся следующие материалы и инвентарь:

  • керамзит на крышу;
  • лопата и ведра;
  • бревно или палка, для того чтобы утрамбовать слой утеплителя, и рейка, чтобы его разровнять;
  • пленка для гидроизоляции;
  • рубероид в рулонах;
  • острый нож;
  • плитка либо черепица для наружного покрытия.

Паро- и гидроизоляция для керамзита

Паро- и гидроизоляция утепляющего слоя является важным этапом обустройства крыши, который не в коем случае нельзя упустить из виду. Как уже говорилось ранее, керамзит способен вбирать в себя влагу. При этом его теплоизоляционные качества резко ухудшаются, а сам он становится значительно более тяжелым, чем в сухом виде. Это может привести к печальным последствиям, вплоть до обрушения перекрытия. Таким образом, при допущении намокания слоя керамзита, срок службы кровли может резко сократиться, и ремонт потребуется гораздо раньше, чем планировалось.

Ни один из существующих видов теплоизоляционных материалов не может должным образом уберечь помещение от холода, если сам не будет защищен паро- и гидроизоляцией. Пароизоляционный материал обычно монтируют с внутренней стороны помещения, т.к. он является защитой утеплителя от паров, возникающих внутри помещения, а гидроизоляцию монтируют с внешней стороны, т.к. она защищает утеплитель от влаги, идущей с улицы.

Самыми распространенными гидроизоляционными материалами являются пленки и мембраны. Так же очень часто используются такие материалы как стиропор, полиэтиленовая пленка, фольга, пергамин.

Стиропор является разновидностью пенопласта и обладает прекрасными пароизоляционными свойствами. Пергамин – это кровельный картон с битумной пропиткой. Он продается рулонами и очень хорош для гидроизоляции крыш. Фольга и полиэтиленовая пленка чаще применяются, для того чтобы защититься от конденсата, потому что на них не накапливается жидкость.

Утепление крыши керамзитом

Чаще всего, утепляя кровли, строители используют следующие виды керамзита:

  • керамзитовый щебень – крупный материал, имеющий гранулы размером до 4 см. Одинаково хорош как для утепления крыши, так и для утепления пола и стен;
  • керамзитовый гравий – тоже крупнозернистый материал, гранулы которого так же достигают по величине 4 см и имеют угловатую форму;
  • керамзитовый песок – это мелкодисперсный материал, частицы которого по размеру не более 5 мм. Он используется в качестве теплоизоляции, при которой толщина слоя не превышает 5 см.

Утеплить крышу вполне возможно самостоятельно, если нет возможности заплатить специалистам.

Перед началом работ необходимо изучить кое-какие особенности процесса утепления. Прежде всего, стоит обратить внимание на конструктивные особенности строения, его стен и крыши. Процесс утепления должен состоять из нескольких этапов:

  • внутренняя обшивка;
  • пароизоляция;
  • укладка утеплителя;
  • отделка поверхности.

Описание работ:

  • При утеплении крыши керамзитом толщина слоя материала должна составлять 25 см. Он насыпается прямо на пароизоляционную пленку в нужном количестве быстро и аккуратно, чтобы избежать повреждения гранул.
  • Для хорошей тепло- и шумоизоляции лучше насыпать слой потолще, но при этом важно не забывать о предельной нагрузке, которую крыша способна выдержать. В данном вопросе лучше придерживаться золотой середины.

  • Затем керамзит тщательно выравнивается и утрамбовывается, для того чтобы между его частицами осталось как можно меньше пустот. Это делается либо руками, либо при помощи специальной машинки. Поверх первого слоя желательно сделать стяжку, для придания дополнительной жесткости и прочности всей конструкции, а так же для выравнивания поверхности.
  • Еще, между наружной внутренней слоями, следует обустроить несколько каналов, по которым будет циркулировать воздух и выводиться лишняя влага.
  • Далее прямо на утепляющий слой укладывается рулонный рубероид, который придавит его своим весом. Он должен лежать внахлест и не иметь зазоров. При этом для герметичности швов лучше изолировать их с помощью строительного скотча или битумной мастики.
  • Следующим этапом укладывают черепицу или плитку.

Купить керамзит предлагают многие фирмы, занимающиеся продажей стройматериалов, а так же магазины и строительные гипермаркеты.

Изучить влияние керамзита и микрокремнезема на свойства легкого бетона

https://doi.org/10.1016/j.conbuildmat.2019.05.171Получить права и содержание

Основные моменты

Энергоэффективный бетон с воздействием на окружающую среду.

Керамзит и пена использовались для производства термобетона.

Легкий бетон показал более высокие свойства теплового комфорта в помещениях.

Изготовленный бетон обеспечивает баланс между тепловыми и структурными характеристиками.

Реферат

Это исследование было сосредоточено на разработке самотечного и энергоэффективного пенобетона с легким заполнителем (LAFC), который будет использоваться в качестве теплоизоляции, теплоизоляции и конструкционного материала. Бетонные смеси низкой плотности (для значений плотности от 800 до 1300кг / м 3 ) были приготовлены путем изменения объема легкого керамзитового заполнителя (ЭКА) с 49.От 4% до 20,1%. Текучесть бетонных смесей улучшена с помощью стабильной пены. Обычный портландцемент (OPC) был заменен на 5% и 10% микрокремнезем (SF), чтобы изучить влияние SF на свойства LAFC. Прочность на сжатие и предел прочности смесей LAFC были увеличены соответственно с 6,5 МПа до 24,30 МПа и от 0,52 МПа до 1,63 МПа за счет уменьшения объема ЭКА с 49,4% до 20,1%. Смесь LAFC (800-0SF) с наименьшей плотностью показала наибольшую пористость и значение коэффициента сорбции 70.63% и 2,56 кгм −2 мин −0,5 . Теплопроводность, объемная удельная теплоемкость и температуропроводность смесей LAFC находились в диапазоне 0,23–0,45 Вт · м −1 K −1 , 1136–1631 кДж / м 3 · K и 0,20–0,275 мм 2 / с соответственно. Анализ SEM показал, что уменьшение объема ECA и добавление SF уплотняют микроструктуру LAFC. Наконец, смеси LAFC были классифицированы на бетоны класса I, класса II и класса III для структурных и изоляционных целей в соответствии с функциональной классификацией RILEM.

Ключевые слова

Пенобетон

Керамзит

Пористость

Сорбционная способность

Теплопроводность

Рекомендуемые статьиЦитирующие статьи (0)

Полный текст

© 2019 Elsevier Ltd. Все права защищены.

Рекомендуемые статьи

Ссылки на статьи

Керамзитовый заполнитель | Вики Сообщества

Файл: Leca pellets.jpg

Поперечный разрез глиняной гальки

Файл: Hydroton.jpg

Галька из керамзита марки Hydroton

Файл: Галька из керамзитовой глины.JPG

Куча керамзитовой гальки в Хайзингене, Гетеборг, Швеция, 2013 г. глины до температуры 1100 – 1200 ° C во вращающейся печи. Гранулы имеют округлую форму и падают из печи с качеством примерно 0-32 мм со средней насыпной плотностью в сухом состоянии примерно 350 кг / м³.Материал просеивается на несколько сортов в зависимости от области применения.

Благодаря преимуществам легкого веса, высокой проницаемости, долговечности и отличных звуко- и теплоизоляционных свойств, керамзит является хорошим универсальным заполнителем для использования в самых разных областях. Это также экологически чистый продукт, состоящий в основном из глины природного происхождения, он не подвержен химическому воздействию, гниению или морозу и имеет долгий срок службы. Легкость гранул из керамзита делает их идеальным решением при строительстве на слабых почвенных отложениях или уменьшении нагрузки на старые и уязвимые конструкции.Воздушные карманы внутри гранул обеспечивают отличное тепловое сопротивление при использовании в качестве изоляции пола в конструкции сплошного пола. Гранулы керамзита также широко используются для производства легких блоков и часто используются в системах фильтрации воды из-за их большой площади поверхности.

Использует []

Обычно используются блоки, плиты, геотехнические заполнения, легкий бетон, водоочистка, гидропоника и гидрокультура.

См. Также []

Ссылки []

Тор Арне, Хаммер; Клаас ван Брейгель, Стейнар Хелланд, Ивар Холанд, Магне Мааге, Ян П.Г. Мейнсберген, Эдда Лилья Свейнсдоттир (2000). Экономическое проектирование и строительство с использованием конструкционного легкого заполнителя . «Материалы для зданий и сооружений» (PDF). Евромат 99 . EUROMAT 99 6 : 18. doi: 10.1002 / 3527606211.ch4

 DOI: 10.1002 / 3527606211.ch4. ISBN 3527301259
      ISBN 3527301259. http://www3.interscience.wiley.com/cgi-bin/summary/112222224/SUMMARY?CRETRY=1&SRETRY=0. Проверено 17 декабря 2007.
 


Шаблон: Hydroculture

Тепловые характеристики легковесных заполнителей из пеностекла и пеностекла в дорожных сооружениях

18-я Международная конференция по проектированию холодных регионов и 8-я Канадская конференция по вечной мерзлоте

РЕФЕРАТ

Транспортные инфраструктуры, построенные на морозостойких почвах, могут потребовать изоляционного слоя для минимизации промерзания.В Норвегии одним из подходов является использование легких заполнителей (LWA) в качестве изоляционного слоя, особенно когда существуют определенные ограничения на толщину дорожного покрытия. Рабочие характеристики и расчетная толщина LWA включены в Норвежское руководство по проектированию дорог . Действующие правила разрешают использование слоев LWA с нижележащим нижним слоем защиты от замерзания (LFPL) или без него. Цели данной статьи: а) наблюдать морозостойкость легких заполнителей и б) исследовать необходимость нижнего слоя защиты от замерзания под слоем легкого заполнителя.Полномасштабный дорожный испытательный полигон был построен в Рёрусе, Норвегия, с тремя секциями с использованием LWA в целях изоляции. Для этих участков был сооружен изоляционный слой из керамзита (Leca) толщиной 0,6 м с размером частиц 10/20 и 0/32 мм и пеностекла (Glasopor) с размером частиц 10/60 мм. Нижележащий ЛВСП толщиной 0,7 м был изготовлен из щебня с размером частиц 0/120 мм. Температурный мониторинг велся две зимы (2016/2017 и 2017/2018). Совокупный индекс промерзания поверхности (FI s ) за две зимы составил 22 630 и 36 683 ° C · ч соответственно.Полевые наблюдения показывают, что характеристики всех трех изоляционных слоев в целом были одинаковыми. Результаты показали, что для обеих зим фронт промерзания оставался в слое LWA. Исследование показывает, что легкие заполнители можно размещать непосредственно на чувствительных к морозам почвах, и фронт промерзания останется в слое изоляции 60 см даже при FI s 36 683 ° C · ч.

Включение полимеров в кальцинированные глины в качестве улучшенных теплоизоляционных материалов для строительства

Кальцинированная глина является дополнительным цементирующим материалом типа Q согласно EN197-1: 2000.Он обладает меньшей теплопроводностью, чем цемент. Для дальнейшего улучшения его теплоизоляционных свойств, комплексы полимер-кальцинированная глина (ОКК) были произведены путем синтеза в одной емкости. Были использованы два контрастных полимера: полистирол (ПС) и полиэтиленгликоль (ПЭГ). Гидрофильность полимеров влияет на теплопроводность PCC. Гидрофильный PEG захватывает больше молекул воды на глиняные слои, чем гидрофобный PS, что делает PEG-PCC более теплопроводным, чем PS-PCC. Загрязняющие вещества в кальцинированных глинах сыграли роль в влиянии на общую теплопроводность.PCC может улучшить теплоизоляционные свойства для будущих строительных применений.

1. Введение

Теплоизоляция в зданиях – важный фактор для достижения теплового комфорта для их жителей. Это особенно важно, когда наблюдаются большие температурные градиенты между внутренним и наружным климатом, а высокая энергоэффективность и низкий углеродный след имеют большое значение [1, 2]. Были произведены различные теплоизоляционные композиты, в основном основанные на уменьшении теплопроводности и конвекционной теплопередачи через объемные изоляторы или в качестве лучистых тепловых барьеров, где расположение строительных материалов по отношению к воздушным пространствам оптимизировано.В последние несколько лет наша лаборатория сосредоточилась на изучении свойств и требований к современным теплоизоляционным материалам и решениям для зданий, особенно в отношении создания объемных теплоизоляторов по принципу «снизу вверх». Некоторые материалы, которые мы исследовали, включают вакуумные изоляционные панели (VIP) [3, 4], газонаполненные панели (GFP) [5], аэрогели [6], а также материалы с фазовым переходом (PCM) [7]. Сам по себе ПКМ в принципе не является изоляционным материалом, но все же может быть важной частью теплоизоляционной оболочки здания.

Композиционные материалы представляют собой общий подход к обеспечению теплоизоляции и повышению энергоэффективности, один из которых включает системы из аэрогелевого бетона, в которых нацелен новый теплоизоляционный бетон со структурными свойствами [8, 9]. Там, вместо основных модификаций аэрогелей, мы сосредоточились на измельчении матрицы, где один из последних подходов был нацелен на внутренние термические свойства вяжущих, в частности, путем частичной замены цемента дополнительным цементирующим материалом (SCM), кальцинированной глиной, для снижения общего теплопроводность [10].Кальцинированную глину получают путем обжига глин при температуре от 600 до 1000 ° C [11]. При прокаливании эти глинистые материалы, как чистые, так и загрязненные, становятся пуццолановыми по своей природе и могут / могут действовать как эффективные заменители цемента в промышленности [12, 13]. В исследовании было достигнуто улучшение теплопроводности до 20% при использовании кальцинированной глины без ухудшения механических свойств бетонных конструкций [12, 14]. Результаты подтвердили, что разработка новых вяжущих материалов, например, с использованием кальцинированной глины в качестве SCM, была шагом вперед к открытию новой дорожной карты для проектирования изоляционного бетона в устойчивом строительстве.Однако необходимо дальнейшее улучшение теплопроводности таких связующих материалов, чтобы сделать их более желательными для фактического применения в качестве теплоизоляторов.

Таким образом, целью этого исследования было дальнейшее уточнение связующего материала, кальцинированной глины. Исходным материалом для кальцинированной глины является глина, один из самых распространенных материалов во всем мире, который может включать и реагировать с различными ионами и органическими веществами, чтобы обладать различными функциональными возможностями из-за их реакционноспособных слоистых структур, в том числе влияющих на свойства теплопроводности конечной глины. композиты [15, 16].При прокаливании естественная структура глин будет искажена [17], но общая слоистая структура сохраняется. Это делает их восприимчивыми к таким же реакциям, как и глины, но к различным эффектам. Таким образом, здесь будет исследовано влияние добавления полимера на теплопроводность кальцинированной глины.

Для этого были выбраны два наиболее распространенных в строительстве полимера. Это были полистирол (PS) и полиэтиленгликоль (PEG), оба обладали низкой теплопроводностью. Они различались тем, что PS был гидрофобным полимером, тогда как PEG был гидрофильным полимером (рис. 1).Их влияние на термические свойства кальцинированных глин и механизм достижения результатов через понимание взаимодействия полимера-воды-кальцинированной глины будет обсуждаться.

2. Материалы и методы
2.1. Глина и полимерные материалы

Были использованы две кальцинированные глины, полученные от Saint-Gobain Weber, Норвегия, согласно поставке. Прокаленные глины были богаты каолинитом (CK) и смектитом (CS). СК был получен прокаливанием при 800 ° C и содержал 47% каолинита, 34% калиевого полевого шпата, 17% кварца и небольшое количество иллита.CS был прокален при 850 ° C и содержал> 50% смектита, ~ 25% кальцита, ~ 8% каолинита, 4% кварца, 3% сидерита и 1% пирита. Обе кальцинированные глины содержали ~ 50% материалов на неглинистой основе, которые в данном исследовании были классифицированы как «загрязнители». Причина использования образцов глины с одинаковым количеством загрязнителей заключалась в том, чтобы обеспечить хорошее количественное сравнение двух глин. Более подробную информацию об их гидратирующих свойствах и свойствах механической прочности можно найти в [18]. Два чистых бентонита, бентонит натрия (NB) и бентонит калия (KB), были включены в качестве ссылок.Целью их включения было определение верхнего (NB) и нижнего (KB) пределов включения полимеров и воды в глины. Бентонит был расширяющейся глиной. Следовательно, и вода, и полимеры могут адсорбироваться как на поверхности глины, так и внедряться между слоистыми структурами, благодаря чему до четырех слоев молекул воды могут быть включены в межслоевое пространство NB. Однако из-за включения ионов К между промежутками между слоями адсорбция полимеров и молекул воды для KB ограничивалась только внешними поверхностями глин.

Чистый стирол (99%) и полиэтиленгликоль (PEG, Mw ≈ 400) от EMD Millipore Corporation и персульфат калия (KPS, 99%) от Sigma-Aldrich использовали без дополнительной очистки.

2.2. Образование комплексов полимер-кальцинированная глина

Все четыре образца глины были использованы в однореакторном синтезе с полимерами для образования комплексов полимер (кальцинированная) -глина (ОКК). NB и KB были выбраны в качестве модельных систем.

2.2.1. Синтез PS-PCC

15.4 г 1,3 мас.% Раствора KPS добавляли к 178 г 10 мас.% Раствора стирола в условиях перемешивания. Температуру повышали и поддерживали на уровне 70,0 ± 0,1 ° C в течение 3 часов. 22 г 9 мас.% (Прокаленной) суспензии глины добавляли в реакционный сосуд через 1 час и 2 часа после стабилизации температуры. Продукты реакции обозначены как PS1h и PS2h соответственно.

2.2.2. Синтез PEG-PCC

Насыщенный раствор PEG был приготовлен с 60 г PEG при 25 ° C для ограничения количества воды для интеркалирования в слои глины при максимальном увеличении дисперсии полимера.Затем добавляли 24 г (прокаленной) глины и перемешивали в течение 1 часа.

Для приготовления водонасыщенных образцов образцы (прокаленной) глины погружали в воду при перемешивании на 15 минут перед сушкой.

Все образцы ОКК охлаждали до комнатной температуры и центрифугировали при 8000 об / мин в течение 10 мин. Конечный остаток сушили в печи при 80 ° C в течение 3 дней, за исключением образцов NB. Там сушку продлили до 2 недель из-за высокой задержки воды. По-видимому, низкая температура сушки при 80 ° C в отличие от температуры> 100 ° C должна была гарантировать стабильность комплекса полимер-глина.Для компенсации скорости высыхания использовали длительную сушку до 2 недель.

2.3. Характеристика PCC

Здесь использовались два метода характеризации: термический анализ горячего диска для измерения теплопроводности и инфракрасная спектроскопия с преобразованием Фурье (FTIR) для определения химического окружения связей, особенно относящихся к функциональным группам O-H в образцах.

Теплопроводность измеряли с помощью анализатора термических констант Hotdisk TPS 2500S.Hotdisk имеет точность лучше 5%. Была применена методика нестационарного плоского источника [19, 20], и около 10 г образцов были измерены с помощью каптонового сенсора с радиусом = 3,189 мм (№ 5465). Покрытый пластиковой пленкой датчик был зажат между двумя образцами порошка и действовал как источник тепла в дополнение к регистрации повышения температуры в образцах. Повышение температуры во времени регистрировалось и использовалось для расчета теплопроводности образцов AIM. Мощность нагрева и время нагрева варьировались независимо для получения наиболее подходящих условий испытаний для каждого образца.Параметры были следующими: мощность нагрева 0,1–0,7 Вт, продолжительность нагрева 120–240 с, окончательные отчетные данные представлены как среднее арифметическое от 3 до 5 индивидуальных результатов. Все планки погрешностей были рассчитаны как двукратное стандартное отклонение средних значений (т. Е. 95,45% доверительный интервал).

FTIR-измерения проводились с помощью FTIR-спектрометра Thermo Nicolet 8700, оснащенного аксессуаром Smart Orbit, который представляет собой аксессуар с горизонтальным ослабленным полным отражением (НПВО) (однократное отражение) с кристаллом алмаза, в атмосфере с минимизированным CO 2 и H 2 Содержание O в результате продувки с помощью генератора продувочного газа Parker Balston 74-5041 FTIR.Для каждого измерения использовалось примерно 2–4 г образцов. Каждый FTIR-спектр был выполнен с 32 сканированием с разрешением 4 см -1 , и было записано по крайней мере три повтора одного и того же образца. Спектры FTIR, приведенные в этой работе, не корректировались НПВО ни в отношении глубины проникновения, ни в отношении сдвигов полос поглощения. Диапазон измерений составлял от 400 см -1 до 4000 см -1 .

3. Результаты и обсуждение
3.1. Влияние добавления воды на теплопроводность глин без полимеров

Вода является основной средой в бетонной смеси и сильно влияет на теплопроводность материалов. Поэтому сначала было определено влияние воды на значения теплопроводности глин, как кальцинированных, так и чистых бентонитов (рис. 2). Теплопроводность образцов сухой глины была следующей: KB с 0,197 Вт / (м · К), NB с 0,167 Вт / (м · К), CK с 0,114 Вт / (м · К) и CS с 0,095 Вт / (м · К).Первое наблюдение заключалось в том, что образцы кальцинированной глины показали гораздо более низкую теплопроводность, чем образцы модельной глины. Это могло произойти из-за аморфности кальцинированной глины. При прокаливании межслоевые промежутки глин искажались [17]. Это искажение может ограничивать путь теплопередачи за счет образования термоизолирующих карманов или нанопространств. Другое возможное объяснение более низкой теплопроводности обожженных глин по сравнению с образцами модельной глины может быть связано с присутствием других минералов в качестве загрязнителей в образцах обожженной глины.Это указывает на то, что теплопроводность образцов кальцинированной глины может отличаться, когда присутствует различное сырье с разным количеством примесей. Композитная матрица может влиять на теплопередачу внутри образца.


После смачивания и последующей сушки для удаления свободной воды была проведена повторная оценка теплопроводности всех образцов глины. По сравнению с сухими образцами, значения теплопроводности всех образцов глины после смачивания были выше. Это можно объяснить способностью глины стабилизировать и физически связывать теплопроводящую воду на поверхностях слоистых структур частиц глины и между ними.Порядок увеличения теплопроводности был следующим: CK + в образцах KB ограничивало внедрение молекул воды в слоистые поверхности. Это можно объяснить идеальной геометрической подгонкой K + к поверхностным кислородным шестиугольникам основного слоя, что снизило энергию гидратации и энтропийно стабилизировало расстояние между слоями. Таким образом, молекулы воды в основном закрепляются на внешних поверхностях слоев глины в образце KB, что приводит к общему более низкому поглощению воды, чем NB.

CS состоял в основном из кальцинированного смектита, расширяющейся глины, и, таким образом, обладал свойствами, аналогичными NB. В результате водоудерживающая способность CS может быть соотнесена с количеством смектитовой глины, присутствующей в образце CS. Разброс сорбированной воды, отраженный изменением значения теплопроводности, был немного ниже 50% от значения для образца NB, даже когда CS содержал более 50% смектита. Это означает, что, хотя поведение CS по сорбции воды было сходным с NB, небольшое снижение поглощения воды глинистыми компонентами после прокаливания могло иметь место, если предположить, что загрязняющие вещества в CS играли незначительную роль в удержании воды после сушки.Разница в сродстве к воде между кальцинированным смектитом в CS и нормальным смектитом могла быть результатом изменения слоев Al (превращение 6-координированного Al в 4-координированный), частичного окисления Fe и восстановления Al-O-Si / Связи Al-O-Al [19]. Это увеличивало аморфность прокаленного смектита в CS за счет нарушения слоистой структуры глин и затрудняло сорбцию воды.

В случае CK преобладающей присутствующей глиной был каолин, нерасширяющаяся слоистая структура 1: 1.Вследствие нерасширяемости сорбция воды каолином ограничивалась поверхностной сорбцией, как и КБ. Общее сродство СК к воде, которое можно определить как пропорциональное содержанию каолина (~ 50%), было, таким образом, значительно ниже, чем у других образцов глины, что привело к гораздо меньшему изменению теплопроводности.

3.2. Влияние ПС и ПЭГ на теплопроводность глин

В различных областях применения образцы цемента всегда находятся в гидратированном состоянии. Поэтому в качестве реперных точек были взяты смоченные образцы глины.После добавления полимеров не было измерено значений теплопроводности для образцов NB-полимера, поскольку эти образцы оставались влажными даже после 2 недель сушки. Однако XRD-анализ образцов показал расстояние между слоями керамзита, объясняя влажность полимеров-NB сильной стабилизацией полимеров с присоединенной водой в межслоевых пространствах. Сильное удерживание молекул воды в системе сделало их непригодными для снижения теплопроводности строительных элементов.

При использовании KB теплопроводность полимера-KB была ниже, чем у смоченного образца KB (рис. 3). Более низкие значения теплопроводности указывают на вытеснение сорбированных молекул воды как гидрофобными, так и гидрофильными полимерами с поверхности глины. Изменение значений теплопроводности после включения полимеров составило -33% и -17% для PS и PEG, соответственно, что указывает на то, что вытеснение воды может быть выше при использовании гидрофобного PS по сравнению с PEG.Это потенциально может быть объяснено водопоглощающей природой полиэтиленгликоля. Функциональные группы ОН в PEG ищут и удерживают воду, что приводит к общему удержанию воды полимером PEG, закрепленным на минерале. С другой стороны, из-за гидрофобности PS ассоциация с водой была минимальной, и, таким образом, небольшое количество воды было захвачено комплексом полимер-глина. Другим наблюдением было влияние продолжительности синтеза KB-полистирола. Незначительные различия в значениях теплопроводности могут наблюдаться для двух методов синтеза KB-полистирола, что указывает на то, что синтез этого PS-KB является надежным путем.


Когда к двум кальцинированным глинам добавляли полимеры ПЭГ и ПС, наблюдалась немного другая тенденция. Как и в случае с образцами KB, добавление гидрофобного ПС к образцам прокаленной глины снижает значения теплопроводности образцов. Однако влияние добавления полистирола на значения теплопроводности кальцинированной глины (снижение на 7% и 16%) было менее выраженным, чем влияние бентонита (33%, Рисунок 4), что, возможно, связано с эффектом разбавления в результате присутствия загрязняющих веществ в образец.С другой стороны, в присутствии PEG значения теплопроводности PEG-CS и PEG-CK были на 35% и 9% выше, чем у смоченных образцов прокаленной глины, в отличие от наблюдений образца KB.


Чтобы понять значения теплопроводности образцов ОКК, выяснение влияния взаимодействий полимер / вода / кальцинированная глина было предпринято путем проведения FTIR-анализа на высушенных полимер-кальцинированных образцах глины. На рис. 5 представлено химическое окружение связей O-H, присутствующих в образцах прокаленной полимером глины (ПКК).Когда был добавлен полистирол, в спектрах FTIR не наблюдались растяжения или колебательные изгибы связи O-H, независимо от типа глины. Это указывает на отсутствие связанной воды в этих образцах, в результате чего гидрофобный PS снижает сорбцию воды кальцинированной глиной, что приводит к незначительному влиянию связанной воды на значения теплопроводности образцов PCC.


С другой стороны, связи растяжения и изгиба O-H наблюдались, когда присутствовал PEG. Асимметричная растягивающая связь O-H сместилась в сильное поле с 3319 см -1 чистой воды до 3394 см -1 .Симметричное растяжение O-H сместилось в слабое поле с 3246 см −1 до ~ 2900 см −1 . Присутствие двух валентных О-связей в образце кальцинированной глины с ПЭГ указывало на то, что связи О-Н присутствовали в двух средах, наиболее вероятно возникающих из-за присущей связи О-Н ПЭГ и связи О-Н от присоединенной воды. Непосредственно связанные молекулы воды с образцами PS-PCC маловероятны, поскольку в этих образцах не было обнаружено связей O-H.

Более пристальный взгляд на группу пиков ~ 1700 см -1 показал, что связи O-H присутствовали в нескольких различных средах.В частности, можно предположить, что молекулы воды имели больше степеней свободы в CK, чем в CS из-за сильной интенсивности изгиба OH в образцах CK-PCC при 1714 см -1 , который отсутствовал в образцах CS-PCC. . Это указывает на то, что режим поглощения PEG-воды CS может быть вызван в основном интеркалированием гидратированного PEG, что приводит к низкой интенсивности изгиба O-H из-за ограничения межслоевого расстояния между слоями глины для сильной вибрации O-H. С другой стороны, поскольку гидратированный ПЭГ в основном адсорбировался на поверхности ЦК, молекулы воды были более «свободными».”

Таким образом, результаты здесь демонстрируют три точки в отношении значений теплопроводности образцов: (1) повышенное сродство к воде образца PEG, при котором молекулы воды задерживаются внутри пор прокаленных глин за счет ассоциации с гидрофильным PEG. теплопроводность образца ПКК. (2) Гидрофобный ПС, с другой стороны, не удерживает воду, и, таким образом, добавление ПС уменьшило теплопроводность образца прокаленной глины. (3) Из-за разницы в структуре глины между CK и CS режимы поглощения PEG и воды различаются, что может привести к более высокому водопоглощению и, следовательно, к более высоким значениям теплопроводности для CS из-за большей стабильности во взаимодействии между полимером и кальцинированной глиной. .

4. Выводы

Ранее было показано, что кальцинированные глины являются эффективным связующим заместителем для цемента в снижении теплопроводности без компенсации механических характеристик. В данной работе мы исследовали возможность дальнейшего снижения теплопроводности кальцинированных глин за счет введения полимеров. Кальцинированные глины вели себя аналогично глинам во взаимодействии с полимерами и водой. Однако присутствие загрязняющих веществ сыграло роль в влиянии на общую теплопроводность кальцинированных глин.Из-за присущей глинам наноструктуры и их сродства к воде, связанной с полимерами, было обнаружено, что полиэтиленгликоли непригодны для снижения значений теплопроводности кальцинированных глин, особенно для образцов на основе смектитов. С другой стороны, полистирол может эффективно снижать значения теплопроводности кальцинированных глин, независимо от типа глины, из-за их низкого сродства к воде. Это исследование показало, что гидрофобный полимер больше подходит для улучшения значений теплопроводности кальцинированных глин.

В качестве перспективы можно исследовать дальнейшее понимание механистической корреляции между пористостью этих наноматериалов и результирующей теплопроводностью, особенно в отношении их режима теплопередачи (конвекция или проводимость) образцов. С практической точки зрения, необходимо производить большие количества образцов прокаленной полистиролом глины, особенно при балансе, например, с механическими свойствами. Необходимо учитывать присущие сырой глине характеристики, особенно тип глины и количество загрязняющих веществ.Полученные результаты могут быть распространены на крупномасштабные испытания бетонных конструкций, содержащих арматурные стержни, для определения фактической эффективности применения. Тем не менее, это текущее исследование продемонстрировало возможность создания большего количества теплоизоляционных материалов по невысокой цене.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов в отношении публикации этой статьи.

Выражение признательности

Эта работа финансировалась Центром инноваций в бетоне (COIN) и Исследовательским центром зданий с нулевым уровнем выбросов (ZEB).Линн Ингунн Кристи Сандберг благодарит за помощь с лабораторными работами.

Легкие, Insulationg, Строительные материалы Керамзитовая глина Leca – Китай Керамзитовая глина Leca, Строительные материалы

Описание продукта

Название продукта
Керамзитовая глина, галька
1, Leca 1 100% натуральная глина
Спецификации / размеры 1–4 мм, 2–4 мм, 4–8 мм, 4–10 мм, 8–10 мм, 9–16 мм, 10–13 мм или по запросу.
Упаковка и отгрузка

Тканый мешок объемом 50 л, 640 мешков / 20 футов, 1400 мешков / 40 футов HC.

Допускаются также другие типы упаковки

Application Growing Media, Aquaponics Systems, Hydroponics Systems
OEM Accept
Sample Доступны бесплатные образцы. Вам просто нужно оплатить курьерскую доставку.

Спецификация

Керамзит изготавливается из 100% натуральной глины.Они чистые, pH-стабильные и обеспечивают отличную аэрацию и дренаж в гидропонике, особенно при наводнениях и дренажах, глубоководном культивировании и системах капельного кормления. Благодаря своей уникальной структуре и способности покрывать большую площадь поверхности, они предлагают идеальную среду для благоприятного роста бактерий вокруг корневой зоны, что приводит к естественным более здоровым растениям.

Основной размер глиняной гальки

2-4 мм, 4-10 мм, 8-10 мм, 9-16 мм, 10-30 мм и т. Д.
Другой размер можно ИЗМЕНИТЬ.

902 902 902

Изделие и размер

Насыпная плотность
ГЛИНА РАСШИРЕННАЯ 2-4ММ 500КГ / М3
РАСШИРЕННАЯ ГЛИНА 4-10MM 8503-16ММ 320 кг / м3
РАСШИРЕННАЯ ГЛИНА 10-30 мм 260 кг / м3

Химический состав нашего керамзита.

РАЗМЕР SiO2 Al2O3 Fe2O3 CaO MgO ПОТЕРЯ%

9609

96025 902

47
18,9 14,39 2,01 2,22 -0,41 2
4-10MM 60,12 18,77 14,21
8-16 мм 62,55 19,74 13,77 2,19 1,99 -0,38 0
10-30 мм
19253
316 14,36 2,27 1,75 -0,25 1

Особенность из нашего керамзита.

  • Сверхлегкий
  • Ph Нейтральный
  • Безвкусный и безвкусный
  • Круглые камешки

Круглые камешки не сжимаются и не сжимаются. Равномерное пространство между галькой обеспечивает равномерную аэрацию и увлажнение, позволяя корням полностью прорасти в среду.Глиняная поверхность отталкивает воду, но поверхностное натяжение покрывает каждый глиняный шар тонким слоем воды, что создает идеальные условия для корней. Треснувшие камни впитывают воду, как губка.

Изготовлен из глины с высокими водоудерживающими свойствами и сбалансированным капиллярным действием для ускорения роста растений.

Подробные фотографии




Керамзит – Roka-Refractory

Керамзит производят из специальной пластичной огнеупорной глины без или с очень небольшим содержанием извести.Глина сушится, нагревается и обжигается во вращающихся печах при температуре 1100–1300 ° C.

Это пористый огнеупор с однородной структурой пор, округлой формы за счет кругового движения печи.

Это легкий натуральный продукт с тепло- и звукоизоляцией.

Может использоваться в составе строительных материалов в традиционных вяжущих материалах, а также в неорганических полимерах (геополимерах). Еще одно применение – это производство печей для барбекю и пиццы.

Для производства барбекю и печей для пиццы этот материал может быть использован в лабиринте окружения огнеупорных кирпичей.

    • Изолирует и поддерживает тепло.
    • Облегчает конечную конструкцию, что упрощает сборку конечного продукта, а также упрощает и удешевляет транспортировку.

Легкий бетон из керамзитобетона идеально подходит для следующих применений в строительной отрасли:

    • Заливка внутренних полов и придание окончательной формы фасадам и наклонам перед укладкой мрамора, плитки или асфальтовой мембраны.
    • Изоляция в качестве последнего слоя для формирования наклонных поверхностей, теплоизоляции крыш или тепло-звукоизоляции внутренних полов.
    • Строительные и ремонтные работы, требующие снижения постоянных нагрузок и повышения сейсмичности.

Характеристики:

✅ Технологичность.

✅ Пониженная плотность.

✅ Пониженная механическая прочность.

✅ Пониженная устойчивость к замерзанию / оттаиванию.

✅ Повышенное водопоглощение.

✅ Пониженная стойкость к проникновению хлоридов.

✅ Повышенная теплоизоляция и огнестойкость.

Зачем это использовать:

  • Обладает пониженной плотностью, усадкой и механической прочностью, но повышенной удобоукладываемостью.
  • Уменьшает проникновение хлоридов, но повышает тепло- и звукоизоляцию.
  • Обладает повышенной огнестойкостью, но пониженной устойчивостью к замораживанию / оттаиванию.
  • Можно использовать в геополимерах.
  • Различные материалы могут быть добавлены для улучшения особых свойств керамзитовой среды.

Керамзит крупный 8-16 мм

Описание

Имейте в виду, что при заказе тяжелых товаров на нашем сайте вы можете получить чрезвычайно высокую стоимость доставки при размещении заказа. В этом случае позвоните или напишите нам, чтобы мы могли рассчитать более точную стоимость доставки в ваш регион.

Преимущества керамзита:

100% инертный, высококачественный, прочный легкий
Многоразовое использование
Микропористая структура – способствует аэрации
Фильтрующий материал – подходит для фильтрации воды
Теплоизоляция – меньше испарения воды
Поверхностная щелочность – безопасно для чувствительных растений
Хороший отвод воды – предотвращает загнивание корней
Хорошее водопоглощение – экономия воды
Нетоксичный и экологичный
Гидропоника: расширенная глина широко используется в мире гидропоники и аквапоники.Индийские компании, занимающиеся гидропоникой, начали использовать расширенную глину в своих проектах. Большое поровое пространство керамзита обеспечивает надлежащий поток воды без засоров и засоров, а также способно удерживать множество пузырьков воздуха, что помогает поддерживать аэрацию и насыщение кислородом корневых зон большинства растений.

Садовые растения: Пористая микроповерхность и внутренняя пористая структура керамзита препятствуют засорению и обеспечивают превосходную аэрацию, которая способствует росту тонких, тонких корневых систем.Поддержание здорового профиля почвы может быть трудным. Поскольку большинство почв состоит из твердых частиц, воды и воздуха, необходимо поддерживать тщательный баланс этих элементов для создания здоровой корневой системы. Как правило, хороший профиль почвы состоит из примерно 25% воды, 25% воздуха и 50% твердых частиц.

В саду: пористая, ячеистая природа керамзита помогает справляться с воздухом, водой и твердыми частицами. Он снижает уплотнение, увеличивает пористость почвы и поддерживает температуру почвы.Промежутки между гранулами обеспечивают хорошую аэрацию корневой системы. Керамзит ограничивает чрезмерное удержание воды и улучшает дренаж, что является важным фактором для правильного роста корней и растений. Керамзит не выделяет соли и не изменяет pH-фактор смеси.

Керамзит не изменяется и не разлагается со временем или из-за влажности, его даже наносят в качестве подкормки на горшки / вазы для эстетики и защиты от пыли. Керамзит – чрезвычайно легкий, прочный и теплоизоляционный материал.ЭКА – лучшая замена кокосовому торфу и обычным грунтам.

Лиафлор – керамическая, чисто минеральная подложка из керамзита. Основной материал – это натуральная вспенивающаяся глина, которая вспучивается при обжиге при 1200 ° C во вращающейся печи, а затем просеивается. Лиафлор не содержит микробов, а также химически и биологически нейтрален. Лиафлор сливается, и его можно использовать повторно. Это экологически чистый продукт, и его утилизация не загрязняет окружающую среду.

В отличие от дешевой низкокачественной глины, немецкий керамзит Лиафлор не разрушается со временем.Дешевый качественный керамзит означает ложную экономию, поскольку он ломается, становится грязным и забивает ваши насосы!

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *