таблица изоляционных материалов, коэффициент пенопласта 50 мм в сравнении по толщине, теплоизоляционные
Чтобы зимой наслаждаться теплотой и уютом в своем дома, нужно заранее позаботиться об его теплоизоляции. Сегодня сделать это совершенно несложно, ведь на строительном рынке имеется широкий ассортимент утеплителей. Каждый из них имеет свои минусы и плюсы, подходит для утепления при определенных условиях эксплуатации. При выборе материала очень важным остается такой критерий, как теплопроводность.
Содержание
- 1 Что такое теплопроводность
- 2 Пенополистирол
- 3 Экструдированный пенополистирол
- 4 Минеральная вата
- 5 Базальтовая вата
- 6 Пенофол
Что такое теплопроводность
Это процесс отдачи тепловой энергии с целью получения теплового равновесия. Температурный режим должен быть выровнен, главным остается скорость, с которой будет осуществлена эта задача. Если рассмотреть теплопроводность по отношению к дому, то чем дольше происходит процесс выравнивания температур воздуха в доме и на улице, то тем лучше. Говоря простыми словами, теплопроводность – это показатель, по которому можно понять, как быстро остывают стены в доме.
Этот критерий представлен в числовом значении и характеризуется коэффициентом тепловой проводимости. Благодаря ему можно узнать какое количество тепловой энергии за единицу времени сможет пройти через единицу поверхности. Чем выше значение теплопроводности у утеплителя, тем он быстрее проводит тепловую энергию.
На видео – виды утеплителей и их характеристики:
Чем ниже значение коэффициента проводимости тепла, тем дольше материал сможет удерживать тепло в зимние дни, а прохладу в летние. Но имеется ряд других факторов, которые также нужно принимать во внимание при выборе изолирующего материала.
Пенополистирол
Этот теплоизолятор один из самых востребованных. А связано это с его низкой проводимостью тепла, невысокой стоимостью и простотой монтажа. На полках магазинов материал представлен в плитах, толщина пенополистирола 20-150 мм. Получают путем вспенивание полистирола. Полученные ячейки заполняют воздухом. Для пенопласта характерна разная плотность, низкая проводимость тепла и стойкость к влаге.
На фото – пенополистирол
Так как пенополистирол стоит недорого, он имеет широкую популярность среди многих застройщиков для утепления различных домов и построек. Но есть у пенопласта свои недостатки. Он является очень хрупким и быстро воспламеняется, а при горении выделяет в окружающую среду вредные токсины. По этой причине применять пенопласт лучше для утепления нежилых домов и ненагружаемых конструкций. Для жилых помещений стоит обратить внимание на фольгированные утеплители для стен.
А вот какова теплопроводность пеноблоков и газоблоков, рассказывается в данной статье.
Какова теплопроводность пенобетона и газобетона, можно понять прочитав содержание статьи.
А вот какова теплопроводность газосиликатного блока, можно увидеть здесь в статье: https://resforbuild.ru/beton/bloki/gazosilikatnye/texnicheskie-xarakteristiki-2.html
А в данной статье можно посмотреть таблицу теплопроводности керамзитобетонных блоков. Для этого стоит перейти по ссылке.
Экструдированный пенополистирол
Этот материал не боится влияния влаги и гниению. Он прочный и удобный в плане монтажа. Легко поддается механической обработке. Имеет низкий уровень водоплоглощения, поэтому при повышенной влажности экструдированный пенополистирол сохраняет свои свойства. Утеплитель относится к пожаробезопасным материалам, он имеет продолжительный срок службы и простоту монтажа.
На фото – экструдированный пенополистирол
Представленные характеристики и низкая проводимость тепла позволят назвать экструдированный пенополистирол самым лучшим утеплителем для ленточных фундаментов и отмосток. При установке лист с толщиной 50 мм можно заменить пеноблок с толщиной 60 мм по проводимости тепла. При этом утеплитель не пропускает вод, так что не нужно заботиться про вспомогательную гидроизоляцию.
Минеральная вата
Минвата – это утеплитель, который можно отнести к природным и экологически чистым. Минеральная вата обладает низким коэффициентом проводимости тепла и совершенно не поддается влиянию огня. Производится утеплитель в виде плит и рулонов, каждый из которых имеет свои показатели жесткости. В статье вы можете почитать о том, чем хороша минеральная или каменная вата Технониколь.
На фото – минеральная вата
Если нужно изолировать горизонтальную поверхностность, то стоит задействовать плотные маты, а для вертикальных – жесткие и полужесткие плиты. Что касается минусов, то утеплитель минвата имеет низкую стойкость к влаге, так что при ее монтаже необходимо позаботиться про влаго-и пароизоляцию. Применять минвату не стоит для обустройства подвала, погреба, парилки в бане. Хотя если грамотно выложить гидроизоляционный слой, то минвата будет служить долго и качественно. А вот какова теплопроводность минваты, поможет понять информация из статьи.
Базальтовая вата
Этот утеплитель получают методом расплавления базальтовых горных пород с добавлением вспомогательных составляющих. В результате получается материал, имеющий волокнистую структуру и отличные водоотталкивающие свойства. Утеплитель не воспламеняется и совершенно безопасен для здоровья. Кроме этого, у базальта отличные показатели для качественной изоляции звука и тепла. Применять можно для утепления как снаружи, так и внутри дома.
На фото – базальтовая вата для утепления
При установке базальтовой ваты необходимо надевать средства защиты. Сюда относят перчатки, респиратор и очки. Это позволит защитить слизистые оболочки от попадания осколков ваты. При выборе базальтовой ваты сегодня большой популярностью пользуется марка Rockwool. В статье можно ознакомиться о том, что лучше: базальная или минеральная вата.
В ходе эксплуатации материала можно не переживать, что плиты будут уплотняться или слеживаться. А это говорит о прекрасных свойствам низкой теплопроводности, которые со временем не меняются.
Пенофол
Этот утеплитель производится в виде рулонов, толщина которых 2-10 мм. В основе материала положен вспененный полиэтилен. В продаже можно встретить теплоизолятор, на одной стороне которого имеется фольга для образования отражающего фона. Толщина материала в несколько раз меньше представленных ранее материалов, но при этом это совершенно не влияет на теплопроводность. Он способен отражать до 97% тепла. Вспененные полиэтилен может похвастаться продолжительным сроком службы и экологической чистотой.
На фото- утеплитель Пенофол:
Изолон совершенно легкий, тонкий и удобный в плане установки. Применяют рулонный теплоизолятор при обустройстве влажных комнат, куда можно отнести подвал, балкон. Кроме этого, применения утеплителя позволит сохранить полезную площадь помещения, если устанавливать его внутри дома.
А вот какова теплопроводность керамического кирпича и где такой строительный материал используется, поможет понять информация из статьи.
Так же будет интересно узнать о том, каковы характеристики и теплопроводность газобетон.
Так же будет интересно узнать о том, какова теплопроводность керамзита.
Какова теплопроводность подложки под ламинат и как правильно сделать просчёты, рассказывается в данной статье.
Таблица 1 – Показатели проводимости тепла популярных материалов
Материал | Теплопроводность, Вт/(м*С) | Плотность, кг/м3 | Паропроницаемость, мг/ (м*ч*Па) |
Пенополиуретан | 0,023 | 32 | 0,0-0,05 |
0,029 | 40 | ||
0,035 | 60 | ||
0,041 | 80 | ||
Пенополистирол | 0,038 | 40 | 0,013-0,05 |
0,041 | 100 | ||
0,05 | 150 | ||
Экструдированный пенополистирол | 0,031 | 33 | 0,013 |
Минеральная вата | 0,048 | 50 | 0,49-0,6 |
0,056 | 100 | ||
0,07 | 200 | ||
Пенопласт ПВХ | 0,052 | 125 | 0,023 |
Теплопроводность – это один из главных критериев при выборе теплоизоляционного материала. Если вести установку утеплителя с низким коэффициентом теплопроводности, то это позволит на дольше сохранить тепло в доме, создавая тем самых комфортные условия для проживания.
Сравнительный обзор характеристик популярных утеплителей
При создании теплоизоляционного слоя порой возникает вопрос выбора — какому же материалу отдать предпочтение. Для облегчения данной задачи ниже будет дано подробное сравнение утеплителей по основным характеристикам. На основе этих данных будет легче сделать единственно верный выбор.
Содержание
- 1 Какие утеплители будем сравнивать
- 2 Анализируем ключевые показатели
- 2.1 Главная характеристика — теплопроводность
- 2.2 Плотность (от неё зависит вес)
- 2.4 Горючесть
- 2.5 Сравниваем экологичность
- 3 Заключительные выводы эксперта
Какие утеплители будем сравнивать
Сегодня используется более сотни различных материалов для создания защиты от холода. Однако далеко не все из них можно порекомендовать (например, стекловату из-за её вредности и горючести). Поэтому далее рассмотрим лишь наиболее приемлемые варианты, а именно:
- Пеноплекс. Самый дорогой из утеплителей.
- Пенопласт. Его собрат, который наоборот — самый дешевый (почти бесплатный).
- Каменную (или базальтовую) минеральную вату. Не путайте со стекловатой.
- Керамзит. Насыпной материал, который применяется исключительно для пола и потолка.
Анализируем ключевые показатели
Далее будет представлен сравнительный обзор по важнейшим характеристикам, которые напрямую влияют на эффективность утепления.
Главная характеристика — теплопроводность
Под этим понятием подразумевается способность материала пропускать через себя тепло. Чем меньше данный показатель, тем эффективнее утеплитель и тем меньший его слой требуется для организации надежной защиты от холода. Рассмотрим описываемые нами модели в порядке возрастания коэффициента теплопроводности:
- Пеноплекс: 0,039 Вт/м*с (это средний показатель, он может меняться в зависимости от конкретной марки).
- Базальтовая вата: 0,04 — 0,05 Вт/м*с.
Совет: показатель теплопроводности можно посмотреть на упаковке. У разных производителей данный коэффициент может розниться в связи с особенностями технологии производства.
- Пенопласт: 0,055- 0,065 Вт/м*с.
- Керамзит: 0,07-0,1 Вт/м*с.
Можно заметить, что пеноплекс эффективнее того же керамзита почти втрое. Это значит, что его слой может быть меньше в 3 раза с такими же показателями.
Плотность (от неё зависит вес)
В данном аспекте за явным преимуществом лидирует пенопласт. Он имеет невероятно маленькую плотность, поэтому его панели очень легкие. С ним может работать даже ребенок. Немного тяжелее пеноплекс (это связано с технологией его производства, в результате которой он приобретает свои прочностные характеристики).
Минеральная вата гораздо тяжелее. В зависимости от конкретной марки, вес рулона может достигать 30-35 кг, что может создать значительные трудности при монтаже. Самым тяжелым в своем классе является керамзит. Именно поэтому его используют исключительно для пола.
Влагостойкость и стойкость к естественным раздражителям
Пеноплекс, пенопласт и керамзит абсолютно устойчивы к повышенной влажности. Поэтому их свободно можно использовать для прокладки в ванных комнатах и туалетах. Этого нельзя сказать про минеральную вату. Некоторые производители по неизвестным причинам приписывают ей повышенную влагостойкость, но на самом деле это не так. При таких условиях она начинает резко терять свои теплоизоляционные свойства, так как хорошо впитывает влагу.
Горючесть
Единственным негорючим материалом, из рассматриваемых нами, является керамзит. Он изготавливается на основе глиняных гранул, которые выдерживают огромные температуры. Именно поэтому его часто используют в сфере промышленности, где высоки риски возгорания.
По непонятным причинам некоторые производители базальтовой ваты и пеноплекса заводят в заблуждение своих клиентов, говоря о высокой огнестойкости. На самом деле они оба относятся к классу Г4 горючести. Худшим вариантом в данном аспекте является пенопласт. Он не только отлично горит, но и выделяет чудовищно вредные вещества.
Сравниваем экологичность
Явным аутсайдером в данном компоненте выглядит пенопласт. При относительно высокой температуре (в летние дни, или зимой при включенном отоплении) он выделяет едкие пары. На большинство людей они практически не оказывают влияния, но для аллергиков это может стать проблемой. В случае пожара, выделение этих веществ будет просто губительным.
Второе место с конца можно отдать пеноплексу. При нормальных условиях он, конечно же, не выделяет ничего вредного. Однако при горении в воздух будет попадать немало едких веществ. Остальные рассматриваемые теплоизоляционные материалы обладают абсолютной экологической безопасностью.
Заключительные выводы эксперта
На основе проанализированной выше информации, можно обозначить несколько ключевых выводов:
- Если есть необходимость в экономии средств, то лучшим вариантом выглядит пенопласт. Нет смысла приобретать дорогие материалы, создавая из них тонкий слой. Если тщательно соблюсти технологию монтажа (не допуская щелей, заделывая стыки герметиком), то из пенопласта можно создать весьма эффективный теплоизоляционный слой.
- При отсутствии проблем с деньгами, идеальный вариант — пеноплекс. Он лучший по многим характеристикам, при этом очень легко монтируется.
- Для зданий с высокой степенью опасности возгорания (например, при наличии дровяной печки) лучше всего использовать керамзит. Только он абсолютно устойчив к прямому воздействию огня.
- В помещениях с повышенной влажностью следует использовать пенопласт или его более дорого «собрата», так как они лучшие в данном компоненте.
- Своего рода «золотой серединой» в отношении цены и качества является базальтовая вата. Однако помните о её недостатках (они представлены выше).
Теплопроводность – Wattco
Теплопроводность относится к основному свойству любого и всех типов материалов, которое относится к их способности проводить тепло. Это означает, что передача тепла в этом случае происходит, когда материалы, которые не находятся в какой-либо форме движения, соединяются вместе. Эта передача тепла или энергии происходит из-за разных температур, которые имеют два тела, расположенные рядом друг с другом. Энергия всегда течет от более высоких температур к более низким в соответствии со вторым законом термодинамики, означающим, что материал с более высокой температурой с большей вероятностью передаст свою энергию соседнему материалу с более низкой температурой (Тритт, 2006, стр. 6).
Стандартной единицей измерения теплопроводности (СИ) является ватт на метр-кельвин (Вт/м·К). Она измеряется с учетом таких переменных, как масса, длина, время и температура, для определения теплопроводности материала (Tritt, 2006, стр.5). С другой стороны, конвекция делает такие материалы, как воздух и другие газы, плохими проводниками тепла, поэтому ее необходимо поддерживать, чтобы предотвратить ненужные изменения. Кроме того, теплопроводность была зарегистрирована для отслеживания электропроводности, поскольку тепловая энергия также передается при передаче электрического тока через материалы. Термическая анизотропия влияет на теплопроводность в том смысле, что направление температурного градиента может совпадать с направлением теплового потока при наличии анизотропии из-за различий в ориентации и температуре рассматриваемых материалов. Наконец, химическая фаза может влиять на теплопроводность материала в том смысле, что переход из твердого состояния в жидкое или из жидкого в газообразное может изменить теплопроводность материала.
Материал с более высокой теплопроводностью называется хорошим проводником тепла, а материал с более низкой теплопроводностью — плохим проводником тепла. Например, медь является хорошим проводником тепла благодаря своим физическим свойствам, а дерево — плохим проводником тепла. Факторы, которые могут влиять на теплопроводность материала, включают температуру, химические фазы, тепловую анизотропию, электрическую проводимость, магнитные поля и конвекцию. Температура по-разному влияет на теплопроводность, особенно у металлов и неметаллов. В металлах бродят свободные электроны, а это означает, что их проводимость выше, чем у неметаллов, которые полагаются на колебания решетки (Tritt, 2006, стр. 13).
Многие процессы основаны на знании теплопроводности, особенно в производственной и обрабатывающей промышленности. Это делается для того, чтобы при изготовлении продуктов, используемых людьми, использовались правильные материалы. Например, материалы с высокой теплопроводностью в основном используются для радиаторов, таких как нагреватели, в то время как материалы с плохой теплопроводностью обычно используются в качестве теплоизоляторов для предотвращения потерь тепла. Кроме того, процессы, которые выделяют много тепла, могут потребовать использования материалов с высокой теплопроводностью, чтобы обеспечить отвод тепла для предотвращения перегрева в машинах, в то время как материалы с низкой теплопроводностью могут использоваться во время строительства или в небольших печах для медленное рассеивание тепла, чтобы увеличить скорость изоляции.
Ссылки
Тритт, Т. М. (2006). Теплопроводность: теория, свойства и приложения. Нью-Йорк: Springer Science and Business Media.
Общие сведения о теплопроводности | Advanced Thermal Solutions
Теплопроводность: Мера способности материала передавать тепло. Имея две поверхности по обе стороны от материала с разницей температур между ними, теплопроводность представляет собой тепловую энергию, передаваемую в единицу времени и на единицу площади поверхности, деленную на разность температур д [1].
Теплопроводность — это объемное свойство, описывающее способность материала передавать тепло. В следующем уравнении теплопроводность представляет собой коэффициент пропорциональности k . Расстояние теплопередачи определяется как † x , что перпендикулярно площади A . Скорость передачи тепла через материал составляет Q , от температуры T 1 до температуры T 2 , когда T 1 > T 2 [2].
Путь тепла от кристалла во внешнюю среду — сложный процесс, который необходимо понимать при разработке теплового решения. В прошлом многие устройства могли работать без внешнего охлаждающего устройства, такого как радиатор. В этих устройствах необходимо было оптимизировать сопротивление проводимости от кристалла к плате, поскольку основной путь передачи тепла проходил через печатную плату. По мере увеличения уровня мощности передача тепла исключительно в плату становилась неадекватной (зачетная шакита). Теперь большая часть тепла рассеивается непосредственно в окружающую среду через верхнюю поверхность компонента. В этих новых более мощных устройствах важно низкое сопротивление переход-корпус, а также конструкция прикрепленного радиатора.
Чтобы определить важность теплопроводности материала в конкретном приложении управления температурой (например, радиатор), важно разделить общее тепловое сопротивление, связанное с кондуктивной теплопередачей, на три части: межфазное сопротивление, сопротивление растеканию и проводимость.
- Интерфейсный материал улучшает тепловой контакт между неидеальными сопрягаемыми поверхностями. Материал с высокой теплопроводностью и хорошей смачиваемостью поверхности уменьшит межфазное сопротивление .
- Сопротивление растеканию используется для описания теплового сопротивления, связанного с небольшим источником тепла, соединенным с большим радиатором. Среди прочих факторов теплопроводность основания радиатора напрямую влияет на сопротивление растеканию.
- Сопротивление проводимости — это мера внутреннего теплового сопротивления в радиаторе, когда тепло проходит от основания к ребрам, где оно рассеивается в окружающую среду. Что касается конструкции радиатора, сопротивление проводимости менее важно в условиях естественной конвекции и слабого воздушного потока и становится более важным по мере увеличения скорости потока.
Общепринятыми единицами теплопроводности являются Вт/мК и БТЕ/час-фут- o F.
Рисунок 2. Теплопроводность тонкой кремниевой пленки [3].
В электронной промышленности постоянное стремление к меньшим размерам и более высоким скоростям привело к значительному уменьшению размеров многих компонентов. Поскольку этот переход теперь продолжается от макро- к микромасштабу, важно учитывать влияние на теплопроводность, а не предполагать, что объемные свойства по-прежнему точны. Уравнения Фурье, основанные на континууме, не могут предсказать тепловые характеристики в этих меньших масштабах. Необходимы более полные методы, такие как уравнение переноса Больцмана и решеточный метод Больцмана [3].
Влияние толщины на проводимость можно увидеть на рис. 2. Характерным материалом является кремний, который широко используется в электронике.
Рис. 2. Теплопроводность тонкой кремниевой пленки [3]
Как и многие физические свойства, теплопроводность может быть анизотропной в зависимости от материала (зависит от направления). Кристаллический и Графит являются двумя примерами таких материалов. Графит использовался в электронной промышленности, где ценна его высокая проводимость в плоскости. Кристаллы графита обладают очень высокой плоскостной проводимостью (~ 2000 Вт/мК) из-за прочной углерод-углеродной связи в их базовой плоскости. Однако параллельные базисные плоскости слабо связаны друг с другом, а теплопроводность, перпендикулярная этим плоскостям, довольно низкая (~10 Вт/мК) [4].
На теплопроводность влияют не только изменения толщины и ориентации; температура также влияет на общую величину. Из-за повышения температуры материала увеличивается внутренняя скорость частиц и теплопроводность. Эта повышенная скорость передает тепло с меньшим сопротивлением. Закон Видемана-Франца описывает это поведение, связывая тепло- и электропроводность с температурой. Важно отметить, что влияние температуры на теплопроводность нелинейно и его трудно предсказать без предварительных исследований. На приведенных ниже графиках показано поведение теплопроводности в широком диапазоне температур. Оба этих материала, нитрид алюминия и кремний, широко используются в электронике (рис. 3 и 4 соответственно).
В будущем более мощные многоядерные процессоры будут еще больше повышать потребность в улучшении теплопроводности. Поэтому стоит также изучить другие области исследований и разработок в области повышения теплопроводности существующих материалов, используемых в электронных корпусах. Одной из таких областей является влияние нанотехнологий на теплопроводность, где углеродные нанотрубки показали значения проводимости, близкие к значениям алмаза из-за большой длины свободного пробега фононов [7]. Разработка новых материалов и усовершенствование существующих материалов приведет к более эффективному управлению температурным режимом, поскольку рассеиваемая мощность устройства неуклонно растет.