В г 2 1: Теорема Пика или формула для ленивых: imit_omsu — LiveJournal

Теорема Пика или формула для ленивых: imit_omsu — LiveJournal

Categories:
  • Наука
  • История
  • Cancel

Каждому из нас нередко приходилось считать площадь решётчатого многоугольника (изображённого, например, на клетчатой бумаге). В основном, это делают ещё по известным со школы формулам. Но в этом случае для каждой фигуры приходится помнить выражение её площади.
Не легче ли использовать одну формулу для всех многоугольников?
— Сказка? — Нет, теорема Пика!

• Названа она в честь Георга Пика (нет, не оружия или покемона), доказавшего её в 1899 году.

Формулировка звучит так:
S

= В + Г / 2 − 1, где S — площадь многоугольника, В — количество целочисленных точек внутри многоугольника, а Г — количество целочисленных точек на границе многоугольника.
• Важное замечание: формула справедлива только для многоугольников, у которых вершины расположены в узлах решетки.

Например, для многоугольника на рисунке, В=7 (красные точки), Г=8 (зелёные точки), поэтому S = 7 + 8/2 – 1 = 10 квадратных единиц.

Докажем теорему Пика:
• Рассмотрим прямоугольник со сторонами, лежащими на линиях решетки. Пусть длины его сторон равны a и b. Имеем в этом случае В = (a-1)(b-1),  Г = 2a+2b и, по формуле Пика, S = (a-1)(b-1)+a+b-1 = ab .
• Рассмотрим теперь прямоугольный треугольник с катетами, лежащими на осях координат. Такой треугольник получается из прямоугольника со сторонами

a и b, рассмотренного в предыдущем случае, разрезанием его по диагонали. Пусть на диагонали лежат c целочисленных точек. Тогда для этого случая В = ((a-1)(b-1)-c+2)/2,  Г = (2a+2b)/2+c-1 и получаем, что S = ab/2.
• Теперь рассмотрим произвольный треугольник. Его можно получить, отрезав от прямоугольника несколько прямоугольных треугольников (см. рисунок). Поскольку и для прямоугольника, и для прямоугольного треугольника формула Пика верна, мы получаем, что она будет справедлива и для произвольного треугольника.

• Остается сделать последний шаг: перейти от треугольников к многоугольникам. Любой многоугольник можно триангулировать, т.е.  разбить на треугольники (например, диагоналями).  Отсюда по индукции следует, что формула Пика верна для любого многоугольника.   

чтд

К сожалению, эта столь простая и красивая формула плохо обобщается на высшие размерности.
Наглядно показал это Рив, предложив в 1957 г. рассмотреть тетраэдр (называемый теперь тетраэдром Рива) со следующими вершинами:
A(0,0,0), B(1,0,0), C(0,1,0), D(1,1,k)
Тогда этот тетраэдр ABCD при любых k не содержит внутри ни одной точки с целочисленными координатами, а на его границе — лежат только четыре точки A, B, C, D. Таким образом, объём и площадь поверхности этого тетраэдра могут быть разными, в то время как число точек внутри и на границе — неизменны; следовательно, формула Пика не допускает обобщений даже на трёхмерный случай.

Тем не менее, некоторое подобное обобщение на пространства большей размерности всё же имеется, — это многочлены Эрхарта, но они весьма сложны, и зависят не только от числа точек внутри и на границе фигуры.

Специально для ЖЖ матфака, Сергей Романов.

ликбез

Формула Пика

Авторы: Куровская Юлия, Шагаева Диана.

Руководители:

  • Могутова Татьяна Михайловна
  • Дерюшкина Оксана Валерьевна

Девиз проекта:

“Если вы хотите научиться плавать, то смело входите в воду.
а если хотите научиться решать задачи, то решайте их”.
Д. Пойя.

Выбор темы проекта не случаен.

Способы нахождения площади многоугольника нарисованного на “клеточках” очень интересная тема.

Мы знаем разные способы выполнения таких заданий: способ сложения, способ вычитания и др.

Нас очень заинтересовала эта тема, мы изучили много литературы и к нашей огромной радости нашли еще один способ, способ не известный по школьной программе, но способ замечательный! Вычисление площади, используя формулу, выведенную австрийским ученым – математиком Георгом Пиком.

Мы решили изучить формулу Пика, при помощи которой выполнять задания на нахождении площади очень легко!

Решили поделиться нашим открытием с одноклассниками, учащимися других школ, создать электронную презентацию.

Цель исследования

1. Изучение формулы Пика.

2. Расширение знаний о многообразии задач на клетчатой бумаге, о приёмах и методах решения этих задач.

Задачи:

1. Отобрать материал для исследования, выбрать главную, интересную, понятную информацию

2. Проанализировать и систематизировать полученную информацию

3. Создать электронную презентацию работы для представления собранного материала одноклассникам

4. Сделать выводы по результатам работы.

5. Подобрать наиболее интересные, наглядные примеры.

Методы исследования:

1. Моделирование

2. Построение

3. Анализ и классификация информации

4. Сравнение, обобщение

5. Изучение литературных и Интернет-ресурсов

Георг Пик – австрийский ученый – математик. Пик поступил в университет в Вене в 1875 году. Свою первую работу опубликовал в возрасте 17 лет. Круг его математических интересов был чрезвычайно широк. 67 его работ посвящены многим разделам математики, таким как: линейная алгебра, интегральное исчисление, геометрия, функциональный анализ, теория потенциала.

Широко известная Теорема появилась в сборнике работ Пика в 1899 году.

Теорема привлекла довольно большое внимание и начала вызывать восхищение своей простотой и элегантностью.

Формула Пика, формула вычисления площади многоугольника, изображенного на бумаге в клетку, полезна при решении заданий ЕГЭ и ОГЭ. Именно, поэтому, она нас очень заинтересовала.

Формула Пика  — классический результат комбинаторной геометрии и геометрии чисел.

По теореме Пика площадь многоугольника равна:

Г : 2 + В – 1

где

Г – число узлов решетки на границе многоугольника

В – число узлов решетки внутри многоугольника.

Первым делом мы поставили задачу: изучить, что такое узлы решетки и как правильно вычислять их количество. Оказалось, это очень просто. Приведем несколько примеров.

Пусть дан произвольный треугольник. Узлы на границе изображены оранжевым цветом, узлы внутри изображены синим цветом. Найти узлы и подсчитать их количество очень легко.

В данном случае Г= 15, В = 35

Пример №2 Узлов на границе 18, т.е. Г = 18, узлов внутри 20, В = 20.

И еще один пример. Дан произвольный многоугольник. Считаем узлы на границе. Их 14. Узлом внутри многоугольника 43. Г = 14, В = 43.

С первой задачей мы справились!

Второй этап нашей работы: вычисление площадей многоугольников.

Рассмотрим несколько примеров.

Пример №1.

Г = 14, В = 43, S = + 43 – 1 = 49

Пример №2.

Г = 11, В = 5, S = + 5 – 1 = 9,5

Пример №3.

Г = 15, В = 22, S = + 22 – 1 = 28,5

Пример №4.

Г = 8, В = 16, S = + 16 – 1 = 19

Пример №5

Г = 10, В = 30, S = + 30 – 1 = 34

На рассмотрение пяти примеров мы затратили всего 1-2 минуты. Вычислять площадь по формуле Пика не только быстро, но и очень легко!

Но перед нами встал очень серьезный вопрос:

Можно ли доверять теореме Пика?

Получаются ли одинаковые результаты при вычислении площадей разными способами?

Найдем площади многоугольников по формуле Пика и обычным способом, применяя формулы геометрии и способы достроения или разбиения на части. Вот какие результаты мы получили:

Пример №1.

Вычислим площадь многоугольника по формуле Пика:

Подсчитаем количество узлов на границе и внутри. Г = 3, В = 6.

Вычислим площадь: S = 6 + – 1 = 6,5

Достроим многоугольник до прямоугольника. Площадь прямоугольника равна: 3 * 5 = 15, S? = = 3, S? = = 3 , S = = 2,5

S = 15-3-3-2,5 = 6,5

Результат одинаковый.

Пример №2.

Вычислим площадь по формуле Пика.

Г = 4, В = 9, S = 9 + – 1 = 10

Достроим до прямоугольника.

Площадь прямоугольника равна: 5 * 4 = 20, S1 = 2 * 1 = 2, S2 = = 3,

S = = 2 , S = = 1,5, S = = 2,5

Площадь прямоугольника равна

S = 20 – 2 – 3 – 2 – 1,5 – 2,5 = 10

Мы снова получили одинаковые результаты.

Рассмотрим еще один пример.

Пример №3

Вычислим площадь по формуле Пика.

Г = 5, В = 6, S = 6 + – 1 = 7,5

Вычислим площадь, используя способ достроения.

Площадь прямоугольника равна 5·4 = 20

S1 = 2 * 1 = 2, S2 = = 1, S3 = 2 * 1 = 2, S4 = = 1, S5 = = 1, S6 = = 2,5

S7 = = 3

S = 20 – 2 -1– 2 – 1 – 1 – 2,5 – 3 = 7,5

Результат одинаковый.

В презентации мы рассмотрели три примера, но на самом деле мы рассмотрели очень много самых разных примеров. Результат всегда был один и тот же: Вычисление площади по формуле Пика и другими способами дает одинаковый результат.

Вывод: формуле Пика можно доверять! Она дает точный результат.

Мы довольны!

И еще один вопрос встал перед нами: какой способ вычисления наиболее рациональный, наиболее удобный для использования?

Чтобы ответить на этот вопрос, достаточно использовать всю предыдущую работу. Но рассмотрим еще три примера, которые окончательно позволят получить ответ на наш вопрос.

Пример №2

Пример №3

При помощи формулы Пика легко вычислить площадь многоугольника даже самой причудливой формы. Рассмотрим пример:

Г=16, В=4

S=16:2+4-1=11

Вывод однозначный: наиболее рациональный способ вычисления площади многоугольника, изображенного на бумаге в клетку: формула Пика!

Предлагаем каждому из вас вычислить площадь многоугольника, используя формулу Пика:

– вычислите количество узлов на границе. Они изображены желтым цветом.

– вычислите количество узлов внутри, красный цвет.

– Подставьте в формулу, назовите результат. Вы за одну минуту вычислили площадь.

Итак, формула Пика имеет ряд преимуществ перед другими способами вычисления площадей многоугольников на клетчатой бумаге:

Для вычисления площади многоугольника, нужно знать всего одну формулу:

S = Г:2 + В – 1.

Формула Пика очень проста для запоминания.

Формула Пика очень удобна и проста в применении.

Многоугольник, площадь которого необходимо вычислить, может быть любой, даже самой причудливой формы.

Применяя формулу Пика легко выполнять задание ЕГЭ и ОГЭ.

Приведем несколько примеров вычисления площади из вариантов ЕГЭ – 2015.

Мы решили научить пользоваться формулой Пика учащихся 9 – 11 классов нашей школы. Провели фестиваль “Формула Пика”.

Все учащиеся с большим интересом познакомились с презентацией, научились пользоваться формулой Пика.

За 30 минут практической работы учащиеся выполнили большое количество заданий. Каждый учащийся получил памятку “Формула Пика”.

Мы помогли им в подготовке к ЕГЭ и ОГЭ!

Спустя месяц работы, мы провели опрос учащихся 9–11 классом.

Задали следующие вопросы:

Вопрос №1:

Формула Пика – это рациональный способ вычисления площади многоугольника?

“Да” – 100% учащихся.

Вопрос №2:

Вы пользуетесь формулой Пика?

“Да” – 100% учащихся

Наша работа не прошла даром! Мы довольны!

Презентацию нашего проекта мы разместили в сети Интернет. Много просмотров и скачиваний нашей работы.

Мы оформили альбом “Формула Пика”. Им постоянно, особенно первое время, пользовались учащиеся нашей школы.

Результаты работы над проектом:

В процессе работы над проектом изучили справочную, научно-популярную литературу по теме исследования.

  • Изучили теорему Пика, научились находить площади фигур, изображенных на бумаге в клетку просто и рационально.
  • Расширили свои знания о решении задач на клетчатой бумаге, определили для себя классификацию исследуемых задач, убедились в их многообразии.
  • Провели для учащихся 9–11 фестиваль “Формула Пика”, научили их находить площадь, использую эту формулу. Подобрали много интересных примеров.
  • Создали электронную презентацию в помощь своим ровесникам.
  • Оформили альбом “Формула Пика”, который постоянно используют учащиеся школы.

Предлагает вам выполнить два задания, чтобы вы убедились в рациональности нашей работы.

Спасибо за внимания!

BSPP Трубная резьба Whitworth DIN ISO 228 (DIN 259)

BSPP Трубная резьба Whitworth DIN ISO 228 (DIN 259)
Спецификации международных стандартов на резьбу

Трубная параллельная резьба по британскому стандарту, с герметиком, (параллельная, цилиндрическая), наружная = G.
Угол между сторонами 55°.

Реклама:

Номинальный
Диаметр
Основной
Диаметр
Inch
Major
Diameter
mm
Minor Diamter
Nut
mm
Tapping
Drill Size
mm
TPI Pitch
mm
G 1/16″ 0.304 7.722 6.843 6.561 28 0.907
G 1/8″ 0.383 9.728 8.848 8.565 28 0.907
G 1/4″ 0.518 13.157 11.890 11.445 19 1.337
G 3/8″ 0.656 16.662 15.395 14.950 19 1.337
G 1/2″ 0. 825 20.955 19.172 18.633 14 1.814
G 5/8″ 0.902 22.911 21.128 20.587 14 1.814
G 3/4″ 1.041 26.441 24.658 24.120 14 1.814
G 7/8″ 1.189 30.201 28.418 27.877 14 1.814
G 1″ 1.309 33.249 30.931 30.292 11 2.309
G 1 1/8″ 1.492 37.897 35.579 34.939 11 2.309
G 1 1/4″ 1.650 41.910 39.592 38.953 11 2.309
G 1 3/8″ 1.745 44. 323 42.005 41.365 11 2.309
G 1 1/2″ 1.882 47.803 45.485 44.846 11 2.309
G 1 5/8″ 2.082 52.883 50.566 49.926 11 2.309
G 1 3 /4″ 2.116 53.746 51.428 50.788 11 2.309
G 1 7/8″ 2.244 56.998 54.681 54.041 11 2.309
G 2″ 2.347 59.614 57.296 56.657 11 2.309
G 2 1/4″ 2.587 65.710 62.752 63.392 11 2.309
G 2 1/2″ 2.960 75.184 73. 391 72.227 11 2.309
G 2 3/4″ 3.210 81.534 78.576 79.216 11 2.309
G 3″ 3.460 87.884 86.289 84.927 11 2.309
G 3 1/2″ 3.950 100.330 97.372 98.012 11 2.309
G 4″ 4.450 113.030 111.733 110.073 11 2.309
G 4 1/2″ 4.950 125.730 122.772 123.412 11 2.309
G 5″ 5.450 138.430 137.332 135.473 11 2.309
G 5 1/2″ 5.950 151.130 148.172 148. 2$ в $\R$. Возможно, вы сталкивались с функциями в более абстрактных условиях, таких как Что ж; это наша цель. В нескольких последних разделах главы мы использовать функции для изучения некоторых интересных тем теории множеств.

С помощью функции из множества $A$ в множество $B$ мы означает назначение или правило $f$ такое, что для каждого $a\in A$ существует единственный $b\in B$ такой, что $f(a)=b$. Множество $A$ называется областью $f$, а множество $B$ называется кодовым доменом . Мы говорим, что две функции $f$ и $g$ равны , если они имеют один и тот же домен и одинаковые codomain, и если для каждого $a$ в домене $f(a)=g(a)$.

(В интересах полного раскрытия пакостей следует упомянуть что последний абзац вообще не определение! Проблема в том, что слова «назначение» и «правило» являются синонимами «функции». Эту проблему можно «решить», определив функции с точки зрения множеств, но у нас нет удовлетворительного определения из “набора”. На данный момент все необходимо интуитивное понимание концепции и способа показывает, что две функции равны.)

Мы часто пишем $f\colon A\to B$, чтобы указать, что $f$ является функцией от $A$ до $B$. Иногда слово «карта» или «отображение» используется вместо «функции». Если $f\colon A\to B$ и $f(a)=b$, мы говорим, что $b$ является образом $a$ при $f$ , а $a$ является прообразом $b$ до $f$ . Когда функция ясна исходя из контекста, фразу «менее $f$» можно опустить.

Пример 4.1.1. Вы знакомы со многими функциями $f\colon \R\to \R$: Полиномиальные функции, тригонометрические функции, экспоненциальные функции, и так далее. Часто вы имели дело с функциями с кодоменом $\R$ доменом которого является некоторое подмножество $\R$. Например, $f(x)=\sqrt x$ имеет домен $[0,\infty)$ и $f(x)=1/x$ имеет домен $\{x\in \R : x\ne 0\}$. Легко видеть, что подмножество плоскости есть граф функция $f\colon \R\to \R$ тогда и только тогда, когда каждая вертикальная линия пересекает его ровно в одной точке. Если эта точка $(a,b)$, то $f(a)=b$. $\квадрат$

Пример 4.1.2. Функции на конечных множествах можно определить, перечислив все задания. Если $A=\{1,2,3,4\}$ и $B=\{r,s,t,u,v\}$, то “$f(1)= t,f(2)= s,f(3)= u,f(4)= t$” определяет функцию от $A$ до $B$. Задание можно выполнить вполне произвольно, без обращения к какой-либо конкретной формуле. $\квадрат$

Пример 4.1.3 Следующие функции не являются функциями из $A=\{1,2,3,4,5\}$ в $B=\{r,s,t,u\}$: $$ \matrix{f(1)= t & \quad & g(1)=u\cr f(2)= s & \quad & g(2)=r\cr f(3)= r & \quad & g(4)=s\cr f(3)= u & \quad & g(5)=t\cr f(4)= u & \quad & \cr f(5)= r & \quad & \cr} $$ Проблема в том, что $f$ отображает $3$ в два значения, а $g$ не отображает $3$. к любым значениям. При перечислении назначений функции элементы домена должны встречаться ровно один раз. (Элементы codomain может появляться более одного раза или не появляться вовсе. В пример 4.1.2, элемент $t$ домена кода имеет два прообраза, а $r$ и $v$ не имеют ни одного. мы обсудим это ситуация подробно описана в следующих разделах. ) $\square$

Пример 4.1.4. Если $A$ и $B$ непустые множества и $b_0$ — фиксированный элемент $B$, мы можем определить константу функцию $f\colon A\to B$ по формуле $f(a)=b_0$ для всех $a\in $. Постоянных функций от $A$ до $B$ столько, сколько элементы $B$. $\квадрат$

Пример 4.1.5. Для множества $A$ мы определяем единицу функции $i_A\colon A\to A$ по правилу $i_A(a)=a$ для все $a\in A$. Другими словами, функция тождества отображает все элемент на себя. Хотя это кажется довольно тривиальной концепцией, это полезно и важно. Функции тождества ведут себя почти так же, так, как 0 делает по отношению к сложению или 1 по отношению к умножение. $\квадрат$

Пример 4.1.6 Если $A\subseteq B$, определить функцию включения $f\colon A\to B$ на $f(a)=a$ для каждого $a\in A$. Это очень похоже на $i_A$; единственный разница в кодовом домене. $\квадрат$

Определение 4.1.7. Если $f\colon A\to B$ и $g\colon B\to C$ — функции, определим $g\circ f\colon A\to C$ по правилу $(g\circ f)(a)=g(f(a))$ для всех $а\в А$. Это называется состав из две функции. Заметьте, что $f$ — это первая функция, которая применяется к элементу $a$, хотя он указан справа. Этот нарушение обычного правила слева направо иногда вызывает путаница. $\квадрат$ 9+\cup\{0\}\to \R$ определяется выражением $(g\circ f)(x)=\sin\sqrt x$. Обратите внимание, что $(f\circ g)(x)=\sqrt{\sin x}$ имеет смысл только для таких $x$, что $\sin x\ge 0$. В общем, $f\circ g$ и $g\circ f$ не обязательно равны, и (поскольку в этом случае) их не обязательно определять в одних и тех же точках. $\квадрат$

Пример 4.1.9 Если $A=\{1,2,3,4\}$, $B=\{r,s,t,u\}$, $C=\{\$,\%,\#,\&\ }$ и $$ \matrix{ f(1) & = u &\quad g(r)&= \%\cr f(2) & = r &\quad g(s)&= \#\cr f(3) & = s &\quad g(t)&= \$\cr f(4) & = u &\quad g(u)&= \$\cr } $$ тогда $$ \eqalign{ (g\circ f)(1) & = \$ \cr (g\circ f)(2) & = \% \cr (g\circ f)(3) & = \# \cr (g\circ f)(4) & = \$ \cr} $$ $\квадрат$

Пример 4. 1.10. Если $A\subseteq B$, $f\colon A\to B$ является функцией включения (пример 4.1.6) и $g\colon B\to C$ — функция, то $g\circ f\colon A\to C$ называется ограничением от $g$ до $A$ и обычно записывается $г\верт_А$. Для всех $a\in A$ $$ г\верт_А(а)=г(ф(а))=г(а), $$ поэтому $g\vert_A$ — это та же самая функция, что и $g$, но с меньшим домен. $\квадрат$

Следующее простое, но важное наблюдение:

Теорема 4.1.11 Если $f\colon A\to B$, то $f\circ i_A=f=i_B\circ f$.

Доказательство. Все три функции имеют домен $A$ и кодовый домен $B$. Для каждого $a\in A$ $$ (f\circ i_A)(a)=f(i_A(a))=f(a)=i_B(f(a))=(i_B\circ f)(a). $$$\qed$

Аналогичный аргумент показывает, что всякий раз, когда он определен, композиция функций ассоциативна, т. е. $(f\circ g)\circ h=f\circ (g\circ h)$ (см. упражнение 7).

Пример 4.1.1 Решите, определяют ли следующие назначения функции из $A=\{1,2,3,4\}$ в $B=\{r,s,t,u,v\}$. $$ \matrix{f(1)=s &\quad & g(1)= t &\quad & h(1)=v \cr f(2)=t &\quad & g(2)= r &\quad & h(2)=u \cr f(4)=u &\quad & g(3)= s &\quad & h(3)=t \cr &\quad & g(4)= r &\quad & h(2)=s \cr &\quad & &\quad & h(4)=r \cr } $$

Пример 4.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *