Усиление фундаментов железобетонными обоймами: Технология ремонта и усиления фундаментов

Содержание

Усиление ленточного фундамента железобетонной обоймой. Причины частичного разрушения фундамента

Содержание

  1. Усиление ленточного фундамента железобетонной обоймой. Причины частичного разрушения фундамента
  2. Усиление фундаментов торкретированием – что это?
    • Усиление фундаментов торкретированием – что это и когда это нужно выполнять
    • Усиление фундаментов торкретированием – что это и какова технология производства работ
  3. Усиление фундамента железобетонной рубашкой. Усиление фундаментов
    • Усиление фундамента существующего дома
    • Способы усиления ленточных фундаментов
  4. Усиление фундаментов железобетонными обоймами. Ремонт фундаментов, усиление их обоймами и подведением конструктивных элементов (ч. 2)

Усиление ленточного фундамента железобетонной обоймой. Причины частичного разрушения фундамента

Фундамент представляет собой платформу, на которой базируется сооружение. Он распределяет массу здания по всей площади и снижает удельное давление на почву. От его состояния зависят эксплуатационные качества и долговечность строения, поскольку именно на основание приходится вся нагрузка от вышестоящих конструкций.

Глубокие трещины на фундаменте свидетельствуют о начинающемся разрушении

Но в процессе эксплуатации здания фундамент нередко подвергается частичному разрушению. Это может быть вызвано следующими причинами:

  • расположением дома на наклонной местности, в сейсмонеустойчивом районе или рядом с железной дорогой;
  • некорректно составленным проектом;
  • ошибками на этапе расчёта планируемой нагрузки;
  • несоблюдением строительных технологий при сооружении платформы;
  • использованием низкокачественных строительных материалов;
  • неправильным обустройством гидроизоляции;
  • снижением качественных характеристик основания;
  • природными явлениями — подтоплением, перенасыщением грунта влагой, промерзанием почвы;
  • хозяйственной деятельностью человека — неправильной эксплуатацией дома, к примеру, отсутствием сезонного отопления, строительством или прокладкой коммуникаций в непосредственной близости от фундамента, ремонтом или достройкой дома.

Поскольку на начальном этапе строительства не всегда возможно точно спрогнозировать, какой нагрузке и природным факторам будет подвергаться основание, впоследствии придётся прибегнуть к его укреплению. Усиление фундамента обеспечивает надёжность и безопасность эксплуатации частного дома, поскольку именно загородные домовладения наиболее подвержены воздействию природных факторов. Если проигнорировать проблему, возможно, придётся полностью менять фундамент, а это стоит больших денег.

Перед началом работ по укреплению основания необходимо провести тщательный анализ причин, вызвавших его частичное разрушение. Как правило, для этого приглашают профессионалов со специальным оборудованием. Они оценивают факторы, вызывающие деформацию фундамента, и дают рекомендации по их устранению или сведению к минимуму.

Усиление фундаментов торкретированием – что это?

Усиление фундаментов торкретированием что это? Это один из действенных способов восстановления эксплуатационных качеств строительных конструкций зданий и сооружений. Торкретирование представляет собой механический метод нанесения на поверхность фундамента цементно-песчаного раствора под давлением сжатого воздуха. Вследствие этого на поверхности фундамента образуется ровное, прочное монолитное покрытие толщиной 10-30 мм, с заполнением всех трещин, неровностей, раковин. Результатом торкретирования является увеличение прочности и морозостойкости конструкции.

Усиление фундаментов торкретированием – что это и когда это нужно выполнять

Метод торкретирования применяется для восстановления и усиления фундаментных конструкций здания при обнаружении в них следующих нарушений:

  • разрушение защитного слоя бетона вследствие воздействия погодных факторов;
  • расслоение и нарушение фундаментов из бутового камня;
  • появление трещин на фундаменте в результате его осадки;
  • нарушение целостности конструкции в результате механических повреждений.

Торкретирование может выполняться в целях повышения несущей способности фундамента и увеличения срока его службы. Усиление фундамента методом торкретирования производится при реконструкции здания с изменением величин нагрузок.

Усиление фундаментов торкретированием – что это и какова технология производства работ

Торкретирование фундаментов производится при помощи специального оборудования, торкрет-пушки и компрессора, подающих цементно-песчаный раствор под давлением 150-350 кПа. Скорость струи при этом может составлять до 100 м/с. Для торкретирования используется смесь соотношением цемента к песку от 1:2 до 1:6. Смесь в сухом виде подается в сопло торкрет-пушки по одной линии, тогда как по другой подводится вода. Затворенная водой смесь выбрасывается из сопла на обрабатываемую поверхность. За один проход можно создать покрытие толщиной 10-15 мм.

Разновидностью технологии торкретирования является набрызг-бетон (или “мокрый” способ торкретирования), характеризующийся большей крупностью заполнителя (как правило, используется щебень фракцией не более 8 мм). “Мокрый” способ торкретирования подразумевает, что в сопло торкрет-пушки подается уже готовая смесь, затворенная водой. Таким методом можно добиться образования на обрабатываемой поверхности слоя торкретбетона толщиной до 10 см и более.

Усиление фундаментов торкретированием – что это и каковы особенности этого метода

Покрытие, нанесенное методом торкретирования отличается высокой плотностью и низким уровнем капиллярной пористости. В сравнении с обычным обетонированием фундамента, в торкретбетоне в процессе усадки практически не образуются трещины и раковины. При выполнении работ некоторое количество наносимого материала может теряться за счет отскока. Величина отскока зависит от условий ведения работ и может составлять от 10 до 20 процентов.

Усиление фундаментов торкретированием – что это и кто выполняет эти работы в Ростове

Одним из ключевых направлений деятельности компании ПроектДон является усиление фундаментов торкретированием в Ростове -на-Дону и области. К вашим услугам опытные инженеры и квалифицированные исполнители работ, которые в кратчайшие сроки готовы ознакомиться с проблемой и предложить клиенту наиболее надежное и экономичное решение.

Усиление фундамента железобетонной рубашкой. Усиление фундаментов

В ходе эксплуатации зданий нередко возникает необходимость усиления старых фундаментов, потерявших значительную часть несущей способности, а также при реконструкции зданий, когда проектная нагрузка на фундамент увеличивается.

Усиление фундамента существующего дома

Среди причин, приводящих к необходимости усиления оснований и реконструкции фундаментов, основными являются:

    периодические колебания уровня грунтовых вод;

    износ фундаментов старых построек под воздействием промораживания, перепадов температур, производства земляных работ вблизи фундаментов, пучения грунтов, превышения проектных нагрузок в ходе эксплуатации, вибрационного воздействия оборудования т. п.;

    деформации вследствие ошибок при проектировании и строительстве;

    суффозия (вымывание более мелких частиц грунта в процессе фильтрации через него паводковых вод.

Рис. 1: Усиление фундамента существующего дома

Существующие технологии усиления фундаментов зданий различны и позволяют восстановить или существенно повысить показатели пофундамента любого здания. Существенной разницы между усилениеми многоэтажного административного, производственного или жилого здания нет, а вот от типа усиливаемого фундамента и характеристик грунтов методы усиления фундаментов зависят.

Способы усиления ленточных фундаментов

Перечислим основные способы усиления ленточных фундаментов, применяемые сегодня на практике строителями:

    Усиление фундаментов торкретированием. Вдоль фундамента участками (захватками) отрывается траншея, поверхность фундамента тщательно очищается, на ней делаются насечки, глубиной не менее 15 мм, а затем наносится бетон с применением бетонной пушки.

    Укрепление фундаментов цементацией. Без проведения земляных работ специальными механизмами через каждые 0, 5–1 м по периметру (или только на определенном проблемном участке) бурят шурфы в грунте и фундаменте, и с помощью специальных инъекторов под большим давлением подают раствор бетона; он заполняет пустоты и трещины фундамента и частично пространство между фундаментом и грунтом.

    Усиление фундаментов железобетонными обоймами. Фундамент открывается участками, очищается, грунт основания уплотняется домкратами, монтируется каркас арматуры и заливается бетоном.

    Усиление фундамента буронабивными сваями. Производится вертикальноесквозь опорную плитную часть фундамента, закладывается и перевязывается арматура сваи с арматурой фундамента, заливается и трамбуется бетон.

    Усиление фундамента сваями . Пол основание фундамента домкратом вдавливаются составные железобетонные сваи.

    Усиление фундаментов буроинъекционными сваями. Фундамент пробуривается в нескольких местах насквозь скважинами небольшого диаметра под углом к вертикали и не проектную глубину. Закладывается арматура и под давлением закачивается бетон.

Усиление фундаментов железобетонными обоймами. Ремонт фундаментов, усиление их обоймами и подведением конструктивных элементов (ч. 2)

Устройство обойм без увеличения площади подошвы фундамента чаще всего вызывается некачественным выполнением строительных работ. Так, например, при строительстве одного из жилых домов сборные фундаменты под столбами были выполнены недостаточно качественно, что явилось одной из причин обрушения конструкций . Усиление выполнено путем заключения верхней части фундамента над подушками в железобетонные обоймы (рис. 4.2), что позволило обеспечить более равномерную передачу нагрузки на подушки. В верхней части обоймы установлены анкеры для крепления колонн.

Усиление железобетонными или бетонными обоймами с увеличением площади подошвы фундамента возможно для фундаментов мелкого заложения (из кладки, бетона, железобетона) как подвальных, так и бесподвальных зданий на всю высоту фундамента или его часть (рис. 4.3).

При устройстве обойм нельзя забывать о том, что прочность сцепления усиливаемого фундамента и новой кладки зависит от многих факторов, в том числе от вида и качества составляющих бетона. При усилении железобетонных и бетонных конструкций, находящихся в эксплуатации длительное время, необходимо учитывать возможные отрицательные изменения в наружном слое бетона . Поэтому, устраивая обоймы, не всегда можно быть уверенным в том, что при сцеплении нового бетона со старым гарантируется полная монолитность обоймы и существующего фундамента. В ряде случаев необходимо снимать весь поверхностный слой старого бетона, а для обеспечения восприятия сдвигающих сил на контактной поверхности приваривать арматурные коротыши, применять штрабы, железобетонные шпонки, поперечные металлические балки, анкеры и другие элементы. Свежий бетон укладывается на чистую, шероховатую, влажную поверхность старой кладки с обязательным тщательным уплотнением бетонной смеси.

Железобетонные обоймы, которые охватывают усиливаемый фундамент со всех сторон, плотно обжимая его при усадке бетона, и работают как единое целое, следует считать наиболее простым и надежным способом усиления. Толщины обоймы определяются расчетом с учетом повышения расчетной нагрузки в случае реконструкции. Армирование производят пространственными каркасами, состоящими из замкнутых хомутов. Обычно фундаментные обоймы соединяют с обоймами усиления стен подвала или колонн (см. рис. 4.3). Если стены подвала или колонн не подлежат усилению, то под фундаментными обоймами, устраиваемыми на всю или часть высоты фундамента, устанавливаются дополнительные обоймы на высоту 1—1,5 м . Усиление ленточных и столбчатых фундаментов обоймами повышает также жесткость здания в соответствующем направлении, что особенно важно в случае применения сборных конструкций.

Уширенная часть усиленного фундамента способна воспринимать только часть увеличивающейся нагрузки, а значительная ее часть передается через подошву старого фундамента. При небольшом увеличении нагрузки это допустимо, поскольку выпор грунта в стороны невозможен из-за дополнительной пригрузки элементов уширениями. При большом увеличении нагрузки элементы уширения фундаментов должны быть введены в работу путем предварительной передачи искусственного давления (обжатия). Предварительное обжатие основания производится клиньями (см. рис. 4.3, б ) или домкратами, которые устанавливают, например, между рандбалкой и плитой уширения. Съему домкратов предшествует установка металлических стоек-распорок с расклиниванием их, после чего производят бетонирование обоймы (столба). Способы предварительного обжатия рассмотрены в работах . Увеличение площади подошвы фундамента с одновременным обжатием грунта под элементами усиления обеспечивает немедленное включение в работу уширенной части фундаментов.

Усиление фундаментов

Компания СМУ №19 предлагает вам сделать усиление фундаментов за разумную стоимость и с гарантированным качеством. Мы выполняем работы по капитальному строительству и реконструкции в СПб на протяжении долгих лет. За годы работы сформировалась не только отличная репутация нашей компании, но и внушительное портфолио объектов. Так что, прежде чем принимать решение о выборе подрядчика, обязательно ознакомьтесь с тем, какие условия предложит вам наша организация.

Зачем проводятся работы по усилению фундамента

Разрушается фундамент, теряя физические и эксплуатационные качества

Планируется увеличить нагрузки на фундамент

Начнем с того, что далеко не всегда капитальное строительство выполняется с необходимым уровнем качества проведения работ. К сожалению, это так. И, ввиду проектных ошибок и несоблюдения технологии подрядной организацией, например, отсутствия необходимой гидроизоляции, заказчики сталкиваются впоследствии с проблемами. В силу чего негативные последствия могут выражаться, в том числе, в деформации основания. Иногда сами владельцы недвижимости в ходе эксплуатации объекта превышают предельно допустимые нагрузки (проектные значения). Это, в свою очередь, приводит к преждевременному и неравномерному износу конструкций. А если вблизи строения производить земляные работы или, скажем, бурить сваи, то и такие действия сократят жизненный цикл строительных конструкций.

Внешние факторы тоже имеют значение, как техногенные, так и природные. Так, перепады температур и низкие температуры, в частности, негативно сказываются на сроке службы фундаментного основания. Добавим к этому, что с определенной периодичностью происходят колебания уровня грунтовых вод. Вследствие этих и ряда других причин возникает необходимость усилить конструкции основания.

В результате чего происходит разрушение и деформация фундамента

В ходе эксплуатации на него воздействуют сила тяжести, морозного пучения, сопротивления грунта, в результате чего происходит проседание грунта, опрокидывание фундамента или его выталкивание, а также морозное пучение фундамента.

В результате проектных ошибок, включая неправильно подобранный тип фундамента, или превышения допустимых нагрузок может происходить осаждение части здания. То есть, по сути, фундамент частично теряет свои несущие способности.

Какие есть методы усиления фундамента существующего дома

Выбор метода зависит от того, какой тип фундамента у существующего здания, он может быть ленточный, свайный, столбчатый или фундамент монолитная плита. Специалисты компании СМУ №19 после получения заявки сориентируют вас по возможным и действенным методам в зависимости от поставленных задач. А в рамках данного материала мы перечислим самые распространенные способы укрепить строительные конструкции.

  • Торкретирование
  • Инъектирование фундамента
  • Усиление фундаментов обоймами
  • Усиление основания сваями
  • Увеличение глубины заложения фундамента

Что подразумевает метод торкретирования

По периметру здания выкапывается траншея, а далее, используя торкрет-пушки и компрессор под давлением, на фундамент подается цементно-песчаный раствор. Работа проводится участками, то есть так называемыми захватками.

Есть, кстати, мокрый способ торкретирования, когда проводится набрызг-бетон. Его отличает то, что в торкрет-пушки подается затворенная водой готовая ЦПС. А в первом случае в сопло подается смесь в сухом виде.

Как проводится цементация грунтов (метод инъектирования)

Особенность метода заключается в том, что проводить земляные работы не требуется. Используя специальные механизмы, на расстоянии полметра-метр выполняется бурение отверстий по периметру объекта. А если быть точнее, то формируются специальные скважины (шуфры), используя которые можно осматривать и укреплять основание. Также работы выполняются и выборочно, то есть только на участке, где требуется укрепить фундамент.

Шуфры в бетоне заполняются раствором бетона под давлением, который подается через специальные инъекторы. Таким образом заполняются трещины и пустоты, возвращая основанию необходимую несущую способность. Также усиление фундамента инъектированием позволяет заполнить образованные между строительными конструкциями и грунтом пустоты.

Усиление фундаментов железобетонными обоймами — как метод укрепления основания

Железобетонная обойма представляет собой метод, когда выполняется усиление конструкций арматурным каркасом. Сначала выкапывается траншея вдоль здания, а фундамент необходимо очистить от грязи и дополнительно обработать, используя цементное молочко. Далее производится сверление отверстий для установки арматурных прутьев, чтобы разместить их в шахматном порядке. На них (стержнях) формируется арматурный каркас, он обваривается листовым металлом, образуя металлическую опалубку.

Далее отверстия заполняются бетоном. После того как все трещины заполнены бетонной смесью, ей заполняют и все пространство получившейся опалубки из металла.

Есть два способа проведения работ:

  1. Установка ж/б обоймы с расширением подошвы основания. Это целесообразно, например, когда планируется строительство мансарды.
  2. Укрепление поврежденных участков фундамента, используя обойму без уширения. В данном случае должна быть достаточной несущая способность стен.

Когда требуется усиление фундаментов сваями

Есть несколько способов укрепить конструкцию основания, используя сваи:

  • Усиление фундаментов буроинъекционными сваями выполняется путем бурения скважин насквозь, туда закладывается арматура и закачивается бетон под давлением.
  • Используя буронабивные сваи укрепляют основание, выполняя вертикальное бурение отверстий в опорной части фундамента. Далее выполняется армирование и заливка, трамбовка бетона.
  • Железобетонные сваи вдавливаются под основание фундамента домкратом. Таким образом выполняется усиление конструкций ж/б сваями.

АРМАТУРА В ГЛУБИННЫХ ФУНДАМЕНТАХ

Фундамент здания или другого сооружения проектируется и сооружается для передачи усилий от сооружения на грунт. В типичных условиях эти силы являются результатом действия силы тяжести (веса здания, людей и материалов внутри здания), а также ветра, землетрясений, текущей воды и других воздействий окружающей среды.

При проектировании всех фундаментов учитывается нисходящая нагрузка на элемент фундамента и способность грунта сопротивляться этой нагрузке. В фундаменте с пробуренным стволом эта передача направленных вниз сил обычно происходит за счет сжатия ствола фундамента, часто при этом напряжение в опоре уменьшается с глубиной, поскольку окружающий грунт воспринимает нагрузку за счет поверхностного трения. В случаях подъема на глубоком фундаменте опора сопротивляется движению вверх за счет сочетания длительных нагрузок надстройки, собственного веса опоры и трения ствола опоры о прилегающий грунт.

В некоторых грунтах большая часть или вся направленная вниз сила сопротивляется нижней части заглубленного конца вала (наконечнику). Расчетная емкость этого сопротивления называется концевой подшипник . Если пробуренная шахта для сваи расширяется на дне скважины, говорят, что свая нерасширенная или раструбная . Колокол может быть предназначен для увеличения пропускной способности вниз за счет увеличения площади кончика пирса или может быть предназначен для сопротивления подъему пирса, действуя как якорь, зацепляясь с окружающим грунтом.

При отсутствии разрушенных элементов фундамента опоры должны также сопротивляться горизонтальной составляющей боковых сил за счет изгиба ствола опоры и опоры по бокам опоры на грунт. Программное обеспечение (например, LPILE от Ensoft, Inc.) обычно используется для расчета изгибающих усилий в свае и взаимодействия сваи с окружающим грунтом.

В экспансивных почвах, которые расширяются во влажном состоянии и сужаются в сухом, может также потребоваться вал, чтобы противостоять поднятию, возникающему, когда верхние слои почвы проходят циклы влажности. В этих почвах по мере высыхания почва может отслаиваться от ствола и опускаться вниз. Осадки на почве могут затем стекать в пространство вокруг ствола, впитываться в почву, вызывая вспучивание почвы. Когда почва расширяется, она может захватывать ствол, а затем, по мере того как почва продолжает расширяться, почва оказывает восходящее усилие на поверхность пробуренной шахты. Эти циклы влажности могут быть сезонными колебаниями осадков или многолетними засухами. Инженер-геотехник обычно оценивает глубину этих колебаний влажности почвы и указывает глубину, на которой проектировщик игнорирует поверхностное трение. Затем проектировщик предполагает, что указанная длина сваи не обеспечивает сопротивление трению против сил в свае. Кроме того, инженер-геотехник может указать величину восходящей силы, которую следует предвидеть, чтобы шахта была рассчитана на сопротивление этой восходящей силе (подъему).

Степень усиления монолитной сваи зависит от нагрузки сваи и характера окружающего грунта. В простом случае проектировщик может определить, что только часть сваи подвергается чистому растяжению, исходя из веса здания и сваи и способности поверхностного трения передавать нагрузку на землю. В таком случае может потребоваться глубокая опора, потому что некоторые комбинации нагрузок приводят к большему нисходящему усилию, чем восходящему. В некоторых ситуациях постоянные нагрузки могут потребовать более глубокого фундамента для уменьшения/предотвращения долговременной осадки. В таких случаях проектировщик может указать, что площадь армирования должна уменьшаться с глубиной или прекращаться ниже указанной глубины.

Если грунты не способны обеспечить адекватное боковое сопротивление выпучиванию по длине сваи, может потребоваться усиление для ограничения бетона и предотвращения растрескивания бетона при сжатии. Армирование также может потребоваться на всю глубину сваи, если грунт потенциально подвержен сейсмическому разжижению. Сваи, которые недостаточно расширены, чтобы сопротивляться подъему, потребуют существенного усиления, чтобы быть непрерывным от вершины до низа сваи.

В очень сильно нагруженных сваях может потребоваться усиление для увеличения прочности сваи, как и в случае надземных бетонных колонн.

Бетонное покрытие
Во всех случаях, когда требуется усиление, бетонное покрытие вокруг всех стержней необходимо по всей длине армирования. Требования строительных норм и правил ACI 318 для конструкционного бетона, издание 2014 г. (ACI 318-14) и Спецификации ACI 301 для конструкционного бетона, издание 2016 г. арматура и грунт, на который укладывается бетон в качестве формообразующей поверхности. Это указанное покрытие подлежит допуску, который обычно снижает его до минимального требования к крышке в два дюйма. Спецификация ACI 117 по допускам для бетонных конструкций и материалов, издание 2010 г. (ACI 117-10) содержит допустимые допуски на защитный слой бетона и другие переменные, которые могут повлиять на толщину защитного слоя. В разделе 5.2.1 Отчета о проектировании и строительстве буронабивных свай ACI 336.

3R говорится, что арматура должна быть «точно размещена и закреплена в правильных местах» и защищена от воздействия почвы при снятии обсадных труб.

Основные строительные требования по надежному размещению арматуры внутри опалубки или в грунте перед заливкой бетона указаны в ACI 301-16:

3.3.2 Укладка
3.3.2.1 Допуски:
Разместите, поддержите и закрепите арматуру, чтобы сохранить ее положение во время укладки бетона в соответствии с Контрактной документацией. Не превышайте допуски, указанные в ACI 117, перед укладкой бетона.

Строительные нормы и правила ACI 318-14 «Требования к конструкционному бетону» содержат следующее положение, налагающее аналогичное требование: необходимые допуски при укладке бетона.

Раздел 3.3.2.4 ACI 301 ссылается на ANSI/CRSI RB4.1 Опора для арматуры, используемой в бетоне

, и требует соблюдения его положений.

Институт арматурной стали для бетона (CRSI) первоначально выпустил CRSI RB4. 1 в 2014 году. Это документ на обязательном (кодовом) языке, который формализовал положения Руководства по стандартной практике CRSI . В этом документе описываются требования к материалам и использованию арматурных стержней. RB4.1 устанавливает основное требование в следующем положении:

3.1.1.
Вся арматура должна быть точно расположена в формах или относительно земли и прочно удерживаться на месте до и во время укладки бетона с помощью арматурных опор.

В частности, для просверленных валов CRSI содержит следующее положение:

3.2. Боковые распорки
3.2.1. Распорки боковых опалубок должны использоваться, когда это необходимо для поддержания бокового бетонного покрытия на арматуре против вертикальной опалубки или котлована, включая просверленные стволы.

АКИ 336.R3-93 (2006 г.) Проектирование и строительство буронабивных свай, в разделе 4.4.3 говорится, что арматура не должна касаться боковой стены котлована, а минимальное бетонное покрытие в 3 дюйма должно поддерживаться за счет использования распорок.

ACI 336.1-01 Спецификация для строительства буронабивных свай 3.4.6 указывает, что минимальное боковое покрытие сваи должно быть 3 дюйма до грунта и должно быть не менее 4 дюймов в обсаженных сваях, где необходимо снять обшивку. Крышка должна поддерживаться с помощью распорок роликового типа.

В соответствии с этими отраслевыми нормами, стандартами и техническими условиями усиление, необходимое по конструктивным причинам в пробуренной шахте, независимо от того, размещено ли оно у обсадной колонны или на открытом грунте, должно располагаться с использованием распорок боковой опалубки. Кроме того, поскольку коррозия арматуры может неблагоприятно повлиять на целостность ствола пирса, даже если арматура не требуется для конструкционных целей, вся арматура должна поддерживаться для поддержания требуемого покрытия.

Цели бетонного покрытия включают:

  • Защита арматуры от возникновения и развития коррозии,
  • Ограничение арматуры для улучшения сцепления с бетоном и
  • Ограничение стыков деформированной арматуры на стыках внахлестку

Защита арматуры от коррозии защитным слоем бетона является результатом двух характеристик бетона: рН бетона и низкой проницаемости бетона для воздуха и воды.

Свежий бетон является щелочным (щелочным) с pH более 12. Когда бетон первоначально укладывается на стальную арматуру, говорят, что поверхность стали равна пассивированный . Эта пассивация ингибирует коррозию, эффективно предотвращая коррозию до тех пор, пока pH бетона не уменьшится с возрастом. Этот процесс известен как карбонизация, потому что он обычно является результатом реакции диоксида углерода в воздухе внутри бетонной матрицы. Скорость этого снижения pH за счет карбонизации зависит от окружающей среды использования, толщины бетонного покрытия и пористости бетона. Бетон обычно защищает заключенную в кожух стальную арматуру до тех пор, пока pH на поверхности стали не достигнет примерно от 10 до 12. Этот порог pH для начала коррозии снижается за счет присутствия хлоридов, при этом инициирование коррозии начинается, как только уровень хлоридов достигает достаточных концентраций. .

Когда начинается коррозия, относительно низкая скорость проникновения воздуха и влаги через бетонную матрицу ограничивает скорость коррозии стали в бетоне. Чем толще и плотнее покрытие, тем медленнее будет происходить коррозия после его инициирования. Если какая-либо часть арматурного каркаса подвергается воздействию почвы, коррозия со временем снизит эффективность арматуры.

Коррозия стержней, заключенных в бетон, приводит к расширению объема стали по мере возникновения ржавчины. Этой силы этого расширения достаточно, чтобы растрескать бетон и открыть дополнительные пути для проникновения влаги и кислорода к арматуре, ускоряя процессы коррозии. Если коррозия происходит в свае выше уровня, на котором требуется армирование для обеспечения прочности, это может поставить под угрозу несущую способность сваи. Там, где ожидается сейсмостойкость или подъем, или опрокидывание является фактором, например, для конструкций шоссе, поддержание прочности опоры имеет решающее значение для безопасности и производительности. Из-за относительного повсеместного распространения хлоридов вокруг автомагистралей бетонное покрытие является важной защитой фундаментов под этими сооружениями.

Бетонное покрытие также обеспечивает ограничение, необходимое для функционирования соединений внахлестку, и стержней для создания композитного взаимодействия с бетоном. В ACI 318 и ACI 301 указано, что между самой внешней арматурой и грунтом, на который укладывается бетон в качестве формирующей поверхности, требуется трехдюймовое бетонное покрытие. Для большинства применений на эту указанную крышку распространяются допуски, указанные в ACI 117. Эти допуски обычно уменьшают указанную трехдюймовую крышку до минимального требования около двух дюймов. В рамках этого требования подразумевается, что поверхность почвы будет неровной, а покрытие бетона будет различным. Подрядчик несет ответственность за поддержание толщины покрытия в пределах указанного допуска.

Для поддержания этой боковой крышки и снижения склонности каркаса к трению о просверленные стенки шахты, когда арматура вставляется в шахту, требуется использование боковых прокладок. Если шахта не облицована для предотвращения попадания воды или контроля потока влажного или рыхлого грунта в шахту, волочение клетки по почве может привести к попаданию почвы в шахту и, в конечном итоге, к покрытию стяжек или спиралей влажной почвой.

Расположение армирования
Помимо защиты армирования, использование боковых дистанционных опор на армировании просверленного вала помогает сохранять выравнивание армирования внутри вала. В большинстве случаев вал просверливается вертикально, и арматура должна быть вертикальной. Арматурные каркасы могут показаться жесткими, но длинные арматурные каркасы, установленные в просверленные сваи, имеют тенденцию деформироваться, потому что каждый стержень относительно слабо соединен с каркасом. Как и в случае с отдельными стержнями, стержни в связанных клетках, которые опираются только на дно вала, следуют изгибу Эйлера с небольшой поправкой на нахождение в клетке. В большинстве случаев продольные стержни имеют тенденцию изгибаться/изгибаться в одном направлении, а не поддерживать друг друга. В поврежденных шахтах еще более важно надлежащим образом поддерживать арматуру вдали от внутренней части просверленной шахты, поскольку стержни имеют тенденцию отклоняться от оси под действием силы тяжести.

Хотя необходимость держать стержни прямо внутри пробуренной сваи на первый взгляд кажется тривиальной, учтите, что боковое расположение неподдерживаемого арматурного каркаса может варьироваться до шести дюймов (три дюйма покрытия с каждой стороны). Поскольку клетка пытается согнуться, она также может скручиваться, что еще больше усложняет последующую работу. В дополнение к взаимодействию арматуры с окружающим грунтом (и влагой), изгиб или скручивание арматуры приводит к укорочению выступа арматуры над землей. Размещение с использованием правильно расположенных боковых проставок/опор помогает поддерживать правильное размещение.

Помимо боковых опор, в большинстве случаев для армирования требуются опоры в нижней части опоры. Опоры, установленные на нижних концах продольной арматуры, уменьшают проникновение влаги и помогают распределить вес арматурных стержней в грунте, не допуская их погружения в грунт.

Если арматура не доходит до дна шахты, ее обычно подвешивают к опоре поперек просверленной шахты. В этом состоянии опоры выровнены со стенкой шахты, обеспечивая надлежащее покрытие.

Качество и использование поддержки
CRSI RB4.1 также определяет испытания опор, чтобы убедиться, что опоры функционируют в соответствии с требованиями. В соответствии с требованиями испытаний материалы, используемые в опорах, и конфигурация опор должны быть оценены, чтобы гарантировать, что они сохраняют положение стержня во время укладки бетона и не снижают долговечность бетонного покрытия.

Хотя боковые прокладки, используемые в просверленных валах, не входят в требования CRSI, они должны противостоять смещению или поломке, когда арматурный каркас помещается в просверленный вал. В настоящее время не существует стандартного метода испытаний для оценки этих аспектов. Опыт показывает, что опоры салазочного типа должны быть прикреплены к вертикальным арматурным стержням и должны охватывать связи или спирали, чтобы уменьшить тенденцию к вращению или скольжению по вертикальным стержням, что становится неэффективным. Большинство производителей сняли с производства опоры салазочного типа, поскольку они сложны в использовании, а опоры колесного типа стали предпочтительными опорами.

Колесные распорки крепятся вокруг поперечной арматуры (стяжки или спирали). Эти опоры превосходят салазки, потому что вращение колеса приводит к меньшему трению о стенку шахты, уменьшая смещение грунта в местах, где прокладка соприкасается со стенкой шахты. Это вращение также снижает силы, действующие на распорку, и может помочь в размещении гибких арматурных каркасов, особенно там, где арматура может тянуться за неровности вдоль вала.

Несмотря на эти требования и преимущества, арматура перфорированного вала часто размещается без использования боковых прокладок. Хотя выбор арматурных опор часто зависит от «средств и методов строительства», инженерам важно указать в строительной документации, какие опоры следует использовать. В рамках CRSI RB4.1 рейтинги несущей способности опор дают проектировщикам и подрядчикам инструмент, который хочет убедиться, что окончательная конструкция соответствует контрактной документации. Включение спецификаций арматурных опор в проектно-сметную документацию гарантирует, что подрядчик получил уведомление об использовании правильных стержневых опор. Затем во время торгов подрядчики могут включить соответствующую компенсацию за покупку и установку этих опор. Во время строительства, поскольку были указаны опоры, маловероятно, что они будут опущены из-за недосмотра.


ОБ АВТОРЕ:
Джон Б. Тернер — профессиональный инженер с многолетним опытом работы инженером-проектировщиком конструкций и почти двадцатилетним опытом работы в области расследования несчастных случаев, анализа отказов, обучения, промышленных операций и строительства. безопасность. В качестве дизайнера он работал в проектных группах для школ, больниц, складов, офисных зданий и государственных учреждений. Г-н Тернер недавно работал с производителями стальной арматуры, которые занимались внесением изменений в правила использования высокопрочной стальной арматуры и другими новыми технологиями. Он имеет степень магистра наук в области гражданского строительства Техасского технологического университета и степень бакалавра наук в области техники безопасности Техасского университета A&M. Профессиональные связи г-на Тернера включают Американский институт бетона, ASTM International, Техасскую ассоциацию инженеров-строителей — член правления и бывший президент отделения, а также бывший региональный менеджер Большого Юго-Западного института арматурной стали для бетона. Он работал в нескольких технических комитетах, включая ACI 301 — Спецификации конструкционного бетона, ACI 117 — Допуски, ASTM A1.05 — Стальная арматура, SEI — Стандарты предотвращения непропорционального обрушения строительных конструкций и Техасский университет торговли A&M — Консультативный совет по строительной инженерии.


Эта статья была подготовлена ​​под эгидой компании Pieresearch, производителя качественных аксессуаров для бетона, исключительно в интересах структурных и геотехнических, архитектурных и строительных сообществ и защищена авторским правом Pieresearch 2018.

Была ли эта информация полезной?

ДаНет

Арматура фундамента из бетонных блоков

 

Вы обеспокоены хлопотами, беспорядком и интрузивными методами, необходимыми для ремонта треснувших или искривленных стен подвала?

Хватит беспокоиться о кривых стенах подвала…

Теперь вы можете укрепить стены подвала простым, практичным и привлекательным материалом.
АРМАТУРА ® представляет собой ремонтную пластину из углеродного волокна шириной 4 дюйма, склеенную конструкционной эпоксидной смолой (ECS104), предназначенную для стабилизации, поддержки и усиления стен фундамента подвала!

Reinforcer® устраняет необходимость и проблемы с установкой стальных балок.Подробнее

 
Старый путь   Умный путь

Что делает Reinforcer® очевидным выбором?

  • Тонкий, как монета – толщиной всего 0,045 дюйма
  • В 10 раз прочнее стали
  • Тонкий внешний вид – практически незаметный
  • Некоррозионный и негорючий материал
  • Пожизненная гарантия производителя Пожизненная гарантия
Получить Adobe® Reader
Посмотрите наше видео о независимых лабораторных и полевых испытаниях:
Независимая лаборатория и полевые испытания
Наш последний коммерческий
Видео о продукции для усиления

Как работает REINFORCER®?

Когда АРМАТУРА ® наносится на стены фундамента подвала, она противодействует дальнейшему внешнему давлению на стену, принимая силу растяжения (или растягивающую нагрузку), которую стена не может выдержать. При каждом увеличении давления на стену АРМАТУРА ® создает равную и противоположную силу сопротивления, делая стену прочнее. Он помогает восстанавливать расширяющиеся, коробящиеся, изгибающиеся и растрескивающиеся стены с использованием углеродного волокна для укрепления стен.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *