Теплопроводность пенопласта и другие важные технические характеристики
Перед тем, как совершить выбор теплоизолятора, нужно разобраться в том, какие именно факторы максимально влияют на сохранение тепла и, следовательно, выполнение непосредственных теплоизоляционных функций.
Для начала определим, что теплопроводность – это распространение теплоты от одних молекул, входящих в состав вещества и обладающих определенной температурой, к молекулам с иной температурой.
Такая миграция энергии (т. е. теплоты) осуществляется за счет того, что молекулы тесно контактируют друг с другом.
Внимание! Чем ниже теплопроводность, тем труднее материал проводит тепло – следовательно, не допускает охлаждения или перенагревания в изолированном материалом помещении.
Содержание
- 1 Теплопроводность пенопласта
- 2 Технические характеристики пенопласта
Теплопроводность пенопласта
Ниже будет приведен список, сравнивающий показатели коэффициента теплопроводности пенопласта с другими утеплителями:
- Пенопласт: 0.
031-0.042 Вт/(м*К).
- Минеральная вата: 0.045-0.07 Вт/(м*К).
- Стекловата: 0.033-0.05 Вт/(м*К).
- Эковата: 0.038-0.045 Вт/(м*К).
Теплопроводность утеплителей зависит от того, как много воздуха они содержат: чем его больше, тем теплопроводность меньше, поскольку воздух – это хаотичное собрание молекул, количество и интенсивность контактов которых зависят от объема воздуха в утеплителе.
Так, если вы едете в час-пик в метро, то вы постоянно соприкасаетесь с другими людьми; если вы едете в просторном вагоне, то ваши контакты с пассажирами редки и случайны.
Пенопласт – это материал, в котором огромное количество воздуха. Его структура разделена на множество ячеек с толщиной от 0.2 до 0.8 сантиметров, которые изнутри заполнены воздухом. Соответственно, чем толще пенопласт, тем выше его коэффициент теплопроводности.
Совет: зная о зависимости теплопроводности от толщины размера листов пенопласта, вы можете купить пенопласт с большей теплопроводностью и большей толщиной, который будет функционально равнозначен утеплителю с меньшей теплопроводностью и меньшей толщиной.
О том, что влияет на выбор толщины слоев пенопласта для утепления стен, можно прочесть *ссылка*.
Теплопроводность, безусловно, зависит от плотности: чем она выше, тем ближе молекулы расположены друг к другу, тем чаще они соприкасаются и тем быстрее передается тепло.
Ниже будет приведен список, иллюстрирующий зависимость теплопроводности от плотности утеплителя:
- ПСБ-С 15: плотность 15 кг/кубометр; коэффициент = 0.037 Вт/(м*К).
- ПСБ-С 25: плотность 15.1 – 25 кг/кубометр; коэффициент = 0.035 Вт/(м*К).
- ПСБ-С 35: плотность 25.1 – 35 кг/кубометр; коэффициент = 0.033 Вт/(м*К).
После изучения значимости плотности и теплопроводности можно подытожить, что именно коэффициент теплопроводности оказывает решающее влияние на ключевую роль пенопласта – теплосбережение.
Технические характеристики пенопласта
При выборе пенопласта в качестве утеплителя обращают внимание на ряд технических характеристик, определяющих функциональные возможности теплоизолятора и, следовательно, тип помещения, для которого он подбирается:
- Прочность на сжатие является важным показателем, поскольку от ее величины зависит то, какое давление способен выдержать материал.
Превышение предела прочности – это причина механической деструкции изолятора. Чем больше эта величина, тем более прочен изолятор. ПСБ С-15: 0.04 МПа. ПСБ С-25: 0.08 МПа. ПСБ С-35: 0.14 МПа.
- Водопоглощение иллюстрирует способность вещества к удержанию воды в своей структуре (в случае пенопласта – в ячейках, заполненных воздухом). Чем больше воды удерживается изолятором, тем хуже его теплоизоляционные свойства – следовательно, чем больше этот показатель, тем сильнее он влияет на уменьшение теплоизоляции. ПСБ С-15: 4% по объему за сутки. ПСБ С-25: 3% по объему за сутки. ПСБ С-35: 2% по объему за сутки.
- Время самостоятельного горения марок ПСБ С-15, ПСБ С-25, ПСБ С-35: 4 секунды. Чем меньше это время, тем безопаснее материал.
- Пожарно-технические характеристики по СНиП 21-01-97 марок ПСБ С-15, ПСБ С-25, ПСБ С-35: Г1, В2, Д3, РП1.
- Диапазон рабочих температур марок ПСБ С-15, ПСБ С-25, ПСБ С-35: [-60; 80] по Цельсию.
Чем более широк радиус рабочих температур, тем более универсален утеплитель.
- Коэффициент паропроницаемости марок ПСБ С-15, ПСБ С-25, ПСБ С-35: 0.05 мг/(м.ч. Па). Чем больше этот коэффициент, тем сильнее он уменьшает теплоизоляционные свойства.
Это лишь неполный список из тех характеристик, которые учитываются при подборе модели пенопласта. Технический паспорт товара содержит в себе сведения о долговечности, влагостойкости, сохранении стабильных размеров материала и о некоторых других величинах.
Попробуем сопоставить данные, которые приведены выше, с тем, на какое применение рассчитаны рассмотренные разновидности пенопласта.
ПСБ С-15: задействован в защите малонагруженных конструкций.
ПСБ С-25: один из наиболее популярных видов, поскольку применяется в утеплении стен и полов.
ПСБ С-35: применяется в “массивных” конструкциях (например, в утеплении фундамента дома)
Тщательный анализ значимости множества характеристик, среди которых особенно важными являются теплопроводность и плотность теплоизолятора, позволяет понять, насколько важно отнестись ответственно к выбору утеплителя и почему у пенопласта есть преимущества перед другими теплоизоляторами.
СРАВНЕНИЕ ПЕНОПЛАСТА С ДРУГИМИ МАТЕРИАЛАМИ
САМЫЕ НИЗКИЕ ЦЕНЫ!
ДОСТАВКА ПО МОСКВЕ И ОБЛАСТИ за 1 день!
ДОСТАВКА В РЕГИОНЫ!
МИНИМАЛЬНЫЕ СРОКИ ПОСТАВКИ!
СКИДКИ СТРОИТЕЛЯМ!
НАПРЯМУЮ ОТ ПРОИЗВОДИТЕЛЯ!
На поверхности пенопласта не образуется питательной среды для роста бактерий и микроорганизмов. |
САМЫЕ НИЗКИЕ ЦЕНЫ НА ПЕНОПЛАСТ! ДОСТАВКА ЗА 1 ДЕНЬ! | Каталог | Скидки! | Цены | Заказать | Доставка | О нас | Статьи | Контакты |
Теплопроводность пенополиуретана
Теплопроводность определяется как количество тепла (в ваттах), передаваемое через квадратный участок материала заданной толщины (в метрах) из-за разницы температур. Чем ниже теплопроводность материала, тем больше способность материала сопротивляться теплопередаче и, следовательно, выше эффективность изоляции. Типичные значения теплопроводности для пенополиуретанов находятся между 0,022 и 0,035 Вт/м∙K .
Теплоизоляция в основном основана на очень низкой теплопроводности газов. Газы обладают плохими свойствами теплопроводности по сравнению с жидкостями и твердыми телами и, таким образом, являются хорошим изоляционным материалом, если их можно уловить (например, в пенообразной структуре). Воздух и другие газы обычно являются хорошими изоляторами. Но главная польза в отсутствии конвекции. Таким образом, многие изоляционные материалы (например, пенополиуретан ) функционируют просто благодаря большому количеству заполненные газом карманы , которые предотвращают широкомасштабную конвекцию .
Чередование газового кармана и твердого материала приводит к тому, что тепло должно передаваться через множество поверхностей, что приводит к быстрому снижению коэффициента теплопередачи.
Ссылки:
Теплопередача:- Основы тепломассообмена, 7-е издание. Теодор Л. Бергман, Эдриенн С. Лавин, Фрэнк П. Инкропера. John Wiley & Sons, Incorporated, 2011. ISBN: 9781118137253.
- Тепломассообмен. Юнус А. Ценгель. McGraw-Hill Education, 2011. ISBN: 9780071077866.
- Министерство энергетики США, термодинамики, теплопередачи и потока жидкости. Справочник по основам Министерства энергетики США, том 2 из 3, май 2016 г.
Ядерная и реакторная физика:
- Дж. Р. Ламарш, Введение в теорию ядерных реакторов, 2-е изд., Аддисон-Уэсли, Рединг, Массачусетс (1983).
- Дж. Р. Ламарш, А. Дж. Баратта, Введение в ядерную технику, 3-е изд., Prentice-Hall, 2001, ISBN: 0-201-82498-1.
- WM Stacey, Физика ядерных реакторов, John Wiley & Sons, 2001, ISBN: 0-471-39127-1.
- Гласстоун, Сезонске. Разработка ядерных реакторов: разработка реакторных систем, Springer; 4-е издание, 1994 г.
, ISBN: 978-0412985317
- WSC. Уильямс. Ядерная физика и физика элементарных частиц. Кларендон Пресс; 1 издание, 1991 г., ISBN: 978-0198520467
- Г. Р. Кипин. Физика ядерной кинетики. Паб Эддисон-Уэсли. Ко; 1-е издание, 1965 г.
- Роберт Рид Берн, Введение в работу ядерного реактора, 1988.
- Министерство энергетики, ядерной физики и теории реакторов США. Справочник по основам Министерства энергетики, том 1 и 2. Январь 1993 г.
- Пол Ройсс, Нейтронная физика. EDP Sciences, 2008. ISBN: 978-2759800414.
Advanced Reactor Physics:
- К. О. Отт, В. А. Безелла, Введение в статистику ядерных реакторов, Американское ядерное общество, исправленное издание (1989 г.), 1989 г., ISBN: 0-894-48033 -2.
- К. О. Отт, Р. Дж. Нойхольд, Введение в динамику ядерных реакторов, Американское ядерное общество, 1985, ISBN: 0-894-48029-4.
- Д. Л. Хетрик, Динамика ядерных реакторов, Американское ядерное общество, 1993, ISBN: 0-894-48453-2.
- Э. Э. Льюис, В. Ф. Миллер, Вычислительные методы переноса нейтронов, Американское ядерное общество, 1993, ISBN: 0-894-48452-4.
Изоляционные материалы
Теплопроводность и сопротивление пены
Пеначасто используется в приложениях, требующих контроля температуры и изоляции из-за их уровня теплопроводности и сопротивления. Хотя не все пены идеально подходят для этих целей, многие из них можно использовать для контроля потока тепла благодаря своей структуре. Все упирается в теплопроводность пеноматериала.
Что такое теплопроводность пены и как знание этого значения может помочь вам выбрать правильную пену для вашего применения?
Что такое теплопроводность пены?
Теплопроводность – это способность материала проводить тепло. С точки зрения выбора пенопласта теплопроводность означает количество тепла, которое кусок пенопласта может передать через себя. Это измерение покажет вам, насколько устойчив кусок пенопласта к теплопередаче, и, таким образом, насколько хорошо кусок пенопласта будет служить изолятором в любом приложении. Более низкая теплопроводность куска пенопласта означает, что материал лучше сопротивляется передаче тепла, что делает пену лучшим изолятором. Более высокая теплопроводность означает, что пена не будет служить хорошим изолятором.
Теплопроводность измеряется в БТЕ/(ч⋅фут⋅°F).
Почему пены обычно являются хорошими изоляторами
Некоторые пены действуют как теплоизоляторы из-за газа, который они содержат в своей структуре. Газ является плохим проводником тепла по сравнению с жидкостями и твердыми телами, что делает его идеальным изолятором. Когда газы задерживаются в структуре куска пенопласта, они помогают изолировать от тепла, замедляя передачу тепла через кусок пенопласта. Кусочки пенопласта с множеством заполненных газом карманов (например, полиуретан) предотвращают конвекцию (процесс, при котором тепло передается движением воздуха) из-за большого количества заполненных газом карманов, которые они содержат внутри себя.
По этой причине многие пенопласты используются для изоляции и оконных проемов, а также почему они часто используются в качестве упаковочных материалов для продуктов, требующих температурного контроля (например, продуктов питания и фармацевтических препаратов).
Распространенные пеноматериалы, из которых получаются хорошие изоляторы
Выбор правильного пеноматериала для вашего применения имеет решающее значение. Если вы ищете пенопласт с хорошими изоляционными свойствами, рассмотрите следующие варианты:
Полистирол
Пенополистирол (EPS) и экструдированный полистирол (XEPS) являются хорошими изоляторами, поскольку легкие термопластичные пенопласты в основном состоят из воздуха.
Полиуретан
Полиуретан обладает одними из лучших теплоизоляционных свойств при меньшей толщине. Уретановые пены могут выдерживать высокие температуры, не позволяя теплу легко передаваться через материал.
Вспененный полиэтилен (ЭПЭ)
ЭПЭ представляет собой вспененный полиэтилен с закрытыми порами, плотный, полужесткий и обладающий отличной термостойкостью. Его высокое соотношение прочности и веса также позволяет использовать меньше материала, защищая ваши продукты от ударов и потери тепла.
Вспененный полипропилен (EPP)
EPP представляет собой пенопласт с закрытыми порами, обеспечивающий превосходную теплоизоляцию как в жарких, так и в холодных условиях.