Теплоизоляционные свойства материалов: 7 основных свойств теплоизоляционных материалов

7 основных свойств теплоизоляционных материалов

Как и любые строительные материалы, теплоизоляционные материалы обладают определенными свойствами, знание которых необходимо для рационального выбора утеплителя определенной марки при проектировании конструкции и проведения теплотехнических расчетов. Ведь в итоге надежность и долговечность конструкции в значительной степени будут зависеть от комплекса показателей основных свойств утеплителя. Мы попытались определить, каковы эти свойства.

Коротко о главном

Выбор утеплителя производится исходя из условий его «работы» в конструкции. Эти условия будут зависеть от геометрических параметров конструкции, от внешних механических и климатических воздействий на утеплитель, от технологических операций, выполняемых при устройстве теплоизоляции. Учитывая все эти условия, на стадии проектирования определяется наличие у того или иного утеплителя необходимых свойств для обеспечения заданного качества конструкции. Мы попытались выделить основные свойства, и вот к какой логике мы пришли.

Обо всем по порядку

1. Формостабильность

То есть сохранность с течением времени геометрических параметров материала, – это основной фактор, определяющий качество утепления. И вот почему. По итогам ряда независимых лабораторных испытаний было доказано, что потери тепла через щели между теплоизоляционными плитами либо матами могут составлять до 40%. В то же время испытания на долговечность теплоизоляционных материалов в реальной конструкции показали, что материал с течением времени не изменял своего коэффициента теплопроводности. На основании этого было сделано заключение, что к критериям качества теплоизоляции, определяющим долговечность материала в конструкции, в первую очередь следует относить именно сохранение геометрических размеров материала. Именно стабильность формы и размеров материала обеспечивает надежную теплоизоляцию сооружения на заданном уровне в течение заданного времени.

2. Теплопроводность

Одно из главных свойств современных утеплителей. Известно, что различные материалы проводят теплоту по-разному: одни – лучше, например, металлы, другие – хуже, как теплоизоляционные материалы. Теплопроводность зависит от средней плотности и химического состава материала, его структуры, пористости, влажности и средней температуры материала. Общая толщина слоя утеплителя, а, следовательно, и количество приобретаемого утеплителя, зависит от его коэффициента теплопроводности (λ), значение которого обязательно указывается на этикетке. Однако известно, что с повышением влажности теплоизоляционных материалов теплопроводность повышается. Поэтому одним из важных свойств при определении качества теплоизоляции, является 3. сорбционная влажность, поскольку она влияет на коэффициент теплопроводности материала.

К слову, теплоизоляция – это не только защита от холода, но и защита от перегрева. Известно, что затраты на выработку единицы холода в 2 раза выше, чем на выработку единицы тепла.

4. Морозостойкость

Способность материала выдерживать многократное попеременное замораживание и оттаивание без существенного повышения коэффициента теплопроводности и признаков потери прочности. Показателя морозостойкости для теплоизоляционных материалов пока не существует, хотя, очевидно, что он необходим, особенно для жителей Севера.

5. Возвратимость

Свойство утеплителя восстанавливать первоначальные форму и толщину после снятия нагрузки называется возвратимостью. Оно обусловлено упругими свойствами структуры теплоизоляционного материала и измеряется в процентах. Например, показатель возвратимости 98%, характерный для большинства изделий из стекловолокна, показывает, что после снятия внешней нагрузки конечная толщина изделия будет составлять 98% (от первоначальной).

6. Акустические свойства

Значение этих свойств теплоизоляционных материалов понятно всем. Лучшими звукопоглощающими свойствами обладают изделия из штапельного стекловолокна, а конструкции, содержащие эти изделия, обладают наилучшими показателями по звукоизоляции.

7. Гибкость

Еще одно важное свойство теплоизоляционных материалов – способность утеплителя огибать криволинейную поверхность. Гибкие утеплители способны огибать поверхности любого радиуса без разрывов слоя, тогда как жесткие утеплители ломаются при утеплении криволинейных поверхностей даже большого радиуса.

На заметку

Теплоизоляционные материалы с точки зрения обеспечения пожарной безопасности характеризуются свойствами горючести. Существуют негорючие (группа НГ) и горючие материалы, которые в свою очередь, подразделяются на Г1 – слабогорючие, Г2 – умеренногорючие, Г3 – нормальногорючие, Г4 – сильногорючие. У теплоизоляционных материалов признанных производителей группы горючести – НГ и Г1. По мнению специалистов, группа горючести материала не является основным критерием для выбора утеплителя, поскольку для конструкции важен класс пожарной опасности. А он определяется на основании натурных испытаний. Очень часто, даже горючие материалы позволяют добиться требуемых показателей пожарной опасности конструкции.

Только определив необходимый для рассматриваемой конструкции набор конструктивных, технологических и эксплуатационных свойств утеплителя, уместно сравнивать значения величин выбранных показателей у разных утеплителей.

© Использование материалов допускается, только при наличии

активной ссылки на портал Sibdom.ru

10.3. Свойства теплоизоляционных материалов

Теплопроводность () определяет качество теплоизоляционных материалов и составляет 0,03-0,175 Вт/(м.0С). Теплопроводность материалов зависит в первую очередь от объема пор (пористости) и характеристик поровой структуры (характер пор, их распределение по размерам, по объему). Предпочтительны мелкие, замкнутые, равномерно распределенные по объему поры. Теплопроводность материала зависит также от химического состава, строения (кристаллическое или аморфное), от влажности и температуры применения материала. Чем сложнее химический состав и структура ближе к аморфной, тем меньше теплопроводность. Увлажнение и тем более замерзание воды в порах приводит к увеличению . возд.= 0,023; Н2О = 0,58, льда = 2,32 Вт/(м.

0С). Теплопроводность материалов (кроме магнезитовых огнеупоров, металлов) увеличивается при повышении температуры.

Плотность (кг/м3) материала определяет его теплопроводность. По плотности устанавливают марки: от D15 до D500.

Прочность теплоизоляционных материалов невелика (табл 10.1), обычно колеблется от 0,2 до 2,5 МПа (R) и определяется прочностными показателями твердой фазы и параметрами поровой структуры.

Таблица 10.1

Свойства теплоизоляционных материалов

Материал

Плотность,

Предел прочности, МПа, при

кг/м3

сжатии

изгибе

Фибролит

400

0,7

Теплоизоляционная керамика

400

0,8

Ячеистый бетон

350

0,6

Пеностекло

200

1

0,7

Пенопласты

25

0,07

0,1

Прочность теплоизоляционного материала должна обеспечить его сохранность при перевозке, складировании, монтаже и работе в эксплуатационных условиях.

Предельная температура применения зависит от состава и структуры материала и составляет 60-1000С для органических теплоизоляционных материалов, 4000С для ячеистого бетона и пеностекла, до 9000С для трепельного кирпича, вспученного перлита и вермикулита, 1100-13000С для керамических волокон.

Водопоглощение зависит от структуры и при закрытой пористости (пеностекло, пенопласты) оно невелико; при открытой сообщающейся пористости Wm может составить 400-600%.

Морозостойкость должна учитываться как свойство утеплителя наружных ограждающих конструкций зданий и холодильников.

Огнеупорность важна для высокотемпературной теплоизоляции и легковесных огнеупоров.

Химическую и биологическую стойкость теплоизоляции повышают, применяя различные защитные покрытия. Для повышения биостойкости применяется также обработка материалов антисептиками.

10.4. Основные виды и особенности применения теплоизоляционных материалов

Основные виды неорганических теплоизоляционных материалов. Минеральная вата – рыхлый материал, состоящий из тончайших взаимно переплетающихся стекловидных волокон. Ее вырабатывают из силикатных расплавов, получаемых из горных пород (базальт, мергель, каолины и др.), металлургических шлаков (шлаковая вата), отходов стекла (стекловата). Вид сырья определяет температуростойкость ваты, так у базальтовой ваты: она составляет до 1000

0С, а у стекловаты – 550-6500С.

Для получения изделий волокна скрепляют с помощью связующего вещества, в качестве которого обычно используют синтетические смолы и битумы. Минераловатные изделия (плиты, цилиндры, полуцилиндры) на синтетическом связующем можно использовать для изоляции горячих поверхностей до 4000С, а на битумном – от минус 100 до плюс 600С. Прошивные маты из минеральной ваты не содержат связующего и сохраняют форму за счет механического переплетения волокон и дополнительной прошивки слоя волокнистого материала стальной проволокой, стеклянными нитями и др. Отсутствие органического связующего позволяет применять их при температуре изолируемых поверхностей до 7000С.

Пеностекло – материал ячеистой структуры с равномерно распределенными замкнутыми порами размером 0,1-5 мм. Его получают из смеси тонкоизмельченного стеклянного порошка (обычно используется стеклобой) с газообразователем.

По сочетанию свойств пеностекло можно отнести к лучшим теплоизоляционным материалам: при плотности 150-400 кг/м3 его теплопроводность составляет 0,06-0,12 Вт/(м.0С), прочность на сжатие – 1-3 МПа, интервал рабочих температур – от минус 200 до плюс 5000С. Пеностекло имеет очень низкое водопоглощение 2-5% и паронепроницаемость. Ячеистое стекло легко обрабатывается (пилится, сверлится), хорошо сцепляется с цементными материалами. Его можно с успехом применять как в индивидуальном строительстве, так и для тепловой изоляции конструкций и огнезащиты в высотном домостроении.

Ячеистые бетоны – наиболее перспективный вид теплоизоляционных бетонов. Применяют ячеистые бетоны в основном в виде камней правильной формы, заменяющих 8-16 кирпичей. Материал легко обрабатывается, негорючий, долговечный. Изделия из ячеистого бетона применяют для изоляции строительных конструкций и горячего промышленного оборудования с температурой до 4000С. Широкому распространению ячеистых бетонов препятствует высокое водопоглощение и гигроскопичность.

Основные виды органических теплоизоляционных материалов. Ячеистые пластмассы – высокопористые материалы (пористость 90-98%) с преимущественно замкнутыми порами. Газонаполненные пластмассы характеризуются высокой теплоизолирующей способностью (теплопроводность у разных видов пластмасс – 0,028-0,043 Вт/(м.0С)), низкой плотностью (марки – от 15 до 50), обладают малым расходом полимерного сырья при достаточной прочности. Недостатки пластмасс описаны в главе 9.

Наиболее известный вид строительных пенопластов – пенополистирол. Из беспрессового пенополистирола получают крупноразмерные плиты, применяемые для тепловой изоляции стен, когда необходима паропроницаемость всей конструкции. Прессовый (экструзионный) пенополистирол вследствие особенностей технологии имеет плотные «корки» на обеих поверхностях плит и полностью замкнутую пористость. Он рекомендуется для тепловой изоляции конструкций, где возможен контакт с водой и не нужна паропроницаемость (например, стены подвалов).

Пенополивинилхлорид применяется для теплоизоляции кровельных конструкций. Пенополиэтилен – относительно новый вид строительных пенопластов, изготавливается в виде листового рулонного материала. Дублированный алюминиевой фольгой используется в качестве отражающей теплоизоляции, а в виде трубок – применяется для изоляции трубопроводов и герметизации стыков в панельных зданиях. Заливочные пенопласты – жидко-вязкие олигомерные смолы, заливаемые в пазухи, оставленные в изолируемой конструкции, вспучивающиеся и отверждающиеся прямо в них.

Материалы на основе древесного сырья: изоляционные древесно-волокнистые плиты (ДВП), фибролит, арболит. ДВП – листовой материал, состоящий из древесных или растительных волокон, получаемых из отходов деревообработки, неделовой древесины, а также костры, камыша, хлопчатника и др. При изготовлении плит вводят специальные добавки: водные эмульсии синтетических смол, антипирены, антисептики. Средняя плотность плит 150-350 кг/м3, теплопроводность 0,046-0,093 Вт/(м.0С), предел прочности при изгибе – 0,4-2 МПа. Большие размеры плит (длина до 3 м, ширина до1,6 м) ускоряют проведение строительно-монтажных работ. Их применяют для тепло- и звукоизоляции стен и перекрытий, устройства подстилающих слоев в конструкциях полов и т.п.

Фибролит – плитный материал, изготавливаемый из древесной шерсти (длинная стружка) и неорганического вяжущего (портландцемента или магнезиального вяжущего). Фибролит применяют для изоляции перекрытий, перегородок, каркасных стен с последующим оштукатуриванием. Арболит – разновидность легкого бетона на заполнителях из древесных отходов.

Целлюлозная вата (эковата) – волокнистый материал серого цвета, изготавливаемый из макулатуры. Это тонкоизмельченная газетная бумага, обработанная модифицирующими борными добавками, антисептиками и антипиренами. Эффективным методов устройства теплоизоляции из эковаты является ее напыление компрессором на вертикальные, наклонные и горизонтальные потолочные поверхности совместно с клеевым составом. Получается сплошной (без швов и стыков) теплоизоляционный слой, плотно прилегающий к изолируемой поверхности.

Вопросы для самоконтроля к главе 10

1. Какие материалы называют теплоизоляционными? В чем их назначение?

2. Какова эффективность применения теплоизоляционных материалов?

3. По каким признакам классифицируют теплоизоляционные материалы? Каковы особенности их структуры?

4. Какими способами получают материалы высокопористого строения?

5. Каковы основные свойства теплоизоляционных материалов?

6. От каких факторов зависит теплопроводность материала?

7. Что такое марка теплоизоляционного материала?

8. Назовите и кратко охарактеризуйте основные виды неорганических и органических теплоизоляционных материалов.

Ключевые физические свойства изоляционных материалов — Red Seal Electric Company

Все, от промышленных печей до смартфонов, нуждается в защите для обеспечения безопасности людей. Однако работа с непредсказуемыми элементами и опасными материалами создает опасную среду, в которой люди могут серьезно пострадать. Вот где на помощь приходит изоляция. Вот основные физические свойства изоляционных материалов.

Изоляционные свойства

Первое, что вам нужно понять о свойствах изоляторов, это то, как именно они изолируют. Нужна ли вам защита от тепла или электричества, вы должны знать способность материала предотвращать поток этих элементов.

Теплопроводность

Теплопроводность, как следует из названия, измеряет, насколько хорошо предмет пропускает через себя тепло. Когда два объекта соприкасаются, тепло передается между ними, даже если это номинальное количество. Вспомните случай, когда вы прикоснулись к кубику льда. Первое, что вы почувствовали, был обжигающий холод льда на вашей коже — лед передал вам свою низкую температуру при контакте. Тем не менее, если вы продолжите держать лед, тепло вашего тела передастся ему и расплавит кубик в воду.

Теплопроводность работает одинаково во всех сценариях — тепло передается между твердыми, жидкими и газообразными объектами, находящимися в контакте. Разница только в том, насколько быстро. Некоторые теплоизоляторы обладают относительно высокой теплопроводностью и не могут долго удерживать тепло. Другие физические свойства изоляционных материалов могут позволить им долгое время сопротивляться теплопередаче, удерживая тепло в нужной области.

Температурные пределы

По определению, теплоизолятор должен взаимодействовать с высокими температурами. Тем не менее, у каждого предмета есть температура плавления, хотя она может быть невероятно высокой. При оценке свойств изоляторов необходимо учитывать пределы рабочей температуры материала. Если пенопласт продолжает плавиться при вашей текущей рабочей температуре, возможно, пришло время для более качественных изделий, которые могут удовлетворить ваши производственные потребности.

Электропроводность

Изоляция применяется не только для управления теплом; электричество тоже должно оставаться на своем месте. Электропроводность описывает способность электричества проходить через объект. Высокая электропроводность означает, что объект позволяет электричеству проходить через него. Такие предметы, как медные провода и сверхпроводники, должны пропускать электричество.

Однако электрическая проводимость электроизоляционных материалов должна быть достаточно низкой. Эти изоляторы должны удерживать электрический ток в установленных границах; в противном случае свободное электричество могло бы течь свободно. Электрическая изоляция снижает вероятность поражения электрическим током и электрических пожаров, повышая безопасность всех людей и машин, находящихся поблизости.

Диэлектрическая прочность

Электрическая изоляция может выдерживать сильные токи протекающего электричества. Однако у изоляторов есть точка пробоя, когда их электроны изгибаются по воле тока и становятся проводящими. Диэлектрическая прочность изолятора описывает это явление и то, какое напряжение может выдержать материал.

Диэлектрическая прочность имеет решающее значение для измерения для каждого материала, поскольку она напрямую влияет на область применения. Если вам нужен изолятор, выдерживающий десять киловольт на миллиметр, вы не можете использовать материал, который станет проводящим при восьми. Таким образом, диэлектрическая прочность — отличный способ сравнить материалы и найти то, что подходит для вашего промышленного использования.

Структурные особенности

Хотя каждый изолятор связан с тем, от чего он изолирует, существуют и другие свойства, определяющие его пригодность для использования. Эти дополнительные структурные особенности имеют решающее значение для оценки перед внедрением материала.

Плотность

Плотность материала определяет скорость движения электричества или тепла через него. Представьте себе источник тепла, пытающийся согреть вашу руку на другой стороне листа бумаги. Тепло будет проходить через этот тонкий объект с низкой плотностью довольно быстро, и вы почти сразу почувствуете тепло. Но замените бумагу куском полированного бетона высокой плотности, и вам понадобится некоторое время, чтобы что-то почувствовать. Это связано с тем, что количество вещества на единицу объема в предмете является определяющим фактором скорости диффузии.

Огнестойкость

В ситуациях, связанных с теплом или электричеством, пожар может начаться в любой момент. Молекулы, которые нагреваются, нуждаются только в малейшем толчке, чтобы создать полноценное пламя. Огнестойкость является важным показателем для инженеров. Класс огнестойкости материала определяет область применения.

Воспламеняемость материала является серьезной проблемой для безопасности рабочих на промышленном объекте. Поэтому одним из наиболее важных свойств изоляторов является огнестойкость, так как это помогает защитить вашу рабочую силу. Материалы с низкой температурой размягчения могут либо расплавиться, либо загореться при воздействии чрезвычайно высоких температур. Если легковоспламеняющийся материал изолирует от сильного тепла, это может привести к пожару, угрожающему жизни местного персонала.

Паропроницаемость

Во многих тепловых процессах участвует вода. По крайней мере, испарение воды в сырье. Когда твердые предметы нагреваются, любые внутренние газы и жидкости также нагреваются. Нередко водяной пар поднимается из сырья во время обработки продукта. Для того чтобы учесть это, утеплители должны обладать определенной паропроницаемостью.

Теплоизолятор по-прежнему будет удерживать тепло в своих пределах, но пары, циркулирующие внутри, — это совсем другое дело. Если свойства изоляторов включают материал с высокой паропроницаемостью, он позволит любой захваченной воде через его поры выйти во внутреннюю камеру. Это идеально подходит для процессов, требующих полностью сухого конечного продукта. Непроницаемый изолятор ничего не пропускает — тепло или жидкость. Инженеры должны учитывать это явление во время работы, чтобы избежать нежелательного накопления воды.

Тепловое расширение

Предположим, вы устанавливаете теплоизоляционный лист в ограниченном пространстве для сохранения тепла в закрытом помещении. Хотя вам понадобится плотно закрытая область, которая удерживает тепло, вам также нужно место для предметов, которые расширяются при нагревании. Важно отметить, что тепловое сопротивление теплоизолятора будет влиять на то, насколько на самом деле нагревается материал, влияя на величину его расширения.

Но при определенных условиях изолятор, который слишком сильно расширяется в присутствии тепла, может поставить под угрозу систему или устройство. Статистика теплового расширения жизненно важна для успешного внедрения нового изоляционного материала.

Помните об основных физических свойствах изоляционных материалов, когда будете искать следующее решение для своих нужд обработки и производства. Если у вас есть какие-либо вопросы об изоляционных материалах, свяжитесь с нашей командой в Red Seal Electric Company сегодня.

Свойства изоляционных материалов | Характеристики

Теплоизоляция основана на использовании веществ с очень низкой теплопроводностью и низким поверхностным коэффициентом излучения. Важно отметить, что факторы, влияющие на производительность, могут изменяться с течением времени по мере изменения возраста материала или условий окружающей среды. Ключ свойства изоляционных материалов :

  • Теплопроводность. Теплопроводность , измеряемая в Вт/мК, описывает, насколько хорошо материал проводит тепло. Обратите внимание, что закон Фурье применим ко всей материи, независимо от ее состояния (твердое, жидкое или газообразное). Поэтому он также определен для жидкостей и газов. Это количество тепла (в ваттах), передаваемое через квадрат материала заданной толщины (в метрах) из-за разницы температур. Чем ниже теплопроводность материала, тем больше способность материала сопротивляться теплопередаче и, следовательно, выше эффективность изоляции. Как правило, газы имеют низкую теплопроводность (например, воздух имеет 0,025 Вт/мК), а металлы — высокие значения (например, медь имеет 400 Вт/мК). Обычно используемые изоляторы, как правило, имеют теплопроводность от 0,019Вт/мК и 0,046 Вт/мК.
  • Значение R – тепловое сопротивление. Значение R (коэффициент теплоизоляции) является мерой теплового сопротивления. Чем выше значение R, тем выше эффективность изоляции. Теплоизоляция имеет единицы [(м 2 .K)/Вт] в единицах СИ или [(ft 2 ·°F·ч)/БТЕ] в имперских единицах. Это тепловое сопротивление единицы площади материала. Значение R зависит от типа изоляции, ее толщины и плотности. Для определения теплопередачи необходимы площадь и разность температур. В строительной отрасли используются единицы, такие как Значение R (сопротивление) , которое выражается как толщина материала, приведенная к коэффициенту теплопроводности. В однородных условиях это отношение разности температур на изоляторе и плотности теплового потока через него: R(x) = ∆T/q. Чем выше значение R, тем больше материал препятствует передаче тепла. Как видно, сопротивление зависит от толщины изделия.
  • Коэффициент теплопередачи – коэффициент теплопередачи.   Коэффициент теплопередачи описывает, насколько хорошо материал проводит тепло. Коэффициент пропускания тепла является обратным значением R (т. е. 1/R), и чем ниже значение U, тем лучше изоляция. Значение U определяется выражением, аналогичным закону охлаждения Ньютона.
  • Излучательная способность поверхности. Как было написано, теплообмен через любую из этих изоляционных систем может включать несколько режимов: теплопроводность через твердые материалы, теплопроводность или конвекция по воздуху в пустотах и ​​обмен излучением между поверхностями твердой матрицы. Поэтому коэффициент излучения материала также играет очень важную роль. Коэффициент излучения, ε , поверхности материала представляет собой его эффективность в испускании энергии в виде теплового излучения и варьируется от 0,0 до 1,0. Излучательная способность – это просто коэффициент, на который мы умножаем теплопередачу черного тела, чтобы считать, что черное тело является идеальным случаем. Поверхность черного тела излучает тепловое излучение со скоростью примерно 448 Вт на квадратный метр при комнатной температуре (25 ° C, 298,15 K). Реальные объекты с коэффициентом излучения менее 1,0 (например, алюминиевая фольга) излучают излучение с соответственно более низкой мощностью (например, 448 x 0,07 = 31,4 Вт/м 9 ).0076 2 ).
  • Огнестойкость . Теплоизоляционные материалы должны иметь класс огнестойкости, и эта классификация важна, поскольку она может повлиять на применение изоляционных материалов. Обычно за классификацией огнестойкости следует ограничение времени в минутах 15, 30, 45, 60, 90, 120, 180, 240 или 360, которое показывает время, в течение которого критерии эффективности выполняются во время стандартного испытания на огнестойкость.

Изоляционные материалы

Как было написано, теплоизоляция основана на использовании веществ с очень низкой теплопроводностью . Эти материалы известны как изоляционные материалы . Распространенными изоляционными материалами являются шерсть, стекловолокно, минеральная вата, полистирол, полиуретан, гусиное перо и т. д. Поэтому эти материалы очень плохо проводят тепло и являются хорошими теплоизоляторами.

Следует добавить, что теплоизоляция в первую очередь основана на очень низкой теплопроводности газов. Газы обладают плохой теплопроводностью по сравнению с жидкостями и твердыми телами и, таким образом, являются хорошим изоляционным материалом, если их можно уловить (например, в пенообразная структура ). Воздух и другие газы обычно являются хорошими изоляторами. Но главное преимущество в отсутствии конвекции . Таким образом, многие изоляционные материалы (например, полистирол) функционируют просто за счет наличия большого количества заполненных газом карманов, которые предотвращают крупномасштабную конвекцию . Во всех типах теплоизоляции удаление воздуха из пустот еще больше снижает общую теплопроводность изолятора.

Чередование газового кармана и твердого материала вызывает передачу тепла через много интерфейсов, вызывает быстрое снижение коэффициента теплопередачи.

Следует отметить, что потери тепла от более горячих объектов происходят по трем механизмам (по отдельности или в комбинации):

  • Теплопроводность
  • Тепловая конвекция
  • Тепловое излучение 90,072 90,072 не обсуждали тепловое излучение  как способ потери тепла . Радиационный теплообмен опосредуется электромагнитным излучением , и, следовательно, не требует никакой среды для передачи тепла. Передача энергии излучением происходит быстрее всего (со скоростью света) и не испытывает затухания в вакууме. Любой материал с температурой выше абсолютного нуля выделяет некоторое количество лучистой энергии . Большая часть энергии этого типа находится в 90 061 инфракрасной области 90 062 электромагнитного спектра, хотя часть ее находится в видимой области. Материалы с низкой излучательной способностью (высокой отражательной способностью) следует использовать для уменьшения этого типа теплопередачи. Отражающая изоляция обычно состоит из многослойных параллельных фольг с высокой отражательной способностью, расположенных на расстоянии друг от друга, чтобы отражать тепловое излучение к их источнику. Коэффициент излучения, ε , поверхности материала представляет собой его эффективность в излучении энергии в виде теплового излучения и варьируется от 0,0 до 1,0. Как правило, полированные металлы имеют очень низкий коэффициент излучения и поэтому широко используются для отражения лучистой энергии к ее источнику, как в случае с одеялами первой помощи .

    Критическая толщина изоляции

    В плоской стене, область, перпендикулярная направлению теплового потока, добавление дополнительной изоляции к стене всегда снижает теплопередачу. толще изоляция , меньшая скорость теплопередачи , и это потому, что внешняя поверхность всегда имеет одинаковую площадь .

    Но в цилиндрических и сферических координатах добавление изоляции также увеличивает внешнюю поверхность , что снижает сопротивление конвекции на внешней поверхности. Более того, в некоторых случаях уменьшение сопротивления конвекции из-за увеличения площади поверхности может оказаться более важным, чем увеличение сопротивления проводимости из-за более толстой изоляции. В результате общее сопротивление может уменьшиться, что приведет к увеличению теплового потока.

    Толщина , до которой тепловой поток увеличивается и после которой тепловой поток уменьшается, называется критической толщиной . В случае цилиндров и сфер он называется критическим радиусом . Критический радиус изоляции может быть получен в зависимости от теплопроводности изоляции k и коэффициента теплопередачи внешней конвекции h.

    См. также:  Критический радиус изоляции

    Пример – теплопотери через стену

    Основным источником теплопотерь дома являются стены. Рассчитайте скорость теплового потока через стену 3 м х 10 м на площади (А = 30 м 2 ). Стена имеет толщину 15 см (L 1 ) и выполнена из кирпича с теплопроводностью k 1 = 1,0 Вт/м.К (плохой теплоизолятор). Предположим, что температура внутри и снаружи помещения составляет 22°С и -8°С, а коэффициенты конвективной теплоотдачи на внутренней и внешней сторонах равны h 1 = 10 Вт/м 2 К и ч 2 = 30 Вт/м 2 К соответственно. Обратите внимание, что эти коэффициенты конвекции сильно зависят от внешних и внутренних условий (ветер, влажность и т. д.).

    1. Рассчитайте тепловой поток ( потери тепла ) через эту неизолированную стену.
    2. Теперь предположим теплоизоляцию на внешней стороне этой стены. Использовать утеплитель из пенополистирола толщиной 10 см (L 2 ) с теплопроводностью k 2 = 0,03 Вт/м·К и рассчитайте тепловой поток ( потери тепла ) через эту композитную стену.

    Решение:

    Как уже было сказано, многие процессы теплопередачи включают составные системы и даже включают комбинацию теплопроводности и конвекции. Часто бывает удобно работать с общим коэффициентом теплопередачи , , известным как U-фактор с этими композитными системами. U-фактор определяется выражением, аналогичным Закон охлаждения Ньютона :

    Общий коэффициент теплопередачи связан с общим тепловым сопротивлением и зависит от геометрии задачи.

    1. голая стена

    Предполагая одномерную теплопередачу через плоскую стенку и пренебрегая излучением, общий коэффициент теплопередачи можно рассчитать как:

    Общий коэффициент теплопередачи Тогда 0062 равно:

    U = 1 / (1/10 + 0,15/1 + 1/30) = 3,53 Вт/м 2 К

    Тогда тепловой поток можно рассчитать просто как: Вт/м 2 К] x 30 [К] = 105,9 Вт/м 2

    Общие потери тепла через эту стену составят:

    q потери = q . A = 105,9 [Вт/м 2 ] x 30 [м 2 ] = 3177 Вт

    1. композитная стена с теплоизоляцией

    Предполагая одномерную теплопередачу через плоскую композитную стену, контактное тепловое сопротивление отсутствует , и пренебрегая излучением, общий коэффициент теплопередачи можно рассчитать как:

    Тогда общий коэффициент теплопередачи равен:

    U = 1 / (1/10 + 0,15/1 + 0,1/0,03 + 1/30) = 0,276 Вт/м 2 К

    Тогда тепловой поток можно рассчитать просто как:

    q = 0,276 [Вт/м 2 К] x 30 [К] = 8,28 Вт/м потери тепла через эту стену составят:

    q потери = q . А = 8,28 [Вт/м 2 ] x 30 [м 2 ] = 248 Вт

    Как видно, добавление теплоизолятора приводит к значительному снижению тепловых потерь. Необходимо добавить, что добавление очередного слоя теплоизолятора не дает столь высокой экономии. Это лучше видно из метода теплового сопротивления, который можно использовать для расчета теплопередачи через композитные стены . Скорость устойчивого теплообмена между двумя поверхностями равна разности температур, деленной на общее тепловое сопротивление между этими двумя поверхностями.

     

    Ссылки:

    Теплопередача:

    1. Основы тепломассообмена, 7-е издание. Теодор Л. Бергман, Эдриенн С. Лавин, Фрэнк П. Инкропера. John Wiley & Sons, Incorporated, 2011. ISBN: 9781118137253.
    2. Тепло- и массообмен. Юнус А. Ценгель. McGraw-Hill Education, 2011. ISBN: 9780071077866.
    3. Министерство энергетики, термодинамики, теплопередачи и потока жидкости США. Справочник по основам Министерства энергетики, том 2 из 3. Май 2016 г.

    Ядерная и реакторная физика:

    1. Дж. Р. Ламарш, Введение в теорию ядерных реакторов, 2-е изд. , Addison-Wesley, Reading, MA (1983).
    2. Дж. Р. Ламарш, А. Дж. Баратта, Введение в ядерную технику, 3-е изд., Prentice-Hall, 2001, ISBN: 0-201-82498-1.
    3. WM Стейси, Физика ядерных реакторов, John Wiley & Sons, 2001, ISBN: 0-471-39127-1.
    4. Гласстоун, Сезонске. Разработка ядерных реакторов: разработка реакторных систем, Springer; 4-й выпуск, 1994, ISBN: 978-0412985317
    5. WSC Уильямс. Ядерная физика и физика элементарных частиц. Кларендон Пресс; 1 издание, 1991 г., ISBN: 978-0198520467
    6. Г. Р. Кипин. Физика ядерной кинетики. Паб Эддисон-Уэсли. Ко; 1-е издание, 1965 г.
    7. Роберт Рид Берн, Введение в работу ядерных реакторов, 1988 г.
    8. Министерство энергетики, ядерной физики и теории реакторов США. Справочник по основам Министерства энергетики, том 1 и 2. Январь 1993 г.
    9. Пол Ройсс, Нейтронная физика. EDP ​​Sciences, 2008. ISBN: 9.78-2759800414.

    Advanced Reactor Physics:

    1. К.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *