Теплоизоляционные материалы: Теплоизоляционные материалы виды и свойства

Содержание

Теплоизоляционные материалы виды и свойства

Все виды материалов для теплоизоляции

Строительная индустрия предлагает множество различных видов теплоизоляционных материалов. Несмотря на разнообразие, их можно разделить на несколько основных типов. Наиболее применяемые материалы для теплоизоляции:

  • минераловатные утеплители;
  • пенополистирол и его экструдированная модификация;
  • вспененный полиэтилен с металлизированным покрытием;
  • пенополиуретан.

Каждый из перечисленных вариантов утепления имеет свои сильные и слабые стороны и оптимальную область применения.

Свойства минераловатных утеплителей

Минеральная вата является современной модификацией стекловаты и лишена многих недостатков последней. Она производится из отходов металлургической промышленности с добавлением обработанных базальтовых пород. Выпускается в виде матов и рулонов различных размеров.

К минусам минераловатных утеплителей следует отнести значительный удельный вес, постепенное проседание под действием собственной тяжести и «пыление» при монтаже.

Эти материалы для теплоизоляции имеют следующие достоинства:

  • высокая теплоизолирующая способность;
  • хорошее шумопоглощение;
  • огнестойкость;
  • невысокая стоимость.

Широко применяются при утеплении полов, стен, крыш, чердачных и подвальных помещений. Используются в качестве теплоизолятора систем вентилируемых фасадов.

Пенополистирол – характристики утеплителя

Представляет собой вспененный полимерный материал с высокими теплоизолирующими характеристиками. Применяется, как и базальтовые утеплители, при обработке всех конструкционных элементов дома.

Положительные отличия:

  • малый вес;
  • высокая звукоизоляция;
  • хорошая пароизоляция и стойкость к сжатию;
  • устойчивость к действию влаги, химических и биологических факторов;
  • простота монтажа.

Недостатки: хрупкость, низкая огнестойкость и способность выделять токсичные соединения при возгорании.

    В продаже имеется экструдированный аналог ППС, обладающий лучшими характеристиками по плотности, пластичности и влагоустойчивости. Экструдированный пенополистирол – современный утеплительный материал. Он более долговечен и стабилен, удобен в обработке, но стоимость его выше, чем обычного пенопласта. Области    применения обеих разновидностей аналогичны.            

Вспененный пенополиэтилен

Современный теплоизолятор, состоящий из вспененного полиэтилена и алюминиевой фольги. Выпускается множество разновидностей, различающихся по толщине, наличию самоклеящейся пленки и количеству отражающих слоев (их может быть один или два).

    Достоинства утеплителя:

  • Малая толщина при высокой теплоизолирующей способности. Лист пенофола соответствует эффективности минераловатной плиты, превосходящей его по толщине в 20 раз.
  • Хороший пароизолятор;
  • Защищает от внешнего воздействия влаги и ветра;
  • Универсальность. Благодаря отражающей способности фольги, защищает от всех видов потерь тепла: конвекции, теплопроводности и излучения;
  • Экологическая чистота;
  • Простота раскроя и монтажа.

Успешно используется везде, где востребованы материалы для теплоизоляции: в строительстве, промышленности, автомобилестроении, оборонной сфере. В жилом секторе применяется в качестве изоляции любых элементов зданий, трубопроводов водоснабжения и водоотведения, систем вентиляции и кондиционирования. Незаменим как отражатель, устанавливаемый между радиатором отопления и стеной.

Минусом можно считать высокую цену утеплителя.

Пенополиуретан для теплоизоляции

Прогрессивный метод утепления, заключающийся в напылении жидкого состава на утепляемую поверхность. Затвердевший и расширившийся полимер создает надежную защиту от холода. Такие материалы для теплоизоляции как вспененный полиэтилен и пенополиуретан являются самыми эффективными техническими решениями.

    К достоинствам ППУ относятся:

  • низкая теплопроводность;
  • бесстыковая технология, не образующая мостиков холода;
  • хорошая адгезия к большинству строительных материалов;
  • доступность самых сложных мест;
  • антикоррозионные свойства;
  • устойчивость к действию влаги, грибков и плесени;
  • шумозащитные свойства;
  • долговечность.

Слабым местом является неустойчивость к прямому действию солнечных лучей. Предотвратить это можно окрашиванием, либо использованием ППУ в качестве теплоизолятора в навесных фасадах.  Поэтому пенополиуретан применяется везде, где и перечисленные выше материалы.   

Нанесение пенополиуретана производится с помощью сложного оборудования, работающего под высоким давлением, и с использованием дорогостоящих компонентов. Производить эти работы могут только квалифицированные специалисты. Это объясняет дороговизну данного метода.

Представленные выше технологии – далеко не все варианты утепления жилых домов. Существуют и другие материалы для теплоизоляции: керамзит, утеплительная штукатурка, вспененный каучук, перлит, утеплитель из переработанных конопли и льна, нетканое изоляционное волокно, пеностекло и прочие. На них приходится менее 5% от общего объема применяемых теплоизоляторов. Основные виды используемых материалов были рассмотрены выше.

Материалы для теплоизоляции – это изделия для проведения строительства, которые имеют низкий уровень теплопроводности. Они предназначены для утепления зданий, технической изоляции и защиты холодных камер от нагревания.

Чтобы определиться с выбором материала для теплоизоляции, необходимо знать её свойства и характеристики. Важно, чтобы материал обладал низкой теплопроводностью. Последняя обеспечивается за счёт движения молекул, которые переносят тепло. Теплоизоляционные материалы способствуют замедлению их движения.

Важные свойства утеплительных материалов

Теплоизоляторами называются строительные материалы с невысоким коэффициентом тепловодности. В случае, если теплоизоляция используется для внутреннего удержания тепла в здании, материалы носят название утеплители.

Материалы для теплоизоляции должны обладать рядом свойств:

  • низкая теплопроводность;
  • пористая структура;
  • плотность;
  • паропроницаемость;
  • водопоглащение;
  • биоустойчивость;
  • огнеупорность;
  • пожаробезопасность;
  • устойчивость температуры;
  • теплоёмкость;
  • морозостойкость.

Распространённые виды утеплителя

Разновидностей материалов для теплоизоляции довольно много, один из них – это утеплитель с волокнистой структурой, к которому относится минеральная вата. Она обладает высокой пористостью, примерно 95% её объёма составляет воздух. Именно поэтому минеральная вата обладает хорошими теплоизоляционными свойствами и её часто используют для утепления зданий. Её производство довольно доступное, а значит и цена тоже. К преимуществам минеральной ваты относят:

  • не удерживает в себе влагу;
  • не поддаётся горению;
  • обеспечивает шумоизоляцию;
  • долгий срок эксплуатации.

Стоит отметить, что при попадании влаги на материал, он теряет свои теплоизоляционные свойства. При монтаже минеральной ваты необходимо использовать гидро- и пароизоляционную плёнку.

Стекловата производится из волокон, которые получают из кварцевого песка, соды, и извести. Материалы для теплоизоляции можно приобрести в виде рулона, плиты или скорлупы.

По своим характеристикам она напоминает минеральную вату, но немного прочнее и в большей мере гасит шум. Из недостатков – низкий уровень температурной устойчивости.

Пеностекло изготавливают при помощи спекания газообразователей со стеклянным порошком, он выпускается в виде плит или блоков. Его структура имеет пористость до 95%, что обеспечивает отличные теплоизоляционные свойства. Пеностекло – довольно прочный материал для теплоизоляций, обладающий такими характеристиками:

  • морозостойкость;
  • водостойкость;
  • несгораемость;
  • прочность;
  • длительный срок службы.

Недостатки – высокая цена и паронепроницаемость

Целлюлозная вата – древесноволокнистый материал с мелкозернистой структурой, который на 80% состоит из волокон древесины, на 12% – из антипирена и на остальные 8% – из антисептика. Материал для теплоизоляции укладывают двумя методами: сухим и мокрым. Для мокрого метода укладки используют специальную установку, с помощью которой выдувают влажную целлюлозную вату.

Таким образом, активируются клейкие свойства пектина. Сухой метод можно осуществить вручную или при помощи специального оборудования. Целлюлозная вата засыпается и трамбуется до определённой плотности. Вата довольно доступна и обладает хорошими утеплительными свойствами.

Материалы для теплоизоляции довольно разнообразны, поэтому необходимо изучить из свойства, чтобы определиться с выбором. Ведь для каждого здания требуется определённый материал.

Теплоизоляционные материалы: виды и свойства

Среди разнообразия материалов для утепления жилища выбрать нужный вариант бывает совсем непросто. Каждый из них зачастую разделяется несколько видов с присущими ему уникальными характеристиками. Сравнительный анализ может занять продолжительное время, поэтому представление об общих свойствах того или иного утеплителя поможет если не окончательно определиться с выбором, то хотя бы подскажет, в каком направлении следует двигаться.

В статье речь пойдет о строительных теплоизоляционных материалах.

Содержание:

  1. Теплоизоляционные материалы виды и свойства

 

Теплоизоляционные материалы виды и свойства

Пенопласт

Один из наиболее популярных теплоизоляционных материалов для стен – это пенопласт. Он относится к категории недорогих утеплителей и прочно занимает в ней лидирующие позиции. Надо сказать, что это полностью оправдано. Его эффективность подтверждена достаточным количеством строений как жилого, так и промышленного назначения.

Итак, среди его положительных характеристик особо выделяется:

  • цена. Затраты на производство минимальны. Расход материала (в сравнении с популярной минватой) в полтора раза меньше;
  • простота монтажа. Пенопласт не потребует сооружения обрешеток и направляющих. На стену он монтируется посредством приклеивания;
  • универсальность. Правильно подобранный вид утеплителя позволит создать надежный теплозащитный барьер пола, фасада, стен, перекрытий между этажами, кровли, потолка.

Он эффективно справляется с защитой от холода жильцов каркасных домов, закладывается внутрь полых кирпичных стен.

Показатели в зависимости от классификации удобнее всего рассмотреть в таблице. Разделение основано на таком показателе, как плотность.

Характеристики Марки пенопласта Примечания
ПСБ С 50 ПСБ С 35 ПСБ С 25 ПСБ С 15
Плотность (кг/м³) 35 25 15 8 Повышенной плотностью обладают виды ПС – 4, ПС – 1 
Стойкость на излом (МПа) 0,30 0,25 0,018 0,06  
Стойкость к сжатию (МПа) 0,16 0,16 0,08 0,04  
Способность впитывать влагу (%) 1 2 3 4 При полном погружении на срок 24 часа
Теплопроводность (Вт/мк) 0,041 0,037 0,039 0,043  
Время самозатухания (сек. ) / класс горючести 3

 

 

Г 3

1

 

 

Г 3

1

 

 

Г 3

4

 

 

Г 3

При условии отсутствия прямого контакта с открытым пламенем

Нормально горючие

Коэффициент паропроницаемости (мг) 0,05 0,05 0,05 0,05  

Все описанные виды допустимо эксплуатировать при температуре от – 60 до + 80°C.

Материал класса ПС производится с применением прессования, что придает ему повышенную плотность (от 100 до 600 кг/м³). Он с успехом применяется как утеплитель цементных полов и там, где на основание предполагаются значительные нагрузки. Остальные технические характеристики в целом совпадают с вышеприведенными данными по другим видам пенопласта.

Конечно, по некоторым цифрам и коэффициентам у пенопласта имеются расхождения, например, с более современным вспененным полистиролом или пенофолом, но разница настолько незначительна, что будет абсолютно не ощутима жильцам дома.

Поэтому сильными сторонами пенопласта по праву считаются:

  • небольшой коэффициент теплопроводнрости, позволяющий сохранять тепло в строениях из любого вида материала от кирпича до газосиликатных блоков;

  • структура ячеек у пенопласта – закрытая, поэтому он крайне плохо впитывает в себя жидкость. Для утеплителя это крайне важный показатель, ведь при наборе воды он теряет свои теплосберегающие свойства. Подвалы, цокольные этажи, имеющие прямой контакт (или угрозу такового) с грунтовыми водами с успехом утепляются при помощи пенопласта;
  • шумоизоляция идет как приятное дополнение к функции уменьшения теплопотерь. Воздух, скрытый в запечатанных ячейках материала успешно гасит даже самые интенсивные звуковые волны, передаваемые в пространстве. Для того чтобы создать барьер для ударного шума, одним пенопластом обойтись не получится;
  • стойкость  к воздействию спиртов, щелочных и солевых растворов, водоэмульсионных красок у этого материала «развита» на высоком уровне. Помимо этого его не выбирают в качестве достойной среды обитания грибки и плесень. Стоит отметить, что грызуны наоборот, очень любят пенопласт и часто предпочитают в нем поселиться. Борьба с ними любыми доступными средствами не позволит непрошеным соседям портить утеплитель;
  • экологическая безопасность. Никаких вредных веществ пенопласт из себя не выделяет. Современный стандарт этого утеплителя – полное соответствие санитарным нормам;
  • в качестве дополнительной защиты от горения, на стадии производства к основным ингредиентам добавляют антипирены, призванные увеличивать огнеупорность пенопласта. А если прямой контакт с огнем отсутствует, то он сам затухает за небольшой промежуток времени. Но, справедливости ради, стоит отметить, что он все-таки считается горючим материалом;
  • потери вышеперечисленных свойств не случится, даже если будет кратковременный контакт с источником тепла до 110°, а вот длительное воздействие более 80° C повлечет деформацию и утрату характеристик.

Описанные температурные режимы относятся к разряду аномалий, и не встречаются с регулярной частотой, так что делать их основным мотивом для отказа от использования пенопласта нецелесообразно.

Плиты пеноплекс

Вспененный полистирол, пенополистирол, экструзионный полистирол – все это название одного и того же материала, продающегося в строительных магазинах как утеплитель пеноплекс.  Он приходится «родственником» привычному для всех пенопласту, считаясь при этом материалом, стоящим на ступеньку выше.

Основное отличие начинается уже на стадии производства, где применяются экструзионные установки. Как результат, мелкоячеистая структура материала обладает большей прочностью, чем его «собрат» пенопласт. Его отличают также прекрасные гидрофобные показатели. В аленьких ячейках надежно запечатан воздух, не позволяющий теплому воздуху покидать помещение, а холодному, наоборот, проникать внутрь.

Основные свойства теплоизоляционного материала:

  • прочность. Она достигается за счет уникальной однородной структуры. При больших нагрузках плита не деформируется, качественно распределяя вес, но при этом легко разрезается строительным ножом на куски нужного размера;
  • экологичность материала доказана многократными исследованиями, он стоек к образованию грибка и плесени, его не любят грызуны. Некоторые виды органических растворителей способны размягчить пеноплекс и нарушить форму и структуру плиты. Поэтому при работе с этим утеплителем рекомендуется избегать контакта с подобными жидкостями;
  • низкая паропроницаемость предполагает четкое соблюдение технологии монтажа и рекомендации по применению, чтобы не создавать парникового эффекта в помещении;

  • срок эксплуатации у плит пеноплекса составляет минимум 50 лет. Это гарантированный отрезок времени, на протяжении которого материал будет обладать своими изначальными характеристиками;
  • коэффициент теплопроводности – главный показатель, по которому вспененный полистирол считается хорошим утеплителем. Низкие значения данного показателя говорят о том, что дом будет надежно защищен от потерь тепла.
  • Типы теплоизоляционного материала пеноплекс и направления их использования достаточно разнообразны (в скобках приведены использовавшиеся раньше и современные названия материала).
  • Утепление фасадов (ПЕНОПЛЕКС 31 или «Стена»). Он изготавливается с добавлением антипиренов. Хорошо применим для цоколей, внутренних и внешних стен, перегородок, фасадов. Его плотность 25-32 кг/м ³, прочность на сжатие – 0,20 МПа.
  • Фундамент (ПЕНОПЛЕКС 35 без добавок для огнестойкости или «фундамент). Помимо вытекающего из названия варианта применения, этот вид широко используется при обустройстве подвалов, отмосток и цоколей. Плотность выражается в показателях 29-33 кг/м ³, а прочность на сжатие 0,27 МПа.
  • Крыши. (ПЕНОПЛЕКС 35 или «Кровля»). Скатная или плоская кровля любого типа может быть утеплена с помощью этого вида пенополистирола. Он достаточно плотный (28 – 33 кг/м ³), чтобы создать эксплуатируемую крышу.
  • Загородные коттеджи, сауны, дома. (ПЕНОПЛЕКС 31 С или «Комфорт»). Универсальный утеплитель. Дома, кровля, стены и цоколи в небольших частных строениях – вот сфера его применения. Показатели плотности – 25-35 кг/м³, прочность – 0,20 МПа.

Вспененный полистирол занимает достойные позиции по популярности благодаря хорошим эксплуатационным показателям.

Теплоизоляционный материал стекловата

Известный не одному поколению строителей утеплитель сегодня претерпел некоторые видоизменения. Но, по сути, остался тем же материалом из расплавленной стекломассы. Песок и вторсырье стеклянного происхождения при температуре свыше 1400 °C  вытягиваются в тонкие волокна, которые формируются в небольшие пучки (при участии связующих компонентов), а затем нагреваются и прессуются в изделие, напоминающее войлок. К потребителю стекловата попадает в матах или рулонах и предназначается для утепления как горизонтальных, так и вертикальных поверхностей.

Она относится к категории минеральных материалов и по-прежнему выпускается в больших объемах, а это свидетельствует о востребованности и наличии значительного числа положительных характеристик, с которыми стоит познакомиться чуть ближе.

  • Хрупкость относится скорее к значительным недостаткам. Чтобы стекловата не разлеталась на составные части при работе, маты и полотна прошивают. Но от мелких разлетающихся во все стороны частиц никое армирование не спасет. Поэтому экипировка у работающего со стекловатой человека должна быть серьезной: хорошо закрывающая тело одежда, маска-респиратор, очки и перчатки.
  • Теплопроводность у материала низкая, но по сравнению с другими материалами аналогичного назначения, она считается высокой.
  • Стоимость стекловаты оставляет ее конкурентоспособной. За счет доступности она востребована, тем более что потери тепла она действительно снижает.
  • Удобство транспортировки и применения. Весят рулоны и маты с материалом мало и упаковки достаточно компактны, чтобы привезти весь объем для утепления дома одним разом. Настилать ее тоже несложно. Единственный нюанс – при утеплении вертикальных оснований она может выпадать из каркаса, потому что достаточно гибкая и малоупругая. Проблема решается сооружением направляющих с меньшим расстоянием, чем ширина мата. Резать по размеру материал легко.
  • Безопасность. Определенные неудобства и вред здоровью стекловата способна причинить только на этапе монтажа. Но при правильной организации труда неприятностей не случится. А после того, как материал заложен в основание и закрыт гипсокартоном, листами ДСП или другими отделочными материалами, никакого вреда человеку он не принесет.
  • Отсутствие грызунов. В силу специфики материала мыши и крысы не облюбуют этот утеплитель для создания в нем уютных нор.
  • Стекловата относится к негорючим материалам.
  • Звукоизоляция при ее применении тоже обеспечивается.

Таким образом, пользоваться стекловатой удобнее всего для утепления пола и перекрытий. Можно проявить сноровку и при отделке стен. Главным недостатком остается вредная пыль, неизбежная при нарезке и раскатке, но для некоторых потребителей небольшая стоимость с лихвой перекрывает этот минус.

Шлаковата

Продолжая разговор о минеральных утеплителях, стоит упомянуть и о шлаковате. Производят ее из доменного шлака. Так как это своего рода отход производства (при выплавке чугуна в доменных печах остается стекловидная масса), то затраты на ее изготовление невелики, а следовательно и цена на готовый утеплитель является вполне доступной.

Шлаковата способна хорошо блокировать тепло в помещениях, но недостатков и ограничений по использованию у нее достаточно, чтобы свести на нет небольшую стоимость и хорошую теплоизоляцию.

  • Итак, шлаковата боится влаги. Применять ее в ванных комнатах или на фасадах неоправданно. При этом она способна окислять различные металлические детали и конструкции, с которыми вступает в непосредственный и длительный контакт.
  • В довершение ко всему этому, она колется и требует применения специальной защиты во время работы. На ее фоне стекловата выглядит гораздо привлекательнее, поэтому шлаковата в современном строительстве применяется крайне редко.
Минеральный теплоизоляционный материал

Базальтовая, каменная, минеральная вата, роквул – под этими названиями чаще всего скрывается один и тот же материал.

  • Его волокна по размеру не уступают шлаковате, но они не доставляют дискомфорта при монтаже. Безопасность в применении – это одно из первых отличительных свойств этого утеплителя из разряда минеральных.

  • Коэффициент теплопроводности этого материала исчисляется от 0,077 до 0,12 Вт/метр-кельвин. Базальтовую вату называют самой лучшей по всем параметрам. Она не содержит дополнительных вредных для здоровья примесей, может выдерживать длительное воздействие крайне высоких и низких температур, удобна в применении.
  • И обычная каменная и базальтовая вата не поддаются горению. Волокна будут только плавиться, спекаться между собой, но не допустят дальнейшего распространения огня.
  • Утеплять каменной ватой можно любые здания, как при постройке с нуля, так и уже достаточно долго находящиеся в эксплуатации. Базальтовый утеплитель не нарушает микроциркуляцию воздуха, а значит, может применяться в тех строениях, где приточная вентиляция не функционирует должным образом.
  • Определенные неудобства для некоторых строителей могут возникнуть с необходимостью возведения фальшстены. Без нее выполнить укладку утеплителя не получится. Но на самом деле технология строительства очень проста, пространства «съедается» не так уж и много.
  • Материал экологически чистый, хорошо подходит и для утепления деревянных домов. Намокать ему категорически запрещается, поэтому гидроизоляционный слой должен быть выполнен по всем требованиям.
  • Рекомендуемая толщина теплоизоляционного материала для средней полосы составляет 15-20 см, в южных регионах достаточно 10 см слоя.

  • Каменная вата хорошо поглощает звук. Это достигается за счет того, что ее волокна располагаются хаотично, а между ними в большом количестве скапливается воздух. Такая структура прекрасно гасит звуки.
  • Описываемый утеплитель химически пассивен. Даже если он будет плотно соприкасаться с металлической поверхностью, то следов коррозии на ней не появится. Гниение и заражение грибками или плесенью каменной вате тоже не свойственно. Грызунов и других вредителей материал не привлекает.
  • Единственным действительно отрицательным моментом ее применения служит достаточно большая стоимость.

Характеристики теплоизоляционных материалов

Эковата

Эковата – это утеплитель, произведенный из макулатуры и различных остатков от изготовления бумаги и картона. Помимо этих компонентов добавляются в состав антисептики и довольно мощный антипирен. Он крайне необходим, ведь судя по тому, что 80% от материала составляет легковоспламеняющаяся целлюлоза, уровень горючести у такого теплоизоляционного изделия достаточно высок.

Эковата не лишена недостатков.

  • Один из них – это ее естественное уменьшение в объеме. Она способна оседать, теряя до 20% от первоначального уровня закладки. Чтобы этого не допустить, эковату используют с избытком. Создание «запаса» восполнит уменьшающийся во время эксплуатации объем.
  • Утеплитель довольно хорошо вбирает в себя влагу. Это напрямую влияет на способность сохранять тепло. Материалу  нужна  возможность отдавать влагу во внешнюю среду, поэтому теплоизоляционный слой должен быть вентилируемым.
  • Для того чтобы осуществить монтаж, потребуется специальное оборудование. Оно представляет собой устройство, которое с равномерной плотностью закачивает утеплитель, исключая его дальнейшую усадку. В связи с этим потребуется помощь наемных специалистов с опытом работы именно с этим видом утеплителя. Влажный способ нанесения, который предполагает такие сложности, открывает еще и перспективу перерыва в строительных работах, пока будет сохнуть эковата (от двух до трех суток).

Существует, конечно, методика сухого утепления, но более качественный результат все-таки у вышеописанного варианта монтажа. Если горизонтальные поверхности можно утеплить, не применяя специального оборудования, то создавая слой теплоизоляции на стенах, без него будет сложно обойтись. Появляется риск неравномерной усадки материала и создание неутепленных полостей.

  • Особенности самого материала не предполагают его самостоятельного (бескаркасного) использования, когда утепление осуществляется при помощи стяжки. В отличие от плит пенополистирола, эковата не обладает для этого достаточной прочностью.
  • Потребуется соблюдать значительные меры предосторожности при ее монтаже:
    • проводить работы вдали от открытого огня;
    • исключить соприкосновение материала с любым источником тепла, который может привести к тлению. То есть при утеплении поверхности рядом с каминной трубой или дымоходом, их потребуется отделить от утеплителя базальтовыми матами с покрытием из фольги или заграждениями из асбестоцемента.

Казалось бы, на фоне таких сложностей, можно сразу отказаться от применения эковаты, но ее положительные стороны для кого-то могут стать мощным стимулом к ее использованию.

  • Материал (даже при учете прибавки на усадку) довольно экономичен.
  • Такой утеплитель экологичен и безопасен для здоровья. Исключение может составлять материал, где в качестве антипирена применялась борная кислота или сульфаты аммония. В этом случае эковату будет отличать резкий и неприятный запах.
  • Она является бесшовным утеплителем, не имеющим мостиков холода. А это значит, что теплопотери в зимний период сократятся до минимума.
  • Материал стоит недорого, позволяя при этом получить хорошую теплоизоляцию.

В качестве звукоизолирующего материала эковата может посоревноваться со многими описанными выше материалами.

Пенополиуретан (ППУ)

Полиэфир с добавлением воды, эмульгаторов и активных реагентов, при воздействии катализатора, образуют вещество со всеми признаками и показателями хорошего теплоизолирующего материала.

Пенополиуретан обладает следующими характеристиками:

  • низкий коэффициент теплопроводности: 0,019 – 0,028 ВТ/метр-кельвин;
  • наносится методом распыления, создавая сплошное покрытие без мостиков холода;
  • легкий вес застывшей пены не оказывает давления на конструкцию;
  • простота применения без каких-либо крепежей дает возможность провести утепление поверхности с любой конфигурацией;
  • долгий срок службы, включающий в себя стойкость к морозам и жаре, любым атмосферным осадкам, гниению;
  • безопасность для человека и окружающей среды;
  • не разрушает металлические элементы конструкции, а напротив, создает для них антикоррозийную защиту.

Стены, пол и потолок – его применение доступно везде. ППУ будет держаться на стекле, дереве, бетоне, кирпиче, металле и даже на окрашенной поверхности. Единственное, от чего стоит защищать пенополиуретан – это от воздействия прямых лучей света.

Виды теплоизоляционных материалов

Рефлекторные теплоизоляционные материалы

Есть группа теплосберегающих материалов, работающих по принципу отражателей. Они функционируют довольно просто: сначала поглощают, а затем отдают назад полученное тепло.

  • Поверхность таких утеплителей в состоянии отразить более 97% дошедшего до их поверхности тепла. Это доступно за чет одного или пары слоев полированного алюминия.
  • Он не содержит примесей, а наносится на слой вспененного полиэтилена для удобства применения.

  • Тонкий на вид материал способен удивлять своими возможностями. Один или двухсантиметровый слой отражающего утеплителя создает эффект, сравнимый с использованием волокнистого изолятора тепла от 10 до 27 см толщиной. Среди наиболее популярных материалов в этой категории можно назвать Экофол, Пенофол, Пориплекс, Армофол.
  • Помимо тепло- и звукоизоляции такие утеплители создают пароизоляционную защиту (и часто применяются в этом качестве).

Вывод достаточно прост: идеального утеплителя не существует. В зависимости от средств, преследуемых целей и личных предпочтений (включая удобство в работе), каждый сможет выбрать для себя оптимальный материал для создания теплого и по-настоящему уютного дома. Но надо помнить, что при использовании на кровле каждого из вышеописанного утеплителя, требуется обязательная гидроизоляция теплоизоляционного материала.

Теплоизоляционные материалы: виды и свойства

Среди разнообразия материалов для утепления жилища выбрать нужный вариант бывает совсем непросто. Каждый из них зачастую разделяется несколько видов с присущими ему уникальными характеристиками. Сравнительный анализ может занять продолжительное время, поэтому представление об общих свойствах того или иного утеплителя поможет если не окончательно определиться с выбором, то хотя бы подскажет, в каком направлении следует двигаться. В статье речь пойдет о строительных теплоизоляционных материалах.

Содержание:

  1. Теплоизоляционные материалы виды и свойства

 

Теплоизоляционные материалы виды и свойства

Пенопласт

Один из наиболее популярных теплоизоляционных материалов для стен – это пенопласт. Он относится к категории недорогих утеплителей и прочно занимает в ней лидирующие позиции. Надо сказать, что это полностью оправдано. Его эффективность подтверждена достаточным количеством строений как жилого, так и промышленного назначения.

Итак, среди его положительных характеристик особо выделяется:

  • цена. Затраты на производство минимальны. Расход материала (в сравнении с популярной минватой) в полтора раза меньше;
  • простота монтажа. Пенопласт не потребует сооружения обрешеток и направляющих. На стену он монтируется посредством приклеивания;
  • универсальность. Правильно подобранный вид утеплителя позволит создать надежный теплозащитный барьер пола, фасада, стен, перекрытий между этажами, кровли, потолка.

Он эффективно справляется с защитой от холода жильцов каркасных домов, закладывается внутрь полых кирпичных стен.

Показатели в зависимости от классификации удобнее всего рассмотреть в таблице. Разделение основано на таком показателе, как плотность.

Характеристики Марки пенопласта Примечания
ПСБ С 50 ПСБ С 35 ПСБ С 25 ПСБ С 15
Плотность (кг/м³) 35 25 15 8 Повышенной плотностью обладают виды ПС – 4, ПС – 1 
Стойкость на излом (МПа) 0,30 0,25 0,018 0,06  
Стойкость к сжатию (МПа) 0,16 0,16 0,08 0,04  
Способность впитывать влагу (%) 1 2 3 4 При полном погружении на срок 24 часа
Теплопроводность (Вт/мк) 0,041 0,037 0,039 0,043  
Время самозатухания (сек. ) / класс горючести 3

 

 

Г 3

1

 

 

Г 3

1

 

 

Г 3

4

 

 

Г 3

При условии отсутствия прямого контакта с открытым пламенем

Нормально горючие

Коэффициент паропроницаемости (мг) 0,05 0,05 0,05 0,05  

Все описанные виды допустимо эксплуатировать при температуре от – 60 до + 80°C.

Материал класса ПС производится с применением прессования, что придает ему повышенную плотность (от 100 до 600 кг/м³). Он с успехом применяется как утеплитель цементных полов и там, где на основание предполагаются значительные нагрузки. Остальные технические характеристики в целом совпадают с вышеприведенными данными по другим видам пенопласта.

Конечно, по некоторым цифрам и коэффициентам у пенопласта имеются расхождения, например, с более современным вспененным полистиролом или пенофолом, но разница настолько незначительна, что будет абсолютно не ощутима жильцам дома.

Поэтому сильными сторонами пенопласта по праву считаются:

  • небольшой коэффициент теплопроводнрости, позволяющий сохранять тепло в строениях из любого вида материала от кирпича до газосиликатных блоков;

  • структура ячеек у пенопласта – закрытая, поэтому он крайне плохо впитывает в себя жидкость. Для утеплителя это крайне важный показатель, ведь при наборе воды он теряет свои теплосберегающие свойства. Подвалы, цокольные этажи, имеющие прямой контакт (или угрозу такового) с грунтовыми водами с успехом утепляются при помощи пенопласта;
  • шумоизоляция идет как приятное дополнение к функции уменьшения теплопотерь. Воздух, скрытый в запечатанных ячейках материала успешно гасит даже самые интенсивные звуковые волны, передаваемые в пространстве. Для того чтобы создать барьер для ударного шума, одним пенопластом обойтись не получится;
  • стойкость  к воздействию спиртов, щелочных и солевых растворов, водоэмульсионных красок у этого материала «развита» на высоком уровне. Помимо этого его не выбирают в качестве достойной среды обитания грибки и плесень. Стоит отметить, что грызуны наоборот, очень любят пенопласт и часто предпочитают в нем поселиться. Борьба с ними любыми доступными средствами не позволит непрошеным соседям портить утеплитель;
  • экологическая безопасность. Никаких вредных веществ пенопласт из себя не выделяет. Современный стандарт этого утеплителя – полное соответствие санитарным нормам;
  • в качестве дополнительной защиты от горения, на стадии производства к основным ингредиентам добавляют антипирены, призванные увеличивать огнеупорность пенопласта. А если прямой контакт с огнем отсутствует, то он сам затухает за небольшой промежуток времени. Но, справедливости ради, стоит отметить, что он все-таки считается горючим материалом;
  • потери вышеперечисленных свойств не случится, даже если будет кратковременный контакт с источником тепла до 110°, а вот длительное воздействие более 80° C повлечет деформацию и утрату характеристик.

Описанные температурные режимы относятся к разряду аномалий, и не встречаются с регулярной частотой, так что делать их основным мотивом для отказа от использования пенопласта нецелесообразно.

Плиты пеноплекс

Вспененный полистирол, пенополистирол, экструзионный полистирол – все это название одного и того же материала, продающегося в строительных магазинах как утеплитель пеноплекс.  Он приходится «родственником» привычному для всех пенопласту, считаясь при этом материалом, стоящим на ступеньку выше.

Основное отличие начинается уже на стадии производства, где применяются экструзионные установки. Как результат, мелкоячеистая структура материала обладает большей прочностью, чем его «собрат» пенопласт. Его отличают также прекрасные гидрофобные показатели. В аленьких ячейках надежно запечатан воздух, не позволяющий теплому воздуху покидать помещение, а холодному, наоборот, проникать внутрь.

Основные свойства теплоизоляционного материала:

  • прочность. Она достигается за счет уникальной однородной структуры. При больших нагрузках плита не деформируется, качественно распределяя вес, но при этом легко разрезается строительным ножом на куски нужного размера;
  • экологичность материала доказана многократными исследованиями, он стоек к образованию грибка и плесени, его не любят грызуны. Некоторые виды органических растворителей способны размягчить пеноплекс и нарушить форму и структуру плиты. Поэтому при работе с этим утеплителем рекомендуется избегать контакта с подобными жидкостями;
  • низкая паропроницаемость предполагает четкое соблюдение технологии монтажа и рекомендации по применению, чтобы не создавать парникового эффекта в помещении;

  • срок эксплуатации у плит пеноплекса составляет минимум 50 лет. Это гарантированный отрезок времени, на протяжении которого материал будет обладать своими изначальными характеристиками;
  • коэффициент теплопроводности – главный показатель, по которому вспененный полистирол считается хорошим утеплителем. Низкие значения данного показателя говорят о том, что дом будет надежно защищен от потерь тепла.
  • Типы теплоизоляционного материала пеноплекс и направления их использования достаточно разнообразны (в скобках приведены использовавшиеся раньше и современные названия материала).
  • Утепление фасадов (ПЕНОПЛЕКС 31 или «Стена»). Он изготавливается с добавлением антипиренов. Хорошо применим для цоколей, внутренних и внешних стен, перегородок, фасадов. Его плотность 25-32 кг/м ³, прочность на сжатие – 0,20 МПа.
  • Фундамент (ПЕНОПЛЕКС 35 без добавок для огнестойкости или «фундамент). Помимо вытекающего из названия варианта применения, этот вид широко используется при обустройстве подвалов, отмосток и цоколей. Плотность выражается в показателях 29-33 кг/м ³, а прочность на сжатие 0,27 МПа.
  • Крыши. (ПЕНОПЛЕКС 35 или «Кровля»). Скатная или плоская кровля любого типа может быть утеплена с помощью этого вида пенополистирола. Он достаточно плотный (28 – 33 кг/м ³), чтобы создать эксплуатируемую крышу.
  • Загородные коттеджи, сауны, дома. (ПЕНОПЛЕКС 31 С или «Комфорт»). Универсальный утеплитель. Дома, кровля, стены и цоколи в небольших частных строениях – вот сфера его применения. Показатели плотности – 25-35 кг/м³, прочность – 0,20 МПа.

Вспененный полистирол занимает достойные позиции по популярности благодаря хорошим эксплуатационным показателям.

Теплоизоляционный материал стекловата

Известный не одному поколению строителей утеплитель сегодня претерпел некоторые видоизменения. Но, по сути, остался тем же материалом из расплавленной стекломассы. Песок и вторсырье стеклянного происхождения при температуре свыше 1400 °C  вытягиваются в тонкие волокна, которые формируются в небольшие пучки (при участии связующих компонентов), а затем нагреваются и прессуются в изделие, напоминающее войлок. К потребителю стекловата попадает в матах или рулонах и предназначается для утепления как горизонтальных, так и вертикальных поверхностей.

Она относится к категории минеральных материалов и по-прежнему выпускается в больших объемах, а это свидетельствует о востребованности и наличии значительного числа положительных характеристик, с которыми стоит познакомиться чуть ближе.

  • Хрупкость относится скорее к значительным недостаткам. Чтобы стекловата не разлеталась на составные части при работе, маты и полотна прошивают. Но от мелких разлетающихся во все стороны частиц никое армирование не спасет. Поэтому экипировка у работающего со стекловатой человека должна быть серьезной: хорошо закрывающая тело одежда, маска-респиратор, очки и перчатки.
  • Теплопроводность у материала низкая, но по сравнению с другими материалами аналогичного назначения, она считается высокой.
  • Стоимость стекловаты оставляет ее конкурентоспособной. За счет доступности она востребована, тем более что потери тепла она действительно снижает.
  • Удобство транспортировки и применения. Весят рулоны и маты с материалом мало и упаковки достаточно компактны, чтобы привезти весь объем для утепления дома одним разом. Настилать ее тоже несложно. Единственный нюанс – при утеплении вертикальных оснований она может выпадать из каркаса, потому что достаточно гибкая и малоупругая. Проблема решается сооружением направляющих с меньшим расстоянием, чем ширина мата. Резать по размеру материал легко.
  • Безопасность. Определенные неудобства и вред здоровью стекловата способна причинить только на этапе монтажа. Но при правильной организации труда неприятностей не случится. А после того, как материал заложен в основание и закрыт гипсокартоном, листами ДСП или другими отделочными материалами, никакого вреда человеку он не принесет.
  • Отсутствие грызунов. В силу специфики материала мыши и крысы не облюбуют этот утеплитель для создания в нем уютных нор.
  • Стекловата относится к негорючим материалам.
  • Звукоизоляция при ее применении тоже обеспечивается.

Таким образом, пользоваться стекловатой удобнее всего для утепления пола и перекрытий. Можно проявить сноровку и при отделке стен. Главным недостатком остается вредная пыль, неизбежная при нарезке и раскатке, но для некоторых потребителей небольшая стоимость с лихвой перекрывает этот минус.

Шлаковата

Продолжая разговор о минеральных утеплителях, стоит упомянуть и о шлаковате. Производят ее из доменного шлака. Так как это своего рода отход производства (при выплавке чугуна в доменных печах остается стекловидная масса), то затраты на ее изготовление невелики, а следовательно и цена на готовый утеплитель является вполне доступной.

Шлаковата способна хорошо блокировать тепло в помещениях, но недостатков и ограничений по использованию у нее достаточно, чтобы свести на нет небольшую стоимость и хорошую теплоизоляцию.

  • Итак, шлаковата боится влаги. Применять ее в ванных комнатах или на фасадах неоправданно. При этом она способна окислять различные металлические детали и конструкции, с которыми вступает в непосредственный и длительный контакт.
  • В довершение ко всему этому, она колется и требует применения специальной защиты во время работы. На ее фоне стекловата выглядит гораздо привлекательнее, поэтому шлаковата в современном строительстве применяется крайне редко.
Минеральный теплоизоляционный материал

Базальтовая, каменная, минеральная вата, роквул – под этими названиями чаще всего скрывается один и тот же материал.

  • Его волокна по размеру не уступают шлаковате, но они не доставляют дискомфорта при монтаже. Безопасность в применении – это одно из первых отличительных свойств этого утеплителя из разряда минеральных.

  • Коэффициент теплопроводности этого материала исчисляется от 0,077 до 0,12 Вт/метр-кельвин. Базальтовую вату называют самой лучшей по всем параметрам. Она не содержит дополнительных вредных для здоровья примесей, может выдерживать длительное воздействие крайне высоких и низких температур, удобна в применении.
  • И обычная каменная и базальтовая вата не поддаются горению. Волокна будут только плавиться, спекаться между собой, но не допустят дальнейшего распространения огня.
  • Утеплять каменной ватой можно любые здания, как при постройке с нуля, так и уже достаточно долго находящиеся в эксплуатации. Базальтовый утеплитель не нарушает микроциркуляцию воздуха, а значит, может применяться в тех строениях, где приточная вентиляция не функционирует должным образом.
  • Определенные неудобства для некоторых строителей могут возникнуть с необходимостью возведения фальшстены. Без нее выполнить укладку утеплителя не получится. Но на самом деле технология строительства очень проста, пространства «съедается» не так уж и много.
  • Материал экологически чистый, хорошо подходит и для утепления деревянных домов. Намокать ему категорически запрещается, поэтому гидроизоляционный слой должен быть выполнен по всем требованиям.
  • Рекомендуемая толщина теплоизоляционного материала для средней полосы составляет 15-20 см, в южных регионах достаточно 10 см слоя.

  • Каменная вата хорошо поглощает звук. Это достигается за счет того, что ее волокна располагаются хаотично, а между ними в большом количестве скапливается воздух. Такая структура прекрасно гасит звуки.
  • Описываемый утеплитель химически пассивен. Даже если он будет плотно соприкасаться с металлической поверхностью, то следов коррозии на ней не появится. Гниение и заражение грибками или плесенью каменной вате тоже не свойственно. Грызунов и других вредителей материал не привлекает.
  • Единственным действительно отрицательным моментом ее применения служит достаточно большая стоимость.

Характеристики теплоизоляционных материалов

Эковата

Эковата – это утеплитель, произведенный из макулатуры и различных остатков от изготовления бумаги и картона. Помимо этих компонентов добавляются в состав антисептики и довольно мощный антипирен. Он крайне необходим, ведь судя по тому, что 80% от материала составляет легковоспламеняющаяся целлюлоза, уровень горючести у такого теплоизоляционного изделия достаточно высок.

Эковата не лишена недостатков.

  • Один из них – это ее естественное уменьшение в объеме. Она способна оседать, теряя до 20% от первоначального уровня закладки. Чтобы этого не допустить, эковату используют с избытком. Создание «запаса» восполнит уменьшающийся во время эксплуатации объем.
  • Утеплитель довольно хорошо вбирает в себя влагу. Это напрямую влияет на способность сохранять тепло. Материалу  нужна  возможность отдавать влагу во внешнюю среду, поэтому теплоизоляционный слой должен быть вентилируемым.
  • Для того чтобы осуществить монтаж, потребуется специальное оборудование. Оно представляет собой устройство, которое с равномерной плотностью закачивает утеплитель, исключая его дальнейшую усадку. В связи с этим потребуется помощь наемных специалистов с опытом работы именно с этим видом утеплителя. Влажный способ нанесения, который предполагает такие сложности, открывает еще и перспективу перерыва в строительных работах, пока будет сохнуть эковата (от двух до трех суток).

Существует, конечно, методика сухого утепления, но более качественный результат все-таки у вышеописанного варианта монтажа. Если горизонтальные поверхности можно утеплить, не применяя специального оборудования, то создавая слой теплоизоляции на стенах, без него будет сложно обойтись. Появляется риск неравномерной усадки материала и создание неутепленных полостей.

  • Особенности самого материала не предполагают его самостоятельного (бескаркасного) использования, когда утепление осуществляется при помощи стяжки. В отличие от плит пенополистирола, эковата не обладает для этого достаточной прочностью.
  • Потребуется соблюдать значительные меры предосторожности при ее монтаже:
    • проводить работы вдали от открытого огня;
    • исключить соприкосновение материала с любым источником тепла, который может привести к тлению. То есть при утеплении поверхности рядом с каминной трубой или дымоходом, их потребуется отделить от утеплителя базальтовыми матами с покрытием из фольги или заграждениями из асбестоцемента.

Казалось бы, на фоне таких сложностей, можно сразу отказаться от применения эковаты, но ее положительные стороны для кого-то могут стать мощным стимулом к ее использованию.

  • Материал (даже при учете прибавки на усадку) довольно экономичен.
  • Такой утеплитель экологичен и безопасен для здоровья. Исключение может составлять материал, где в качестве антипирена применялась борная кислота или сульфаты аммония. В этом случае эковату будет отличать резкий и неприятный запах.
  • Она является бесшовным утеплителем, не имеющим мостиков холода. А это значит, что теплопотери в зимний период сократятся до минимума.
  • Материал стоит недорого, позволяя при этом получить хорошую теплоизоляцию.

В качестве звукоизолирующего материала эковата может посоревноваться со многими описанными выше материалами.

Пенополиуретан (ППУ)

Полиэфир с добавлением воды, эмульгаторов и активных реагентов, при воздействии катализатора, образуют вещество со всеми признаками и показателями хорошего теплоизолирующего материала.

Пенополиуретан обладает следующими характеристиками:

  • низкий коэффициент теплопроводности: 0,019 – 0,028 ВТ/метр-кельвин;
  • наносится методом распыления, создавая сплошное покрытие без мостиков холода;
  • легкий вес застывшей пены не оказывает давления на конструкцию;
  • простота применения без каких-либо крепежей дает возможность провести утепление поверхности с любой конфигурацией;
  • долгий срок службы, включающий в себя стойкость к морозам и жаре, любым атмосферным осадкам, гниению;
  • безопасность для человека и окружающей среды;
  • не разрушает металлические элементы конструкции, а напротив, создает для них антикоррозийную защиту.

Стены, пол и потолок – его применение доступно везде. ППУ будет держаться на стекле, дереве, бетоне, кирпиче, металле и даже на окрашенной поверхности. Единственное, от чего стоит защищать пенополиуретан – это от воздействия прямых лучей света.

Виды теплоизоляционных материалов

Рефлекторные теплоизоляционные материалы

Есть группа теплосберегающих материалов, работающих по принципу отражателей. Они функционируют довольно просто: сначала поглощают, а затем отдают назад полученное тепло.

  • Поверхность таких утеплителей в состоянии отразить более 97% дошедшего до их поверхности тепла. Это доступно за чет одного или пары слоев полированного алюминия.
  • Он не содержит примесей, а наносится на слой вспененного полиэтилена для удобства применения.

  • Тонкий на вид материал способен удивлять своими возможностями. Один или двухсантиметровый слой отражающего утеплителя создает эффект, сравнимый с использованием волокнистого изолятора тепла от 10 до 27 см толщиной. Среди наиболее популярных материалов в этой категории можно назвать Экофол, Пенофол, Пориплекс, Армофол.
  • Помимо тепло- и звукоизоляции такие утеплители создают пароизоляционную защиту (и часто применяются в этом качестве).

Вывод достаточно прост: идеального утеплителя не существует. В зависимости от средств, преследуемых целей и личных предпочтений (включая удобство в работе), каждый сможет выбрать для себя оптимальный материал для создания теплого и по-настоящему уютного дома. Но надо помнить, что при использовании на кровле каждого из вышеописанного утеплителя, требуется обязательная гидроизоляция теплоизоляционного материала.

Современные теплоизоляционные материалы

Теплоизоляция – своеобразный барьер, не дающий тепловой энергии перетекать из одного объема в другой. Вопросы теплоизоляции домов сегодня особенно актуальны. Затраты на утепление окупаются за 3-4 сезона и далее “работают в плюс”. Главный враг теплосбережения – сквозняки, потоки воздуха, выносящие тепло. Теплоизоляционные свойства утеплителей основаны на сложной структуре волокна, максимально затрудняющей свободное перемещение воздуха внутри материала. Утепляя дом, в первую очередь стоит уплотнить оконные и дверные створы, теплоизолировать перекрытия. Затем переходить к теплоизоляции наружных стен.

Рассмотрим основные характеристики теплоизоляционных материалов.

Коэффициент теплопроводности. Зависит от влажности материала (вода проводит тепло лучше, чем воздух, и материал не будет выполнять теплоизолирующую функцию, если он мокрый), температуры, химического состава утеплителя, структуры, пористости.

Пористость – доля объема пор в общем объеме материала. Определяет такие свойства, как плотность, прочность, газопроницаемость, теплопроводность.

Плотность материала – отношение его массы к занимаемому объему.

Паропроницаемость.

Влажность – содержание влаги в материале.

Водопоглощение – способность материала впитывать и удерживать влагу в порах при прямом контакте с водой.

Био- и огнестойкость. Показатели пожарной безопасности: Г (горючесть), В (воспламеняемость), РП (распространение пламени по поверхности), Д (дымообразующая способность), Т (токсичность продуктов горения).

Прочность. Предел прочности при сжатии – 0.2-2.5 МПа. Материалы с показателем выше 2.5 МПа относят к категории теплоизоляционных-конструктивных и используют для несущих ограждающих конструкций.

Предел прочности при изгибе (показатель для плит, сегментов, скорлуп) и предел прочности при растяжении (для матов) нужны, чтобы определить, достаточна ли прочность материала при транспортировке, складировании, монтаже.

Температуростойкость – температура, выше которой материал изменяет свою структуру, теряет механическую прочность и разрушается, а органические материалы могут загореться.

Морозостойкость – способность многократно выдерживать изменения температур от стадии замораживания до стадии оттаивания, без видимых признаков нарушения структуры.

Спектр представленных на рынке теплоизоляционных материалов включает минеральную вату, пеностекло, пенопласт, пенополиуретан и экструдированный пенополистирол.

Минеральная вата. Благодаря высокой пористости (до 95% объема занимают воздушные пустоты) имеет хорошие тепло- и звукоизоляционные свойства. Относится к негорючим строительным материалам, эффективно препятствует распространению пламени, морозостойка, имеет стабильные физические и химические характеристики. При монтаже необходима паро- и гидроизоляционная пленка.

Минераловатные утеплители выпускают в виде прошивных матов и плит. Маты представляют собой полотна минеральной ваты, прошитые специальными огнеупорными нитями на основу или без нее. Минераловатные маты выдерживают температуры до 700 град. С, не горят, не выделяют вредных веществ. Они принимают форму основания, плотно прилегают к поверхности, сокращая утечку тепла. Используются для теплоизоляции трубопроводов, технологического оборудования, горизонтальных ненагруженных строительных конструкций.

Для теплоизоляции вертикальных и горизонтальных нагруженных строительных конструкций используют минераловатные плиты. Их изготавливают из минераловатного полотна, пропитанного для прочности синтетическим связующими, с гидрофобизирующими добавками или без них.

Минераловатные плиты, как и маты, устойчивы к действию высоких температур и большинству химических агрессивных веществ. В зависимости от плотности, их разделяют на мягкие, полужесткие, жесткие и плиты повышенной жесткости.

Пеностекло получается в результате спекания стеклянного порошка с газообразователями. Пористость материала – 80-95% дает хорошие показатели теплоизоляции. Пеностекло прочное, водостойкое, не горит, не боится перепадов температур.

Пенопласт представляет целое семейство утеплителей: пенополистиролы, ПВХ, пенополиуретаны и др. Наиболее распространены полистирольные пенопласты. Структура материала представляет маленькие скрепленные между собой шарики. Пенопласты – прочные, недорогие утеплители. Удобны в работе, имеют высокие теплоизолирующие свойства, практически не имеют нижней границы применения. Нуждаются в защите от влаги, которая при замораживании разрушает структуру утеплителя.

Пенополиуретан экономит время монтажа, образует сплошной изоляционный слой без стыков и позволяет утеплять неровные поверхности. Может применяться при температуре от -250 град.С до +180 град.С.

Экструдированный пенополистирол. Микроструктура материала представляет собой закрытые ячейки, наполненные газом. Материал более прочный, чем пенопласт, имеет более низкое водопоглощение, не разрушается под действием солнца и атмосферных осадков, не вступает в реакцию с большинством веществ.

Аналогом пенополиуретана является пенополиизоцианурат (PIR). При сохранении всех положительных качеств полиуретана (низкая теплопроводность, малая плотность, хороший предел прочности при сжатии, паро- и влагонепроницаемость), PIR обладает и повышенной огнестойкостью, не поддерживает горение и затухает без источников огня. Материал применяется в качестве наполнителя сэндвич-панелей. Вес таких панелей ниже, чем у аналогов с минераловатным сердечником. Это снижает нагрузку на несущие конструкции, что важно при строительстве на вечной мерзлоте. PIR экологически безопасен и может использоваться на объектах с повышенными санитарными требованиями. Обладает высокой стойкостью к агрессивным природным и техногенным факторам.

Теплоизоляционные материалы — Построй свой дом

 

На страницах своего блога я много говорил о важности утепления дома в целом и отдельных его конструкций в частности. Для того, чтобы утепление было качественным необходимы специальные теплоизоляционные материалы, пригодные для применения в том или ином месте дома. Вот о том, какими бывают теплоизоляционные материалы и как их применять мы и поговорим в этой статье.

 

Если вы являетесь моим постоянным читателем, то, наверное, заметили, что рассматривая тот или иной узел дома мы говорили о конкретных теплоизоляционных материалов, предназначенных для работы именно в этом узле. И это не случайно, так как различные части дома находятся в разных средах, порой диаметрально отличающихся друг от друга. Поэтому и появилась необходимость свести все, понемногу сказанное в отдельных статьях в одну, чтобы стало понятна важность применения этих материалов.

 

Теплоизоляционные строительные материалы

 

Теплоизоляционные материалы необходимы при строительстве зданий и сооружений для уменьшения тепловых потерь при их эксплуатации.

Использование теплоизоляционных материалов позволяет делать ограждающие конструкции более тонкими, тем самым снижая затраты на строительные материалы. Но это еще не все. Сокращение тепловых потерь дома позволяет экономить на расходе топлива и электроэнергии. К тому же, теплоизоляционные материалы, как правило, обладают хорошими звукоизоляционными свойствами.

 

Теплоизоляционные материалы должны обладать стойкостью к влаге, огню, химическим препаратам, теплу, воздействию грызунов и микроорганизмов. Сегодня, при строительстве домов используются самые разнообразные теплоизоляционные материалы, о которых мы и поговорим ниже.

 

Виды теплоизоляционных материалов

 

Разнообразие теплоизоляционных материалов иногда ставит в тупик. Что именно выбрать для своего дома? Ведь хочется, чтобы утепление было эффективным и служило как можно дольше. Поэтому, в начале необходимо обратиться к их классификации.

 

Теплоизоляционные материалы различают по виду основного сырья, структуре, плотности, теплопроводности, форме и внешнему виду, а также условиям использования.

 

Сырье для теплоизоляционных материалов

 

Для производства теплоизоляционных материалов применяют различное сырье, но все это сырье можно выделить в три группы:

 

Органическое сырье для теплоизоляционных материалов

 

В качестве органического сырья для производства теплоизоляционных материалов используется древесина и торф.

Такое сырье отличается низкой биологической стойкостью и подвержено негативному воздействию влаги. Не смотря на это, теплоизоляционные материалы, полученные из органического сырья обладают высокими звукоизоляционными характеристиками. Их представителями являются древесностружечные, древесноволокнистые, фибролитовые, арболитовые, камышитовые и торфяные плиты, а также строительный войлок и гофрированный картон.

 

 

Неорганическое сырье для теплоизоляционных материалов

 

Неорганическое сырье получается при использовании различных видов минерального сырья, например, горных пород, шлаков и асбеста. Из этого сырья получаются малогигроскопичные, морозостойкие и звукопоглощающие изделия. К неорганическим теплоизоляционным материалам принадлежат: минеральная вата, стеклянное волокно, пенс стекло, вспученные перлит и вермикулит, асбестосодержащие теплоизоляционные изделия, а также ячеистые бетоны.

 

 

Полимерное сырье для теплоизоляционных материалов

 

В качестве полимерного сырья для теплоизоляционных материалов используются органические полимеры, которые иногда называют газонаполненными пластмассами.

Полимерная термоизоляция в основном применяется в промышленности, в строительной отрасли, а также при производстве бытовых приборов и оборудования. Очень эффективно полимерное сырье для изоляции трубопроводов с использованием полистирола, пенополиуретана и пенопласта. Существует классификация, согласно которой полимерные материалы делят на несколько групп, каждая из которых отличается строением структуры: пенопласты, поропласты и сотопласты.

 

 

Форма теплоизоляционных материалов

 

Для того, чтобы теплоизоляционные материалы было удобно применять на разных плоскостях, им придают различную форму.

По форме и внешнему виду теплоизоляционные материалы делятся на: штучные, которым относятся: плиты, блоки, кирпич, цилиндры, полуцилиндры, сегменты; рулонные — это маты, полосы, матрацы; шнуровые, к ним относятся шнуры и жгуты; сыпучие и рыхлые — вата минеральная и стеклянная, вспученные перлит и вермикулит.

 

Жесткая плита, скорлупа, сегмент, кирпич и цилиндр удобны для облицовки различных поверхностей простой формы. Гибкие маты, жгуты и шнуры применяется для утепления трубопроводов.

 

Сыпучие и рыхлые – вата, вермикулит и перлитовый песок эффективны при заполнении различных полостей.

 

Структура теплоизоляционных материалов

 

Структура теплоизоляционных материалов оказывает существенное влияние на их свойства. Особенно наглядно это можно проследить на материалах волокнистого строения. Так, например, теплопроводность древесины вдоль волокон приблизительно в два раза выше теплопроводности поперек волокон.

 

Для характеристики теплоизоляционных свойств материалов, применяемых в виде засыпок, основное влияние оказывает размер зерен. Чем меньше размер зерен, тем лучше теплоизоляционные свойства материала, что характерно даже для тех случаев, когда плотность материала остается неизменной.

 

Рассматривая структуру теплоизоляционных материалов, можно сделать вывод, что малую теплопроводность материалам придают поры, когда они заполнены воздухом. В том случае, если поверхность этих пор будет покрыта пленкой воды или поры будут полностью заполнены водой, теплоизоляционные свойства таких материалов резко снижаются. Это происходит потому, что вода имеет большую теплопроводность по сравнению с воздухом, примерно в 25 раз. Поэтому очень важно защищать теплоизоляционные материалы от переувлажнения.

 

Плотность теплоизоляционных материалов

 

Плотность теплоизоляционных материалов, это величина, равная отношению массы материала ко всему занимаемому им объему. Она измеряется в кг/м3.

 

Стоит отметить, что плотность теплоизоляционных материалов достаточна низка по сравнению с большинством строительных материалов. Это происходит потому, что значительный объем теплоизоляционных материалов занимают поры. Плотность теплоизоляционных материалов, применяемых в строительстве домов находится в пределах от 17 до 400 кг/м3, и зависит от их назначения.

 

Из физики мы знаем, что чем меньше плотность сухого материала, тем лучше его теплоизоляционные свойства при одинаковых температурных условиях. Чем меньше плотность материала, тем больше его пористость. От характера пористости зависят основные свойства теплоизоляционных материалов, определяющие их применяемость в строительных конструкциях: теплопроводность, сорбционная влажность, водопоглощение, морозостойкость и прочность. Лучшими теплоизоляционными свойствами обладают материалы, у которых равномерно распределены мелкие замкнутые поры.

 

Жесткость теплоизоляционных материалов

 

Жесткость теплоизоляционных материалов можно разделить на пять видов. Минеральная вата и теплоизоляционные маты относятся к мягкой теплоизоляции, так как обладают сжимаемостью выше 30% при удельной нагрузке 0,002 МПа. Теплоизоляционные материалы, сжимаемость которых составляет от 6% до 30% при той же удельной нагрузке 0,002 МПа, называют полужесткими. К ним относятся плиты из минеральной ваты и стекловолокна. Жесткие теплоизоляционные материалы, такие как теплоизоляционные плиты из минеральной ваты на синтетической или битумной связующей основе, обладают сжимаемостью до 6%. Так же повышенной жесткостью обладают теплоизоляционные материалы с сжимаемостью до 10% при удельной нагрузке 0,04 Мпа и твердая теплоизоляция сжимаемостью до 10% при удельной нагрузке 0,1 МПа.

 

Телопроводность теплоизоляционных материалов

 

Одним из основных показателей теплоизоляционных свойств является теплопроводность теплоизоляционных материалов. Теплопроводность, это передача тепла внутри одного предмета.

Так, например, если у одного предмета одна его часть теплее другой, то тепло будет переходить от теплой части к холодной. Такой же процесс происходит и в здании. Стены, крыша и пол могут отдавать тепло в окружающий мир. Для того, чтобы сохранить тепло внутри дома этот процесс необходимо свести к минимуму. С этой целью и используются теплоизоляционные материалы.

 

В условиях эксплуатации теплопроводность материала меняется и зависит от влажности, температуры окружающей среды и других факторов. В числовой форме теплопроводность характеризуется коэффициентом теплопроводности. Он показывает, сколько тепла за единицу времени проходит через единицу поверхности. Чем выше этот коэффициент у материала, тем быстрее он проводит тепло.

 

Различают три класса теплопроводности теплоизоляционных материалов:

  • Класс А — коэффициент проводимости тепла не превышает 0,06 Вт/м*К;
  • Класс Б — средний показатель теплопроводности <0,115 Вт/м*К;
  • Класс В — материалы с повышенной теплопроводностью <0,175 Вт/м*К.

 

Телопроводность теплоизоляционных материалов является наиболее информативным показателем. Чем он ниже, тем материал эффективнее сохраняет тепло или прохладу в жаркие дни.

 

Применение теплоизоляционных материалов

 

Применение теплоизоляционных материалов требует индивидуального подхода. Как я уже говорил, различные элементы дома работают в разных условиях. Поэтому, правильно ответив на вопрос, какой должна быть теплоизоляция именно для вашего дома, вы получите не только удобство его эксплуатации, но и длительный срок службы всей конструкции дома.

 

Теплоизоляционные материалы для фундамента

 

Защита фундамента от влаги и сквозного промерзания, является залогом долговечности дома.

Теплоизоляционные материалы для фундамента должны выдерживать большие нагрузки на сжатие, низкую температуру зимой, не впитывать влагу, противостоять грибку и плесени, и иметь длительный срок службы. Этим требованиям полностью удовлетворяют плиты из экструдированного пенополистирола, который может безопасно контактировать с водой и почвой в течение продолжительного времени. Совместно с экструдированным пенополистиролом, для утепления фундамента, используют битумные материалы.

 

 

Теплоизоляционные материалы для стен

 

Через наружные стены дом может терять до 45% тепла, поэтому от того как они утеплены напрямую зависят ваши расходы на отопление.

Основным критерием для выбора теплоизоляционного материала для стен, является материал, из которого они сделаны. Для небольших деревянных домов целесообразнее использовать базальтовые или минераловатные плиты, для более крупных зданий, с большой площадью стен подходит экструдированный пенополистирол или пеностекло. Если теплоизоляция стен проводится внутри жилых помещений, теплоизоляционный материал должен быть экологичным, негорючим и невысокой плотности. Чаще всего для этого используется базальтовая вата.

 

 

Теплоизоляционные материалы для пола

 

Пол также берет на себя значительную долю теплопотерь. Потери тепла через неутепленный пол могут достигать 20% от общего объема теплопотерь. Если в доме деревянные полы, то их как правило утепляют минераловатными или базальтовыми плитами. Причем, чем толще слой утеплителя, тем лучше. При устройстве полов с подогревом незаменимыми становятся плиты из экструдированного пенополистирола.

 

 

Теплоизоляционные материалы для крыши

 

С крышей все достаточно просто. Если у вас скатная крыша, то утеплитель укладывается между стропилами. Для этого лучше всего подойдут базальтовые либо минераловатные плиты. В случае, если у вас плоская крыша, эффективнее всего будет работать экструдированный пенополистирол или гидростеклоизол.

 

 

Теплоизоляционные материалы для потолков

 

В том случае, если высота потолков позволяет, их также можно утеплить, обеспечив при этом еще и дополнительную звукоизоляцию помещения. Здесь уже можно пофантазировать, так как утепляющий слой может нести и декоративные функции. Например, его можно выполнить из деревянной облицовочной доски или пеностекла.

 

 

Стоимость теплоизоляционных материалов

 

Рынок строительных материалов предлагает огромный выбор теплоизоляционных материалов. Поэтому давайте посмотрим на факторы, влияющие на их стоимость.

 

Первое на что необходимо обратить внимание, это на страну-производитель материалаПри одинаковом качестве импортные материалы всегда дороже. Второе, это плотность. Более плотные материалы всегда дороже. Третьей идет толщина теплоизоляционного материала. Чем толще будет уложен теплоизоляционный слой, тем выше будет его стоимость. Далее можно рассмотреть технологию производства теплоизоляции. Здесь более технологичный материал с лучшими теплоизоляционными характеристиками имеют большую стоимость, однако он позволяет экономить на монтажных работах. Ну и объем закупки. Оптовая закупка теплоизоляционных материалов обойдется вам дешевле.

 

Если резюмировать все вышесказанное, то зна­чи­мость теплоизоляционных материалов труд­но пе­ре­оце­нить. Они будут за­щи­ща­ть ваш дом от ­по­тери тепла, тем самым по­зво­ля­т эко­но­мить на энер­го­по­треб­ле­нии. Пра­виль­но по­до­бран­ные и уложенные теплоизоляционные материалы по­вы­сят ин­вес­ти­ци­он­ную и аренд­ную при­вле­ка­тель­ность вашего дома.

 

В следующей статье я расскажу о теплопотерях частного дома.

 

РЕКОМЕНДУЮ ЕЩЁ ПОЧИТАТЬ:

Теплоизоляционные материалы. Основные понятия – Доктор Лом

На сегодняшний день известны 3 способа передачи тепла:

1.

Конвекция

это передача тепла за счет перемещения материи, например воздуха или воды. Таким образом тепло передается в жидких и газообразных средах. Зимой воздух в наших помещениях нагревается более менее равномерно благодаря естественной конвекции, ну и когда вода течет по трубам отопления – это тоже конвекция, чаще принудительная.

2. Теплопроводность

передача тепла внутри материи, подобная передаче электрического тока в проводниках. Все пользуются электричеством, но четкой теории, объясняющей, как передается ток в проводниках, пока нет. Тоже самое можно сказать и про теплопередачу. И еще, хорошие проводники электрического тока являются хорошими проводниками тепла и, соответственно, плохими теплоизоляторами. И наоборот, чем выше электрическое сопротивление материала, тем лучше его теплоизоляционные свойства. Чтобы отопительные батареи лучше отдавали тепло их делают из металлов, а чтобы батареи выглядели лучше, их красят белой краской и тем самым ухудшают их теплопроводность, впрочем это отдельная тема.

3. Радиация

(инфракрасное излучение) – передача тепла за счет изменения формы материи из корпускулярной в волновую. Про радиацию знают все, а с объяснением природы радиации дело обстоит еще хуже, чем с природой теплопроводности или электричества. Излучать тепло могут все тела, и живые и неживые.

Возможно также, что существуют и другие способы передачи тепла, которые пока не то что не объяснены, но даже не открыты.

Для того, чтобы тепло передавалось любым из вышеперечисленных способов, нужна разница температур.

Температура 

физическая величина, которую знают даже дети, но никто просто объяснить не может. Определение температуры как “скалярной физической величины, характеризующей приходящуюся на одну степень свободы среднюю кинетическую энергию частиц макроскопической системы, находящейся в состоянии термодинамического равновесия” или “величины, обратной изменению энтропии системы при добавлении в систему единичного количества теплоты” мало что проясняет, хотя второе определение, на мой взгляд, более точно выражает физическую сущность температуры. Другими словами если бы не было разницы температур, о температуре никто никогда не узнал. Но так как разница температур все-таки есть и часто, по человеческим меркам, немалая, то возникает потребность в теплоизоляции. А чтобы определить свойства теплоизоляции используется:

Коэффициент теплопроводности

λ

это количество тепла, проходящего через вещество толщиной 1 м и площадью 1 м2 за 1 час при разнице температур на входе и на выходе в 10оC. Например, зимой поверхность стены в помещении – это вход, а поверхность стены на улице – это выход, летом – наоборот. Измеряется коэффициент теплопроводности в Вт/(м*К) или Вт/(м*С).

Толщина теплоизоляции

самый простой и самый понятный термин. Любой существующий строительный материал обладает теплоизоляцией, даже полнотелый кирпич и бетон, поэтому толщина несущих конструкций зданий рассчитывается не только с учетом нагрузок, но и с учетом теплопроводности. Раньше считалось, что кирпичная стена толщиной в 51 см не нуждается в дополнительной теплоизоляции, но теперь это мнение во многих странах СНГ пересмотрено.

Плотность теплоизоляционного материала

чем ниже плотность материала, тем выше его теплоизолирующие свойства. Любой материал с плотностью ниже 400 кг/м3 можно считать теплоизоляционным материалом, кроме того такой материал может выполнять некоторые конструктивные функции. Самые лучшие теплоизоляторы имеют плотность 10-50 кг/м3, но такие материалы использоваться как конструктивные элементы не могут.

Количество тепла, передающегося конвекцией, теплопроводностью или радиацией, зависит от различных факторов. Так, например, чем выше температура тела, и чем более тело является черным, тем больше тепла передается радиацией. Подробности изложены в законе Стефана – Больцмана. Количество тепла, передаваемого конвекцией и теплопроводностью, зависит от количества щелей в окнах и дверях, частоты открывания окон и дверей, силы ветра за окном, влажности воздуха и еще десятков факторов. Поэтому трудно точно определить, какое именно количество тепла передается каждым из способов из нашего с таким трудом обогретого жилья бездушной холодной улице. Ну а если приблизительно, то около 20-50% тепла уходит из наших квартир с радиацией, 60-20% при конвекции. Открывание дверей для входа или выхода в дом и наличие щелей в стенах потолках, полах, окнах и дверях тоже приводит к конвекции. Около 20-40% тепла уходит из наших квартир из-за теплопроводности. Максимально снизить конвекцию помогают современные окна и двери, при минимуме щелей около 40-50% тепла уходит с радиацией около 30-40% в результате теплопроводности и около 15-25% в результате конвекции. Большинство простых теплоизоляционных материалов рассчитаны на снижение теплопотерь при передаче тепла теплопроводностью. В гражданском строительстве теплоизоляция используется для стен, полов и потолков, то есть практически для всех элементов конструкций. Также теплоизоляция используется для трубопроводов, но это не наша тема.

На сегодняшний день человечеству известны следующие

Виды теплоизоляционных материалов – веществ:

1.

Вакуум

Это самый лучший и надежный теплоизоляционный материал, точнее будет сказать, что полное отсутствие материала и даже материи гарантирует максимально возможную теплоизоляцию. Именно такая теплоизоляция часто применяется в термосах и иногда при изготовлении стеклопакетов. Тем не менее даже через вакуум тепло может передаваться. В вакууме нет материи и соответственно не возможна теплопроводность и конвекция, а вот излучение проходит даже через вакуум. С одной стороны это плохо, так как выходит, что идеальной теплоизоляции не существует, а с другой стороны хорошо, потому как солнце нас греет благодаря только этому способу теплопередачи. Главный недостаток вакуума – это цена, как ни парадоксально это звучит. Дело в том, что для получения вакуума требуется дорогостоящее оборудование.

2. Воздух

Самый лучший после вакуума теплоизолятор. Главные достоинства воздуха – самая низкая (после вакуума) теплопроводность, абсолютная доступность, абсолютная бесплатность и абсолютная простота использования. Именно поэтому воздух входит в состав всех ныне используемых теплоизоляционных материалов и чем воздуха в материале больше, тем материал лучше. Поэтому, когда Вы покупаете теплоизоляционный материал, то платите в-основном за воздух, как ни обидно это осознавать. Но ничего странного в этом нет, дело в том что у воздуха, как у теплоизолятора, есть несколько больших недостатков – слишком ненадежный элемент, нагрелся – поднялся, остыл – опустился, или говоря по-научному – конвекция. Кроме того, теплопроводность воздуха очень сильно зависит от влажности. Чем выше процент влаги в воздухе, тем хуже его теплоизоляционные свойства, а при очень высокой влажности воздух из теплоизолятора превращается в теплоноситель. Борьбе с конвекцией и насыщением воздуха влагой и посвящены разработки теплоизоляционных материалов.

3. Металл

Как уже говорилось, металлы обладают самой высокой теплопроводностью, но при этом и самым высоким коэффициентом отражения тепловой радиации, поэтому металлы никогда не используются как самостоятельный теплоизолятор, а только в качестве вспомогательной теплоизоляции, в тех же термосах и в комбинированных теплоизоляционных материалах (чаще всего алюминий).

Все. Больше никаких теплоизоляционных материалов – веществ, известных человеку, нет, а вот теплоизоляционных материалов, содержащих в той или иной форме воздух, или комбинированных материалов – огромное множество и когда речь заходит о теплоизоляционных материалах, то имеются в виду материалы – контейнеры воздуха. Теплоизоляционные материалы – вещества придуманы довольно давно, теософы утверждают, что отцом, ученые, что матерью, но как бы то ни было, патента на изобретение или на использование ни у кого нет, а потому всеми этими материалами можно свободно пользоваться. Например, когда Вы заказываете окна со стеклопакетами, то обращать внимание нужно на толщину воздушной прослойки между стеклами, а не на количество и хитроумность камер в профиле. Казалось бы, очевидный факт – чем больше расстояние между стеклами, тем лучше общая теплоизоляция окна – но девочки, занимающиеся оформлением заказов, поверить в это не могут. Или еще пример, если Вы зашиваете старую стену гипсокартоном, пластиковыми панелями, панелями МДФ или любым другим материалом, то кроме преследуемых эстетических целей Вы абсолютно бесплатно получаете дополнительную теплоизоляцию. Правда, если на старой стене есть трещины и щели, пропускающие воздух, то их нужно предварительно заделать, иначе толку от такой теплоизоляции будет не много, конвекция и изменяющаяся влажность воздуха сведут на нет такое утепление. Впрочем и при использовании платных теплоизоляционных материалов дефекты стены заделывать все равно придется.

Виды теплоизоляционных материалов – контейнеров воздуха:

1. Теплоизоляция из минерального сырья.

Минеральная вата

называется так потому, что по структуре напоминает обычную целлюлозную вату. Видов минеральной ваты несколько: стекловата – производится из песка, каменная вата – производится из горных минералов (базальты, мергели, доломиты и др.), шлаковата – производится из расплавов доменного шлака. Главные достоинства таких утеплителей – высокая огнестойкость плюс относительно низкая цена (минералов в Земле много, а песка и подавно). Главные недостатки – возможная опасность для здоровья и низкая влагостойкость. При работе с такими утеплителями необходимо использовать перчатки, очки и даже респиратор. Тот, кто работал с советской стекловатой, знает, какая это гадость, и хотя современная стекловата не такая “колючая”, но пользы для здоровья от нее по-прежнему не много, в Германии, например, минеральная вата уже не используется. При использовании таких утеплителей следует дополнительно защищать их поверхность полиэтиленовой пленкой для пароизоляции.

Пеностекло

также изготавливается из песка, но по структуре ближе к пенопласту. Главные достоинства – прочность, высокая огнестойкость, высокая влагостойкость (паронепроницаемость), высокая экологичность. Главный недостаток высокая цена.

Газонаполненные бетоны (пенобетон, газобетон, ячеистый бетон) и бетоны с легкими наполнителями

(шлакобетон, керамзитобетон, перлитобетон и др.). Главные достоинства таких материалов – высокая огнестойкость и то, что они могут использоваться как конструктивные материалы для стен. Главный недостаток – низкая водостойкость.

Для утепления полов часто используется насыпная теплоизоляция из керамзита, получаемого обжигом легкоплавкой глины, вспученного перлита, вспученного вермикулита и др., а также газонаполненные шлаки, остающиеся после выплавки металлов. Главное достоинство таких материалов – низкая цена. Главные недостатки – низкая водостойкость и возможность усадки.

2. Теплоизоляция из полимеров

Производятся такие материалы в-основном из газа или нефти. Наиболее известные представители таких теплоизоляционных материалов – пенопласт, экструдированный пенополистирол (более плотный пенопласт), пенополиэтилен, и пенополиуретан (большинство потребителей знают этот материал, как монтажную пену, или как поролон, который, действительно, является одним из видов пенополиуретана, но в качестве строительной теплоизоляции не используется из-за короткого срока службы). Главное достоинство таких теплоизоляционных материалов – высокая влагостойкость.

3. Теплоизоляция из натуральных растительных материалов

Самый древний, самый экологически чистый и на сегодняшний день самый дорогой вид теплоизоляции. Деревянные стены, полы, потолки, пробковое или бамбуковое покрытие и даже обычная вата, которую бабушки засовывают на зиму между оконными рамами – основные представители теплоизоляции из натуральных растительных материалов. Главные недостатки – подверженность горению и гниению, а также низкая влагостойкость. Чтобы повысить влагостойкость, такие материалы подвергаются обработке водостойкими пропитками или финишной обработке лаками или красками. А еще выпускают пробковую подложку под ламинат и паркетную доску, пропитанную битумом или прорезиненную.

4. Теплоизоляция с использованием натуральных растительных материалов

Древесно-волокнистные и древесно-стружечные плиты низкой плотности используются в-основном как теплоизоляционные материалы. Недостатки у плит такие же как и у теплоизоляции из натуральных растительных материалов плюс сомнительная экологичность (при изготовлении плит используются клеи и смолы). Для повышения влагостойкости такие материалы также подвергаются обработке водостойкими пропитками.

А чтобы было еще веселее, производители выпускают теплоизоляционные материалы под своими торговыми марками, описать которые практически невозможно, упомяну наиболее популярные.

Таблица 1. Виды теплоизоляции.

Тепло- изоляция

Виды

Торговые марки

Применение

Ориентиро- вочная цена, $/м2

Огне стойкость

Водопогло-щение, % от объема

Плотность, кг/м3

Тепло- проводность, Вт/м·К

1. Из минераль-ного сырья

Стекловата

Isover
Ursa
Knauf
Утеплит

Внутренняя теплоизоляция
стен, потолков,
кровли, вентилируемых фасадов, возможно использование
для утепления
полов по лагам

1.2 – 1.5
1.2 – 1.5
1.2 – 1.5
0.9 – 1.2

НГ

20-30

11
11
11
10 и 12
0.038 – 0.047

Базальтовая вата

Rockwool
Izobox Light
Izovol
Термобазальт 

Внутренняя теплоизоляция
стен, потолков,
кровли, полов, вентилируемых фасадов

2.5 – 10
2. 0 – 2.3
2.3 – 2.6
2.3 – 8

НГ

30 – 20
30
25
30 – 12

20 – 60
25
35
30 – 180

0.038 – 0.05

Пеностекло

Foamglass
Нео Тим
и др.

Теплоизоляция
стен, потолков
кровли

27-33

НГ

2

180-200

0.037 – 0.044

2. Из полимеров

Пенопласт

ПСБ-15
ПСБ -25
ПСБ-35
ПСБ-50
Пеноплекс 

Теплоизоляция
стен, потолков,
кровли, возможно использование
для утепления
полов по лагам

0. 9 – 1.1
1.4 – 1.7
2.1 – 2.3
2.7 – 3
2.1 – 2.3

Г1-Г2

3
2
2
2
2

10-11
20-25
30-35
45-50
30-35
~0.042
~0.039
~0.037
~0.035
~0.037

Пенополи-этилен

Изолон, Izoflex, Izopor, Verdani и др.

В качестве подложки под ламинат и паркетную доску

0.5 – 3

Г1-Г2

<1

25 – 200

0.038 – 0.045

Пенополи-уретан (ППУ)

Промышлен-ный

бытовой (баллончики)

Наносится напылением на любые поверхности

15-30

Г1-Г2

1-3

до 30

25-80

15-25

0. 027-0.035

3. Из расти-тельных материалов

пробка

Parkolag
Kraiburg
Maestro и др.   
Внутренняя теплоизоляция
стен, потолков, кровли, полов

3-11

Г3-Г4

<1

110-320 0.035-0.045

3. С использо-ванием расти-тельных материалов

целлюлозная вата

Эковата

Теплоизоляция стен выдуванием или вручную

~0.5$ /кг

Г1-Г2

до 50

35-65 0. 032-0.041

Мягкие ДВП

М-1, М-2, М-3, М-4, М-12, М-20 и др. Теплоизоляция
стен, потолков, кровли, полов

2-5

Г3-Г4

до 50

100-400 0.06 – 0.08

Примечания:

1. Теплоизоляционные материалы выпускаются разной толщины. Необходимая толщина теплоизоляции определяется теплотехническим расчетом. 

2. Теплоизоляционные материалы, которые чаще используются как конструктивные элементы, в таблице не даны. Для таких материалов первостепенным является расчет на нагрузки.

3. Для основных теплоизоляционных материалов Цена за 1 м2 дана для толщины 50 мм.

4. Большинство теплоизоляционных материалов могут выпускаться как в простом виде, так и в комбинированном – с алюминиевой пленкой.  

Теплоизоляционные материалы – виды и свойства

Утепление любого помещения при строительстве нового здания или во время проведения ремонтных работ – это неотложный пункт, от которого впоследствии зависит дальнейший комфорт пребывания в данном помещении. Теплоизоляционные материалы, виды и свойства их – это основа, от которой будет зависеть уют и комфорт в жилище, создание оптимального микроклимата и поддержание необходимой температуры.

Именно от свойств утеплителей зависит, будет ли сохраняться тепло в здании, поэтому к подбору данных показателей необходимо подходить очень ответственно.

Основные показатели и свойства утеплителей

Задача любого утеплителя обеспечивать самые оптимальные показатели теплоизоляции. Что такое теплоизоляция? Это максимально возможное снижение потерь тепла. Теплоизоляционные материалы (виды и свойства) не обходятся без технологий теплосбережения, которые предусматривают рациональное использование энергетических ресурсов.

Теплоизоляцию классифицируют в зависимости от способа передачи тепла:

  • отражающего типа;
  • предотвращающего типа.

Среди основных свойств теплоизоляционных материалов стоит выделить:

  1. Низкий уровень теплопроводности.

Благодаря данному свойству можно существенно сократить или даже полностью оградить помещение от потерь тепла. У разных утеплителей данный показатель разнится. Чем тоньше утеплитель по толщине, тем ниже у него коэффициент теплопроводности.

  1. Паропроницаемость.

Все теплоизоляционные материалы должны помогать выводить влажный воздух из помещения. При подборе утеплителя, необходимо поинтересоваться уровнем паропроницаемости материала, из которого возводились стены здания. Необходимо подбирать утеплитель с более низким показателем паропроницаемости, нежели у стенового материала.

  1. Влагостойкость.

Утеплитель не должен пропускать или впитывать влагу.

  1. Долговечность.

Выбирать необходимо такой утеплитель, срок эксплуатации которого не ниже аналогичного показателя самого здания.

  1. Негорючесть.

Данное свойство не позволяет возгораться материалу, но одновременно помогает переносить воздействие высоких температур (благодаря данному свойству утеплители отвечают нормам пожарной безопасности).

  1. Экологичность.

Важно, чтобы при производстве утеплителя использовались только натуральные компоненты. Это будет обеспечивать безопасность и для человека, и для окружающей среды в целом.

  1. Постоянность.

Утеплитель не должен давать просадку, его физические и механические свойства не должны изменяться со временем.

Виды утеплителей и их область применения

Благодаря тому, что теплоизоляционные материалы, виды и свойства их разнообразны, подобрать наиболее подходящий материал для утепления можно без особых проблем. Среди самых популярных и востребованных утеплителей следует отметить:

  • Стекловолокно (стекловата)

Материал имеет волокна, которые образуются путём втягивания. Благодаря такой структуре стекловолокно очень прочное, упругое, хорошо справляется с вибрациями, имеет высокий уровень шумоизоляции и прекрасно выполняет задачу сохранения тепла.

Материал вообще не впитывает влагу. Его широко применяют для защиты фасада, утепления деревянных домов, кровли, пола, для облицовки неровных поверхностей.

  • Пенополиуретан

Как правило, данный вид утеплителя наносится на поверхность в виде пены, благодаря чему им можно утеплять труднодоступные места (изгибы, щели). Материал обладает низким показателем теплопроводности, устойчив к химическим веществам, применяется для защиты стен, кровли и трубопроводов.

  • Минеральная вата

Утеплитель образуется из базальта, волокно которого способно выдерживать высокий температурный режим. Минеральная вата не воспламеняется, безопасна для человеческого организма, не меняет свои свойства под воздействием химически агрессивной среды.

Минеральную вату используют для утепления перекрытий, стен, в конструкциях вентилируемых фасадов и т. п.

  • Пенополистирол (пенопласт)

Данное синтетическое изделие принадлежит к классу пластмасс, и состоит из множества пустот, которые заполнены воздухом. Благодаря тому, что материал имеет большой процент содержания воздуха, он обладает высокими теплоизоляционными показателями. Он применяется для утепления перекрытий, полов, стен, крыш и т. п.

Пенопласт выдерживает большие нагрузки при сжатии и не поддаётся воздействию кислот и щелочей.

Материал отличается высоким уровнем паропроницаемости и пожаростойкости, тепло- и шумоязоляции. Материал толщиной всего 10 мм по своим показателям по параметрам схож со сплошной стеной кирпичной кладки в 2,5 м.

Благодаря тому, что теплоизоляционные материалы (виды и свойства) снижают затраты на отопление дома, во время их приобретения следует обращать внимание на три основных показателя:

  • дата изготовления;
  • теплопроводность;
  • противопожарные свойства.


Какой материал лучше всего подходит для теплоизоляции?

В большинстве производственных процессов, после сырья, самым дорогостоящим элементом является энергия, поэтому теплоизоляция имеет решающее значение. Когда дело доходит до чистой прибыли, теплоизоляция – это ценное вложение. Это помогает снизить операционные расходы бизнеса и его углеродный след, а также повысить эффективность его процессов.

В теплоизоляции используются различные материалы в широком диапазоне промышленных и коммерческих применений, но ключевые проблемы, которые они все решают, одни и те же: уменьшить количество потребляемой или потерянной энергии; способствовать устойчивости за счет сокращения выбросов CO 2 ; и для повышения общей эффективности и безопасности.Результатом должно стать повышение производительности и, в конечном итоге, прибыльности.

Теплоизоляционные материалы должны быть теплостойкими и огнестойкими, но при этом легко адаптироваться к широкому спектру условий и обстоятельств.

Одним из таких материалов является слюда , природный минерал, но есть и другие.

Стекловолокно в теплоизоляции

Это обычно используемый изоляционный материал. Он может минимизировать теплопередачу и негорючий.Стекловолокно поставляется в виде одеял или листов. Его легко установить, он экономичен и может легко сжиматься для герметизации неровных поверхностей.

Однако большим недостатком стекловолокна является то, что с ним потенциально опасно обращаться. Поскольку он изготовлен из тонко тканого силиконового материала, остатки порошка и крошечные волокна могут раздражать глаза, легкие и кожу.

Таким образом, для всех, кто работает со стекловолокном в качестве теплоизоляционного материала, необходимо надлежащее оборудование для обеспечения безопасности.

Целлюлоза как теплоизолятор

Хотя целлюлоза используется в производстве одежды и бумаги и является важным компонентом того, что мы едим, она также является теплоизоляционным материалом.

Поскольку изолятор изготавливается из переработанного картона, бумаги и подобных материалов, он очень экологичен. Он огнестойкий, потому что настолько компактен, что практически не содержит кислорода.

Он рассматривается как альтернатива стекловолокну, потому что он более экологичный и менее опасный, хотя у некоторых людей может быть аллергия на пыль от переработанной бумаги, которую он использует.

Является ли минеральная вата хорошим теплоизолятором?

Минеральная вата – это общий термин для нескольких различных типов теплоизоляции.Это может быть минеральная вата из базальта; или это может означать шлаковую вату, которая является побочным продуктом производства стали из железорудных отходов.

Минеральная вата влагостойкая и звукоизолирующая. Минеральная вата негорючая и может быть эффективной для изоляции больших площадей при использовании с другими более огнестойкими формами изоляции. Однако сам по себе он не содержит огнестойких добавок и поэтому не всегда может быть идеальным для ситуаций, связанных с экстремальной жарой.

Как и другие виды теплоизоляции, для работы с ним требуется защитное снаряжение, так как образуются крошечные полоски, которые при вдыхании могут вызвать заболевание легких или вызвать раздражение кожи.

Работает ли пенополиуретан как изолятор?

В настоящее время полиуретановая пена, использующая в качестве распылителя газ, не содержащий хлорфторуглеродов, представляет собой форму теплоизоляции с низкой плотностью, которая является огнестойкой и легко наносится на труднодоступные места и не повреждает озоновый слой во время заявление.

Он широко используется для теплоизоляции зданий, но может иметь определенные недостатки при применении. Это происходит из-за того, что распыляемая пена недостаточно плотная или не наносится в достаточной степени, чтобы покрыть все необходимые области, требующие изоляции.

Он также может иногда сокращаться и отрываться от каркаса.

Полистирол в теплоизоляции

Пенополистирол бывает двух типов: вспененный и экструдированный (также известный как пенополистирол). Он является термопластичным и используется в качестве изоляционного материала как для звукоизоляции, так и для температуры. Обычно его разрезают на блоки, но он легко воспламеняется, если сначала не покрыт огнезащитным составом. Поскольку он поставляется в виде блоков, он менее пригоден для применения в различных изоляционных материалах по сравнению с некоторыми другими формами теплоизоляции.

Слюда в теплоизоляции

Слюда обладает естественным термическим сопротивлением и чрезвычайно универсальна, что делает ее пригодной для теплоизоляции в широком спектре отраслей промышленности .

Это семейство силикатных минералов, которые образуются слоями. Они прочные, но легкие, очень жаропрочные и не проводят электричество.

Два типа слюды, используемые в теплоизоляции: мусковитовая (белая) слюда и флогопит (зеленая) слюда.

В качестве теплоизоляции слюда встречается как в продуктах, так и в технологических процессах. Он используется, например, в теплозащитных экранах для автомобилей и самолетов, а также в бытовых приборах, таких как фены и тостеры; но по нему также проходят газовые и нефтяные трубы и печи для обработки различных металлов.

На самом деле его области применения настолько широки, что важной частью нашей работы является создание прототипа , где мы тестируем новые продукты и процессы, в которых используется слюда.

В качестве теплоизоляционного материала слюда имеет множество различных форм.Он поставляется в виде гибких листов и рулонов ламината, но также может иметь жесткие, специально вырезанные формы для промышленного использования.

Какая теплоизоляция подойдет вам?

Для производителей есть выбор теплоизоляционных материалов. Однако, как теплоизоляционный материал, слюда сама по себе обеспечивает широкий спектр возможностей и применений, поддерживая множество различных отраслей и секторов.

Пожалуйста, позвоните нам по телефону +44 20 8520 2248 для получения дополнительной информации.Вы также можете отправить электронное письмо по адресу [email protected] или заполнить нашу онлайн-форму запроса. Мы свяжемся с вами как можно скорее.

Теплоизоляционный материал – обзор

Резюме

Теплоизоляционные материалы, материалы или комплексы материалов, очевидно устойчивые к тепловым токам, – это общее название теплоизоляционных и теплоизоляционных материалов. Тепловая консервация предназначена для предотвращения распространения или потери тепла, а теплоизоляция – для предотвращения проникновения внешнего тепла.По химическому составу теплоизоляционные материалы делятся на неорганические, органические и композиционные. В неорганических теплоизоляционных материалах в качестве сырья используются минералы, обычно в волокнистой и пористой форме, и из них можно производить панели, листы, бухты или оболочки труб. Органические изоляционные материалы изготавливаются из органического сырья (смол, пробки, древесной шерсти, древесной стружки и т. Д.).

Среди звукопоглощающих материалов твердые и гладкие материалы с плотной структурой обладают меньшей звукопоглощающей способностью, но большей отражающей способностью, например. грамм. терраццо-бетонные, мраморные, бетонные и цементно-штукатурные стены и т.д .; грубые, рыхлые и мягкие пористые материалы с взаимопроникающими микропорами обладают лучшей звукопоглощающей способностью, но меньшей отражающей способностью, такие как стекловата, минеральная вата, пенопласт, древесноволокнистые плиты, полуперфорированные декоративные акустические древесноволокнистые плиты и микропористые плитки и т. д. Факторы, влияющие на звукопоглощающие свойства пористого материала: степень внутренней перфорации и характеристики пор материала; толщина материала; воздушная прослойка на тыльной стороне материала; влияние температуры и влажности.

Материалы, способные ослаблять или блокировать распространение звуковой волны, называются звукоизолирующими материалами. Для изоляции воздушного шума в качестве звукоизолирующих материалов следует использовать плотные, твердые и тяжелые материалы (такие как глиняная черепица, стальные панели, железобетон и т. Д.); тогда как материалы с хорошими звукопоглощающими характеристиками обычно являются легкими и рыхлыми пористыми, которые не подходят для использования в качестве звукоизолирующих материалов. Чтобы изолировать твердый звук, наиболее эффективная мера – отрезать путь распространения звуковой волны.

Обычно используемые акустические плиты включают минеральную вату, стекловату, перлит, кальциево-пластиковую пену и пенополистирол, декоративные акустические плиты, а также армированные волокном плиты из силиката кальция и т. Д.

Высокотемпературная теплоизоляция

Убедитесь, что вы выбрали Материал, который может выдерживать параметры вашего приложения, является центральным требованием при выборе высокотемпературного теплоизоляционного продукта. Существует множество материалов, которые можно использовать для изоляции, и выбранный вами материал должен выдерживать особые требования вашего оборудования и условий эксплуатации.

Высокотемпературные приложения

При выборе изоляционного решения для высокотемпературных сред необходимо тщательно изучить допуски рассматриваемых материалов, чтобы обеспечить безопасную работу и длительный срок службы.

Типичные области применения, работающие при высоких температурах:

  • Печи и котлы
  • Печи и печи
  • Компенсирующие муфты
  • Фланцы
  • Теплообменники
  • Компрессоры
  • Турбины
  • Чиллеры Компоненты двигателя и выхлопной системы
  • Сварка
  • Сушилки
  • Трубопроводы пара высокого давления

Высокотемпературные изоляционные материалы

Существует ряд изоляционных материалов, подходящих для использования при высоких температурах, например:

  • Стекловолокно Стекловолокно
    обеспечивает превосходную гибкость и стабильность размеров при температурах до 1200 ° F. Стекловолокно, удобное для пользователя, без запаха и дыма, не разъедает металлы, которые защищает. Стекловолокно, один из самых распространенных изоляционных материалов, используется в самых разных повседневных задачах.
  • CMS Wool
    Несмотря на то, что шерсть CMS немного дороже, чем стекловолокно, она не имеет запаха и может выдерживать температуры до 2192 ° F. Вата CMS используется в широком спектре обычных применений.
  • Super Wool
    Super Wool отличается низкой биостойкостью и, следовательно, требует меньших требований к безопасности и охране здоровья при обращении с материалом.Супер шерсть демонстрирует низкую теплоемкость и низкую теплопроводность, а также исключительную стойкость к тепловому удару. Способная выдерживать диапазон температур от 500 до 2000 ° F, обычное применение супер-шерсти включает бытовые электроприборы, печи, печи для обжига, лабораторные печи, футеровку котлов, риформеры, противопожарную защиту, высокотемпературные прокладки, изоляцию турбин, компенсаторы и промышленное оборудование. .
  • Керамическое волокно
    Этот неорганический материал не содержит дыма и обладает изоляционными свойствами выше средних, низкой теплоемкостью, низкой теплопроводностью и надежной термостойкостью.Его рекомендуется использовать при температурах, превышающих 2000º F. Типичные области применения керамического волокна включают печи и обжиговые печи, высокотемпературные прокладки, компенсаторы, футеровку котлов, лабораторные печи, риформеры и противопожарную защиту.
  • Поликристаллическое волокно
    Поликристаллическое волокно, изготовленное в основном из алюминия и кремния, создается с помощью золь-гель технологии. Волокна с двойной иглой делают поликристаллические волокна особенно прочными и гибкими. Они могут выдерживать температуры до 2912 ° F и устойчивы к химически разрушающим, окислительным или атмосферно восстановленным средам.Общие области применения включают керамические печи и футеровку печей.

Изоляционные материалы бывают разных вариантов, и знание того, какой из них выбрать, имеет решающее значение для эффективной и безопасной работы. Позвольте нам помочь выбрать, какой вариант будет наиболее эффективным для вашего приложения. Чтобы узнать больше, просмотрите наши продукты для высокотемпературной изоляции или запросите дополнительную информацию о продукте.

Анизотропное, легкое, прочное и сверхтермоизолирующее нанодревесина с естественно выровненной наноцеллюлозой

Аннотация

Из-за преобладающих энергетических проблем и неудовлетворенных потребностей в области теплоизоляции наблюдается рост интереса к материалам для регулирования температуры.Мы демонстрируем исключительные возможности терморегулирования крупномасштабного иерархического выравнивания нанофибрилл целлюлозы, непосредственно изготовленных из древесины, далее именуемой нанодревесиной. Нанодревесина демонстрирует анизотропные термические свойства с чрезвычайно низкой теплопроводностью 0,03 Вт / м · К в поперечном направлении (перпендикулярно нанофибриллам) и примерно в два раза более высокой теплопроводностью 0,06 Вт / м · К в осевом направлении из-за иерархической выровненные нанофибриллы внутри высокопористой основы. Анизотропия теплопроводности обеспечивает эффективное рассеивание тепла в осевом направлении, тем самым предотвращая локальный перегрев на освещенной стороне, обеспечивая улучшенную теплоизоляцию вдоль задней стороны, которую нельзя получить с помощью изотропных теплоизоляторов. Нанодревесина также показывает низкий коэффициент излучения <5% в солнечном спектре и способность эффективно отражать солнечную тепловую энергию. Более того, нанодревесина легкая, но прочная благодаря эффективному соединению между выровненными нанофибриллами целлюлозы с высокой прочностью на сжатие 13 МПа в осевом направлении и 20 МПа в поперечном направлении при 75% -ной деформации, что превосходит другие теплоизоляционные материалы. такие как кремнезем и полимерные аэрогели, пенополистирол и шерсть.Превосходное управление температурой, обилие, способность к биологическому разложению, высокая механическая прочность, низкая массовая плотность и масштабируемость производства нанодревесины делают этот материал очень привлекательным для практических применений в области теплоизоляции.

ВВЕДЕНИЕ

Поиск высокоэффективных, легких и механически прочных теплоизоляционных материалов является ключом к экономии энергии как для жилых, так и для коммерческих зданий, что приводит к снижению выбросов углекислого газа, как это продвигается U.S. Министерство энергетики ( 1 , 2 ). Хорошая теплоизоляция также очень желательна для многих электрических, оптических и космических приложений, в которых необходимо жестко регулировать теплопередачу. Материалы для теплоизоляции требуют сложной комбинации характеристик, таких как низкое поглощение / излучательная способность тепловой энергии, хорошая механическая прочность и низкая массовая плотность, а также способность к биологическому разложению и экономическая эффективность ( 2 4 ). Современные теплоизоляционные материалы обычно изотропны, что не идеально для эффективного управления температурным режимом.Кроме того, разработка изотропных теплоизоляционных материалов достигла плато, когда дальнейшее снижение теплопроводности приводит к нежелательным компромиссам в механической прочности, сложности изготовления и нестабильности характеристик ( 5 8 ). Типичные теплоизоляционные материалы, включая шерсть, пенополистирол и древесную пробку, часто имеют теплопроводность, близкую к воздуху (~ 0,03 Вт / м · К) ( 3 , 6 , 9 , 10 ), что является изотропным по своей природе.Низкое значение k ~ 0,02 Вт / м · К было получено с помощью кремнеземных аэрогелей. Однако аэрогели диоксида кремния хрупкие, и их трудно приготовить в больших размерах.

Разработка анизотропного терморегулирующего материала вызвала значительный интерес ( 6 , 11 15 ). Значительный прогресс достигнут в создании многослойных материалов (сверхрешеток) и наноматериалов с анизотропной теплопроводностью ( 6 , 8 , 14 22 ).Перенаправление тепловой энергии в анизотропных теплоизоляторах может помочь (i) предотвратить локализацию тепла и (ii) уменьшить тепловой поток в направлении более низкой теплопроводности, что, таким образом, приводит к улучшенной теплоизоляции, которая не может быть достигнута с помощью изотропных материалов. Однако эти типы анизотропных материалов обычно требуют сложной конструкции и энергоемких производственных процессов, что препятствует их широкому применению в крупномасштабных системах.

Наноцеллюлоза – это богатый землей ресурс биомассы, обладающий огромным потенциалом для производства экологически чистых продуктов с низкими рисками для окружающей среды, здоровья человека и безопасности ( 23 32 ).Существует значительный интерес к непрерывной разработке продуктов на основе наноцеллюлозы с добавленной стоимостью, которые могут вытеснить их существующие аналоги, таких как устройства на бумажной основе и гибкие покрытия для управления светом ( 23 , 33 35 ). Однако создание продуктов на основе наноцеллюлозы, таких как пена целлюлозы, основанное на подходе «снизу вверх», включает в себя ряд механических и химических процессов, а также последующую сборку нанофибрилл целлюлозы ( 36 ).Кроме того, современные методы повторной сборки нанофибрилл целлюлозы часто приводят к образованию фибрилл со случайной ориентацией ( 23 , 30 , 37 39 ). Получаемые в результате продукты часто демонстрируют плохие механические свойства, что запрещает их применение в качестве изоляционных материалов для крупномасштабных применений в строительстве и аэрокосмической отрасли. Например, Бергстрём и др. . ( 6 ) продемонстрировал первый анизотропный нанокомпозитный супертепловой изолятор методом сублимационной сушки.Однако дальнейшее улучшение механической прочности и процесса изготовления необходимо для крупномасштабных и реалистичных применений (<200 кПа в осевом направлении и <50 кПа в поперечном направлении при деформации 90%).

РЕЗУЛЬТАТЫ

Здесь мы разрабатываем простой, но эффективный подход «сверху вниз» для приготовления анизотропного теплоизолирующего объемного материала путем прямой химической обработки натуральной древесины, которая называется «нанодревесиной». Унаследовав расположение натурального дерева, нанодревесина состоит из ориентированных нанофибрилл целлюлозы, что приводит к анизотропной теплопроводности с чрезвычайно низким значением ~ 0. 03 Вт / м · К в поперечном направлении (перпендикулярно выравниванию нанофибрилл целлюлозы) и ~ 0,06 Вт / м · К вдоль направления выравнивания целлюлозы. Эта анизотропия может позволить теплу распространяться в направлении нанофибрилл, что предотвращает локальное разрушение из-за накопленной тепловой энергии ( 11 ) и уменьшает тепловой поток в поперечном направлении. Выровненные нанофибриллы целлюлозы также обеспечивают высокую механическую прочность ~ 13 МПа, что намного выше, чем у других материалов с низкой теплопроводностью, таких как пенополистирол, вспененная целлюлоза и аэрогель кремнезема ( 40 , 41 ).Мы также обнаружили, что нанодревесина обладает уникально низким коэффициентом излучения, что делает его высокоэффективным блокатором теплового излучения Солнца.

Как показано на фиг. 1A, при нагревании источником радиационного нагрева (фиг. 1A) слоистая структура выровненных нанофибрилл целлюлозы эффективно отражает поступающую радиационную энергию, перенаправляя поглощенное тепло в плоском направлении. На рис. 1В показан большой кусок нанодревесины с массовой плотностью 0,130 г / см 3 . Естественно выровненные деревянные каналы (сосуды и фибриллярные просветы трахеиды) способствуют эффективному извлечению лигнина, в значительной степени сохраняя исходную микро / наноструктуру.Длина как показано на рисунке составляет около 15 см, что демонстрирует масштабируемость нашего нисходящего процесса производства нанодревесины.

Рис. 1. Нанодревесина, полностью полученная из натурального дерева, с иерархически выровненными нанофибриллами целлюлозы, может использоваться в качестве анизотропного супертеплоизолятора.

( A ) Схема теплоизоляционных свойств нанодревесины. ( B ) Цифровая фотография нанодревесины и соответствующих свойств, полезных для изоляции зданий.

ОБСУЖДЕНИЯ

Мезопористая структура нанодревесины

Три основных компонента клеточных стенок древесины, агрегаты паракристаллических фибрилл целлюлозы, аморфная гетерополисахарид гемицеллюлоза и разветвленный лигнин на основе полифенолпропана, переплетаются друг с другом, образуя прочную и функциональную структуру. переносят воду, ионы и питательные вещества от корней к листьям во время фотосинтеза ( 42 44 ). Нанодревесина изготавливается непосредственно из натуральной американской липы.Обратите внимание, что мы используем американскую липу в качестве демонстрации, и что можно использовать и другие породы дерева. Образец вырезан по направлению роста (рис. S1). Исходный кусок дерева был обработан смесью NaOH и Na 2 SO 3 , нагретой до температуры кипения, с последующей обработкой H 2 O 2 для удаления лигнина и большей части гемицеллюлозы из природного материала. дерево (рис. S2) ( 45 , 46 ). Микроструктура древесины и иерархическая структура хорошо сохраняются во время этого процесса, и образец впоследствии подвергается сублимационной сушке (рис.S3) ( 47 ) для сохранения нанопористой структуры делигнифицированной древесины. Потеря массы и изменение содержания лигнина для образца размером 12 мм × 30 мм × 120 мм во время химического процесса также показаны на рис. S2. Полученные нанодревесины состоят в основном из нанофибрилл целлюлозы в виде агрегатов фибрилл. Эффективность удаления лигнина и гемицеллюлозы также демонстрируется высокой яркостью изготовленных нанодревесин (рис. 1 и 2C, а также фиг. S1-S3 и S7).

Инжир.2 Структурная характеристика нанодревесины.

( A ) Схемы выровненных нанофибрилл целлюлозы в нанодревесе до и после удаления смешанного аморфного лигнина и гемицеллюлозы. ( B ) Концентрация лигнина, гемицеллюлозы и целлюлозы в натуральной древесине и нанодревесе. ( C ) Фотография образца нанодревесины, которая демонстрирует чистый яркий цвет и выровненную текстуру. ( D ) Нанодревесина демонстрирует большую пористость, иерархическое структурное выравнивание агрегатов фибрилл и сохраняемое выравнивание агрегатов фибрилл.( E ) СЭМ-изображение микроскопических пористых и выровненных каналов внутри нанодревесины, вид сбоку. ( F ) СЭМ-изображение стенок пористых каналов, состоящих из ориентированных нанофибрилл. ( G ) СЭМ-изображение сверху каналов нанодревесины с разделенными концами нанофибрилл.

На рис. 2А показаны схемы образцов натурального дерева и нанодревесины. В исходных образцах натуральной древесины аморфный лигнин и гемицеллюлоза вплетены между нанофибриллами целлюлозы ( 42 44 ).Хотя лигнин и гемицеллюлоза в значительной степени удаляются в нановоде (рис. 2, A и B), полученная структура имеет повышенную пористость и лучшее выравнивание нанофибрилл благодаря удалению лигнина, не связанного с выравниванием, и потенциальному процессу самовыравнивания во влажном состоянии. Это также соответствует более ранним моделям, показывающим, как целлюлоза, лигнин и гемицеллюлоза располагаются в стенке фибрилл ( 48 , 49 ). Стенки ячеек древесины изначально состоят из первичных и вторичных стенок ячеек, причем последние далее делятся на три слоя, а именно S1, S2 и S3 ( 50 ). Ячейки связаны друг с другом средней ламелью. Среди слоев клеточной стенки средний слой S2 во вторичной клеточной стенке является самым толстым и состоит из параллельных агрегатов нанофибрилл целлюлозы, выровненных под небольшим углом к ​​оси длины. Угол фибрилл в слое S2 варьируется от 10 ° до 15 ° и может помочь определить выравнивание клеточной стенки ( 43 ). После химической очистки агрегаты нанофибрилл целлюлозы в слое клеточной стенки можно непосредственно наблюдать в поперечном сечении фибрилл с помощью сканирующей электронной микроскопии (SEM) (рис.2, Г и Ж). На этих изображениях очевидно, что стенки фибрилл изолированы друг от друга из-за удаления основной части богатой лигнином средней ламеллы и лигнина в первичной и вторичной клеточной стенке, как показано при сравнении структуры нативной древесины. с SEM на фиг. S4 и S5. Частично изолированные фибриллы помогают еще больше снизить поперечную теплопроводность. Из-за естественного выравнивания фибрилл в древесине отдельные нанофибриллы целлюлозы, составляющие клеточные стенки, упаковываются и выстраиваются параллельно друг другу, что приводит к иерархическому выравниванию в нанодревесе. Каждый агрегат фибрилл состоит из выровненных нанофибрилл кристаллической целлюлозы с высокими пропорциями (диаметр ~ 30 нм и длина примерно> 1 мкм), которые упакованы несколькими десятками глюкановых цепей в кристаллическом порядке и удерживаются вместе межмолекулярными водородными связями. и силы Ван-дер-Ваальса ( 51 ). Молекулярное выравнивание целлюлозных цепей может быть отображено с помощью характеристики малоуглового рассеяния рентгеновских лучей (рис. S6). Лигнин и гемицеллюлоза имеют аморфную структуру, но гемицеллюлоза может располагаться вдоль фибрилл.Однако количественная оценка этого очень ограничена, по крайней мере, насколько известно авторам. Удаление лигнина и гемицеллюлозы также увеличивает пористость структуры стенки фибрилл ( 49 ) при условии, что делигнифицированные фибриллы сушат осторожно, чтобы избежать разрушения стенки фибрилл и отделить агрегаты фибрилл друг от друга. Кроме того, эффективная экстракция лигнина и гемицеллюлозы естественным образом снижает плотность нанодревесины (0,13 г / см 3 ) (рис. S1).

Анизотропная теплопроводность нанодревесины

Нанодревесина обладает четырьмя ключевыми характеристиками, необходимыми для превосходной теплоизоляции. Во-первых, исходя из оценки результирующей массовой плотности и плотности сухих стенок ячеек, пористость нанодревесины увеличивается до ~ 91% [плотность сухой ячеистой стенки липы составляет 1,491 г / см 3 ( 52 )], что намного больше, чем у оригинальной липы (около 60%). Большая пористость приводит к гораздо меньшей теплопроводности (теоретическая оценка теплопроводности в дополнительных материалах).Во-вторых, удаление смешанного лигнина и гемицеллюлозы в значительной степени снижает связь между фибриллами целлюлозы и агрегатами фибрилл внутри стенки фибрилл, что приводит к гораздо более слабому взаимодействию между фибриллами и снижению теплопроводности в поперечном направлении. В-третьих, выровненные агрегаты нанофибрилл с высоким аспектным соотношением приводят к анизотропному тепловому потоку вдоль направления выравнивания нанофибрилл. Наконец, большинство пустотных каналов (фибриллы и элементы сосудов) в нанодревесе имеют диаметр от 10 до 100 мкм, тогда как отдельные фибриллы целлюлозы в агрегатах фибрилл клеточной стенки демонстрируют расстояние между агрегатами между фибриллами в нанометровом диапазоне.Когда расстояние между ними меньше, чем длина свободного пробега воздуха, теплопроводность через воздух будет затруднена. Однако в мезопористых нанодревесах преобладают поры микропористого размера, и влияние наноразмерных пор на дальнейшее снижение теплопроводности незначительно. Дальнейший анализ влияния микропор и наноразмерных пор на теплопроводность делигнифицированной древесины как в осевом, так и в поперечном направлениях можно найти в обсуждении S3.

На рис. 3 (A и B) показаны инфракрасные изображения анизотропных процессов теплопередачи в образцах при облучении падающим лазером на длине волны излучения 820 нм со знаком 0.95 Вт / мм 2 интенсивность и размер пятна 0,5 мм. Для образца нанодревесины, разрезанного поперек направления роста, тепловая энергия проходит в основном параллельно деревянным каналам и остается ограниченной в поперечном направлении. Для образца нанодревесины, вырезанного вдоль направления роста древесины, профиль градиента температуры имеет эллиптическую форму из-за анизотропии теплопроводности в поперечном и осевом направлениях.

Рис. 3 Поперечный и осевой перенос тепла в нанодревесе.

( A ) Схематическое изображение теплопроводности вдоль стенок деревянных ячеек как осевой теплопередачи, тогда как ( B ) теплопроводность по стенкам ячеек и полым каналам (то есть просвет и наноразмерные поры внутри стенок фибрилл. ) называется поперечной теплопередачей. ( C ) Измеренная теплопроводность нанодревесины от комнатной температуры до 65 ° C. ( D ) Измеренная теплопроводность исходной древесины от комнатной температуры до 80 ° C.( E ) Сравнение теплопроводности натурального дерева и нанодревесины при комнатной температуре.

Теплопроводность в радиальном направлении составляет 0,032 ± 0,002 Вт / м · К при 25,3 ° C и 0,056 ± 0,004 Вт / м · K при 24,3 ° C в осевом направлении (рис. 3C). Для сравнения, натуральная американская липа показывает теплопроводность 0,107 ± 0,011 Вт / м · К в радиальном направлении и 0,347 ± 0,035 Вт / м · К в осевом направлении при 22,7 ° C (рис. 3D). Теплопроводность натурального дерева остается практически постоянной от комнатной температуры до 80 ° C.Однако для нанодревесины теплопроводность в поперечном направлении медленно увеличивается с 0,03 до 0,055 Вт / м · К при более высоких рабочих температурах, тогда как в осевом направлении значение медленно изменяется от 0,056 до 0,10 Вт / м · К.

Механические и оптические свойства нанодревесины

Мы сравнили теплопроводность нашей нанодревесины (в поперечном направлении) и других типичных теплоизоляционных материалов, таких как пенополистирол, пенополистирол (EPS), шерсть и дерево (рис.4А). Нанодревесина имеет более низкую теплопроводность по сравнению с большинством имеющихся в продаже теплоизоляционных материалов ( 53 , 54 ). На рис. 4В приведены механические свойства, включая напряжение сжатия существующих теплоизоляционных материалов с теплопроводностью менее 0,05 Вт / м · К. Также для сравнения добавлены характеристики натурального дерева ( 55 ). Прочность на сжатие проверяли в поперечном и осевом направлениях.Механические испытания в поперечном направлении показывают экспоненциально возрастающее напряжение (рис. S8) при сжатии из-за уплотнения (показано на вставке на рис. 4В). Максимальное напряжение сжатия в осевом направлении приближается к 13 МПа (рис. S8). Насколько нам известно, прочность наших нанодревесин представляет собой наивысшее значение среди доступных супер изоляционных материалов ( 6 , 40 , 41 , 56 , 57 ). Строительные блоки нашего нанодревесины состоят из длинных и выровненных агрегатов фибрилл с большим отношением поверхности к объему и высоким соотношением сторон.Поскольку химическая обработка нанодревесины удаляет почти весь лигнин и большую часть гемицеллюлозы, стенки фибрилл более пористые, и между фибриллами больше промежутков. Это приводит к более низкой прочности на сжатие нанодревесины по сравнению с древесиной в направлении толщины волокон. Это также улучшает гибкость образцов, как показано на фиг. 4C. Однако из-за сохраняющейся ориентации фибрилл в стенке фибрилл (то есть изгиба вдоль оси фибрилл) делигнифицированные образцы обладают значительной прочностью как в направлении толщины фибрилл, так и в большей степени в направлении длины. фибрилл, поскольку механические свойства фибрилл сохраняются благодаря сохранению ориентации кристаллической структуры молекул целлюлозы, которая является несущим элементом стенки фибрилл.Таким образом, свойства при растяжении и сжатии, естественно, изменяются по-разному из-за различий в механизмах разрушения для этих ситуаций нагружения. Более подробное обсуждение механических свойств нанодревесины можно найти в разделе S1 дополнительных материалов.

Рис. 4 Характеристика нанодревесины.

( A ) Сравнение теплопроводности существующих теплоизоляционных материалов. Нанодревесина демонстрирует очень низкую поперечную теплопроводность наряду с высокой анизотропией. ( B ) Механические свойства нанодревесины по сравнению с другими материалами с теплопроводностью менее 0,05 Вт / м · К, а также с натуральной липой. ( C ) Фотографии большого куска нанодревесины и тонкой и раскатываемой нанодревесины. Стрелки указывают направление выравнивания. ( D ) Отражение нанодревесины. Нанодревесина демонстрирует больший коэффициент отражения, покрывающий спектр солнечного излучения (то есть более низкий коэффициент излучения, взвешенный по солнечной энергии, по сравнению с деревом).Синяя кривая – это воздушная масса 1,5 солнечного спектра. а.е., условные единицы. ( E ) Инфракрасное изображение натурального дерева и нанодревесины при освещении лазером с длиной волны 820 нм. ( F ) Температурный профиль образцов в (E).

Для оценки излучательной способности нанодревесины был проведен тест в ультрафиолетовой и видимой области (LAMBDA 35, PerkinElmer) для образца толщиной 3 мм. Образец показывает в среднем ~ 95% отражения в диапазоне длин волн от 400 до 1100 нм (рис.4D). Коэффициент пропускания ниже базового уровня шума (<0,1%). Коэффициент излучения (коэффициент излучения ≈ поглощающая способность; приближение серой поверхности) рассчитан как ~ 5%, что указывает на эффективное отражение тепловой энергии от радиационного источника тепла (Newport Standard Solar Simulator). Для сравнения, натуральное дерево поглощает в среднем 50% света в видимом спектре света. Это уникальное широкополосное всенаправленное отражение яркого нанодревесины является результатом плотных наноразмерных центров рассеяния на его поверхности ( 30 , 31 ).Коллимированный источник тепла 820 нм с размером пятна 1 мм и входной мощностью 0,95 Вт / мм 2 падал перпендикулярно поверхности нанодревесины и образцов натуральной древесины. Как показано на рис. 4 (E и F), максимальная температура составляет 36 ° C при полной ширине на половине высоты (FWHM) 5,2 мм для нанодревесины, по сравнению с 99,4 ° C для натуральной древесины с FWHM 4,0. мм, благодаря (i) меньшему поглощению и (ii) лучшему отведению тепла нанодревесиной.

Теплоизоляция нанодревесины по сравнению с другими изоляторами

Чтобы продемонстрировать возможности терморегулирования нашей разработанной нанодревесины, мы протестировали образцы как под токопроводящим, так и под излучательным источником тепла и сравнили его с другими теплоизоляционными материалами, включая кремнезем. аэрогель (изотропный), пенополистирол (изотропный) и натуральная американская липа (анизотропный).Экспериментальная установка для кондуктивной и радиационной схем теплопередачи показана на рис. 5 (D и G соответственно). Коммерческий аэрогель диоксида кремния (www.buyaerogel.com) имеет толщину 0,7 см, и мы приготовили блок нанодревесины того же размера, что и аэрогель диоксида кремния, для справедливого сравнения. Температура измерялась термопарой типа К. При нагревании токопроводящим источником тепла до 160 ° C было показано, что стабилизированная температура задней стороны кремнеземного аэрогеля составляет 36,5 ° C, тогда как температура нанодревесины составляет 30 ° C. 5 ° C (рис. 5E). Затем мы сравнили изоляционные характеристики образца делигнифицированной древесины с пенополистиролом и натуральным деревом (рис. 5F). Были применены три различных температуры, и результаты показывают, что нанодревесина дает самую низкую температуру задней стороны из-за низкой теплопроводности в поперечном направлении в сочетании с предпочтительным рассеиванием тепла в осевом направлении из-за его анизотропии. Кроме того, изоляционные свойства различных материалов были оценены под действием лучистого источника тепла.При воздействии солнечного спектра кремнеземный аэрогель поглощает ~ 20% и передает ~ 60% лучистого тепла. Для сравнения, ~ 95% энергии излучения было отражено, тогда как было обнаружено, что только ~ 2% поглощается нанодревесиной, как показано на рис. 5C. Температура тыльной стороны аэрогеля диоксида кремния и нанодревесины составляла 49,9 ° и 22,8 ° C, соответственно, ниже 320 мВт / см 2 (фиг. 5H). Это представляет собой гораздо большую разницу в характеристиках теплоизоляции по сравнению с испытаниями с источником тепла на основе теплопроводности.Температуры тыльной стороны образцов натурального дерева, пенополистирола и нанодревесины толщиной 2 мм при мощности менее 500 мВт / см 2 составляли 57,1 °, 39,3 ° и 29,9 ° C, соответственно (рис. 5I). Чтобы дополнительно проиллюстрировать эффект анизотропной теплопроводности при применении теплоизоляционных материалов, моделируемый температурный профиль для изотропной пены целлюлозы (или пенополистирола / пенополистирола) и нанодревесины под излучением источника тепла показан на рис. S11. Пенополистирол имеет изотропную теплопроводность 0.03 Вт / м · К, аналогично нанодревесе в поперечном направлении. По сравнению с изотропным изолятором приготовленное нанодревесо может перенаправлять поступающую тепловую энергию в осевом направлении, что приводит к гораздо более низкой температуре передней и задней стороны изоляционного материала.

Рис. 5 Теплоизоляционные характеристики нанодревесины по сравнению с аэрогелем кремнезема, пенополистиролом и натуральным деревом.

( A ) Фотография образца нанодревесины толщиной 1 мм.( B ) Вид сбоку на СЭМ каналов нанодревесины, состоящих из ориентированных нанофибрилл целлюлозы. ( C ) Оптическое отражение, пропускание и поглощение кремнеземного аэрогеля и нанодревесины, освещенных стандартным имитатором солнечного излучения. ( D ) Схематическое описание нанодревесины, освещаемой поперечно (перпендикулярно нанофибриллам). ( E и F ) Сводка результатов, показывающих стабилизированные температуры задней стороны теплоизоляторов, когда верхняя поверхность находится в прямом контакте с токопроводящим источником тепла через термопасту.( G ) Схематическое описание измерительной установки с использованием источников лучистого тепла (имитатор солнечной энергии). ( H и I ) Сводка результатов, показывающих стабилизированные температуры задней стороны каждого теплоизолятора, при этом верхняя поверхность получает энергию излучения от имитатора солнечного излучения.

Мы также провели анализ затрат на материалы для производства нанодревесины, включая сырье и обрабатывающие химикаты (таблица S1), которые могут составлять всего 7,44 долл. США / м 2 .Нанодревесина может быть переработана в различные формы и размеры, подходящие для различных применений, требующих теплоизоляции, от паровых и химических труб до строительных конструкций. Обратите внимание, что при толщине менее 1 мм ломтик нанодревесины можно скручивать и складывать, что делает его подходящим для сценариев, требующих гибкости, таких как трубопроводы на химических заводах и электростанциях. Кроме того, теплоизолирующие материалы обычно состоят из компонентов микроскопических размеров и стекловаты, которые могут вызывать проблемы со здоровьем, поскольку вдыхаемые фибриллы могут проникать в легкие людей и животных при вдыхании без разложения.С другой стороны, целлюлоза является биоразлагаемой, что делает ее экологически чистой при использовании в качестве изоляции. Следует также подчеркнуть, что целлюлоза не вызывает аутоиммунных реакций при контакте с тканями человека и не может разлагаться организмом человека.

ВЫВОДЫ

Полностью полученное из натурального дерева, мы сообщили о термически анизотропном нанодревесе, состоящем из иерархически ориентированных нанофибрилл целлюлозы. Недавно разработанная нанодревесина демонстрирует отличные теплоизоляционные свойства.Вместо использования сложных процессов изготовления наноразмерного анизотропного термоизолятора, такого как сверхрешетки или реконструированные слоистые низкоразмерные материалы, нанодревесина может быть изготовлена ​​с помощью масштабируемого нисходящего подхода с помощью простой химической обработки. В качестве доказательства концепции масштабируемости мы продемонстрировали куски нанодревесины длиной более 15 см и толщиной более 2 см. Нанодревесина демонстрирует уникальные анизотропные термические свойства с низкой поперечной теплопроводностью, равной 0.03 Вт / м · К с анизотропией 2 (более высокая осевая теплопроводность ~ 0,06 Вт / м · К). Нанодревесина также обладает следующими уникальными свойствами: (i) высокая механическая прочность 13 МПа благодаря кристаллическому упорядочению глюкановых цепей фибрилл целлюлозы, что в ~ 50 раз выше, чем у пены целлюлозы, и в> 30 раз выше, чем у в продаже самые прочные теплоизоляционные материалы; (ii) низкая массовая плотность; (iii) низкий коэффициент излучения от 400 до 1100 нм; и (iv) обильные, устойчивые и потенциально низкие затраты.Недавно разработанная нанодревесина в качестве супертеплового изолятора с низкой теплопроводностью потенциально может найти применение в энергоэффективных зданиях, теплоизоляции для космических применений и изоляции электрических устройств.

МЕТОДЫ

Механические испытания

Испытания образца на сжатие были выполнены с использованием испытательной машины Tinius Olsen h35KT. Два образца были сжаты в поперечном и осевом направлениях соответственно. Образцы шириной 5 мм были испытаны при длине контура 25 мм и скорости ползуна 5 мм мин. -1 .

Прямое измерение температуры при различных источниках тепла

Проводящий источник тепла с площадью контакта 4 мм × 4 мм использовался в прямом контакте с теплоизоляционными материалами через проводящую термопасту. Имитатор солнечной энергии из Ньюпорта использовался для обеспечения теплового излучения, которое падает перпендикулярно верхней поверхности изоляторов с размером светового пятна 5 мм. Во время проведения измерений температура окружающей среды составляла 21 ° C.На измерительную термопару типа К наносили теплопроводную термопасту. Устойчивое состояние было достигнуто до того, как данные были записаны.

Измерение теплопроводности

Камера температуры и влажности использовалась для хранения образца в течение минимум 24 часов при 25 ° C и влажности 20% перед измерением. В нашем измерении влажность контролировалась на уровне 20%, при этом регистрировалась температурная зависимость теплопроводности. Устройство лазерной вспышки (LFA) – это бесконтактный переходный метод измерения температуропроводности материалов, который применялся для тестирования подавляющего большинства объемных материалов, включая органические-неорганические гибридные композиты ( 58 60 ) и металл-полупроводник. нанокомпозиты ( 61 ).Согласно Feng и др. . ( 62 ) и Винер и др. . ( 63 ), LFA можно использовать для измерения аэрогелей, теплопроводность которых составляет всего 0,01 Вт / м · К. Во время измерения мгновенный лазерный импульс использовался для нагрева одной стороны образца, а температурный отклик на другой стороне регистрировался детектором. Здесь Netzsch LFA (LFA 457) использовался для измерения температуропроводности. Теплопроводность образца к затем может быть рассчитана по следующему уравнению: k = αρCp (1) где α (мм 2 / с) – измеренная температуропроводность в определенном направлении, ρ – плотность, а C p – тепловая мощность.Для определения теплоемкости использовали метод дифференциальной сканирующей калориметрии (ДСК). Используя Netzsch DSC 204 F1 Phoenix, теплоемкости были получены в три этапа: (i) определение скорости теплового потока нулевой линии с двумя пустыми тиглями, один из которых является эталоном, а другой – образцом; (ii) измерение стандартных образцов с известной теплоемкостью в тиглях для образцов; и (iii) измерение образцов. В наших измерениях в качестве эталонного материала использовался сапфир, поскольку его теплоемкость, как известно, находится в диапазоне от 70 до 2500 К.Шесть образцов нанодревесины (одинаковой плотности) были измерены в диапазоне температур от 22 ° до 65 ° C, три в поперечном направлении и еще три в осевом направлении. Планка погрешностей была создана на основе разброса выборки и ошибки оборудования. Используя данные о температуропроводности и теплоемкости, полученные выше, на рис. 3C показана теплопроводность образцов нанодревесины, рассчитанная по формуле. 1. Шкала погрешности теплопроводности была рассчитана на основе данных измерений и шкалы погрешности теплоемкости, коэффициента диффузии и массовой плотности после тестирования шести различных образцов (0.13 ± 0,03 г / см 3 ).

ДОПОЛНИТЕЛЬНЫЕ МАТЕРИАЛЫ

Дополнительные материалы к этой статье доступны по адресу http://advances.sciencemag.org/cgi/content/full/4/3/eaar3724/DC1

рис. S1. Нанодревесина состоит из иерархически выровненных массивов нановолоконной целлюлозы, полученной из натурального дерева.

рис. S2. Содержание и внешний вид лигнина между химическими процессами.

рис. S3. Процесс сушки нанодревесины.

рис. S4. СЭМ изображения натурального дерева.

рис. S5. СЭМ изображения нанодревесины.

рис. S6. Выравнивание молекулярного уровня в иерархическом выравнивании нанодревесины.

рис. S7. Образцы нанодревесины могут быть изготовлены в широком диапазоне размеров.

рис. S8. Испытание нанодревесины на сжатие в осевом и радиальном направлениях.

рис. S9. Прочность на растяжение нанодревесины и исходной древесины.

рис. S10. Сравнение коммерчески доступного аэрогеля диоксида кремния и нанодревесины.

рис.S11. Температурные зависимости изотропных и анизотропных теплоизоляторов от точечного источника тепла.

рис. S12. Два уровня пористости (микропористые и наноразмерные поры) в нанодревесах.

рис. S13. Термогравиметрический анализ.

рис. S14. Цифровые изображения делигнифицированной деревянной детали после> 1 года пребывания в окружающей среде.

рис. S15. Испытание на воздухопроницаемость нанодревесины.

рис. S16. Промышленный метод резки древесных плит.

рис.S17. Нанодревесина состоит из ориентированных нановолокон целлюлозы с мезопористой структурой.

рис. S18. Сравнение отражательной способности между плоскостью вертикального и горизонтального разреза нанодревесины.

рис. S19. Теплопроводность в поперечном и осевом направлении при влажности 20% и 80% соответственно.

рис. S20. Прочность нанодревесины на разрыв при влажности 20 и 80%.

таблица S1. Стоимость материалов для производства нанодревесины.

таблица S2. Сравнение нанодревесины, бумаги и сотовой бумажной обертки.

обсуждение S1. Анализ механических свойств нанодревесины

обсуждение S2. Численное моделирование изотропных и анизотропных теплоизоляторов

обсуждение S3. Оценка теплопроводности

обсуждение S4. Термическая стабильность нанодревесины

обсуждение S5. Проницаемость нанодревесины

обсуждение S6. Масштабируемое производство

обсуждение S7. Сравнение со стопкой бумаги и сотовой оберточной бумаги

обсуждение S8.Влияние влажности

Ссылки ( 64 70 )

Это статья в открытом доступе, распространяемая в соответствии с условиями некоммерческой лицензии Creative Commons Attribution, которая разрешает использование, распространение и воспроизведение на любом носителе. при условии, что в результате будет использовано , а не для коммерческой выгоды и при условии, что оригинальная работа правильно процитирована.

ССЫЛКИ И УКАЗАНИЯ

  1. Лан, З. Рен, Термоэлектрические нанокомпозиты для преобразования тепловой энергии, в Наноматериалы для устойчивой энергетики , Q. Li, Ed. (Springer, 2016).

  2. S. Volz, Тепловые наносистемы и наноматериалы (Springer, 2009).

  3. К. Х. Ли, Дж. П. Петерсон, Двойная роль наночастиц в повышении теплопроводности суспензий наночастиц, на Международном конгрессе и выставке машиностроения (IMECE2005) ASME 2005, Орландо, Флорида, 5-11 ноября 2005 г.

  4. Wood Chemistry (Elsevier, ed.2, 2013).

  5. Р. М. Роуэлл, Справочник по химии древесины и древесным композитам (CRC Press, изд. 2, 2012 г.).

  6. Т.А. Табет, Ф. А. Азиз, Угол микрофибриллы целлюлозы в древесине и его динамическое механическое значение, in Целлюлоза – фундаментальные аспекты , Т. ван де Вен, Л. Годбаут, ред. (InTech, 2013).

  7. Э.-л. Халт, «CP / MAS 13C-ЯМР-спектроскопия, применяемая для изучения структуры и взаимодействия волокон древесины и целлюлозы», диссертация, Королевский технологический институт KTH, Стокгольм, Швеция (2001).

  8. D. W. Green, J. E. Winandy, D.Э. Кречманн, Механические свойства древесины, в Справочнике по древесине : Древесина как технический материал (Министерство сельского хозяйства США, Лесная служба, Лаборатория лесных продуктов, 1999).

  9. М. Г. Каганер, Израильская научная программа по теплоизоляции

Благодарности: Мы благодарим Мэрилендский наноцентр и его лабораторию AIMLab за поддержку.Мы благодарим J.Y. Чжу из Лаборатории лесных товаров США по анализу состава исходной и делигнифицированной древесины. Мы также благодарим Р. Дж. Боненбергера и Х. Хао из Мэрилендского университета за помощь в проведении механических испытаний. Финансирование : Авторы признают, что они не получали финансирования в поддержку этого исследования. Вклад авторов: T.L. и Л.Х. придумали идею и спланировали эксперименты. J.S., T.L., C.J. и A.G.способствовал подготовке проб и оптимизации масштабирования. X.Z., T.L., Z.Y., R.Y., B.Y. и T.F. провели измерение и моделирование теплопроводности, а также определение характеристик теплоизоляции. T.L., J.S., J.D., C.C., G.P. и Y.Y. отвечали за SEM-изображения, композиционный анализ и механические испытания. T.L., F.J., S.X. и L.W. способствовал обсуждению и характеристике делигнифицированной древесины. Конкурирующие интересы: L.H. and T.L. являются изобретателями по заявке на патент, относящейся к этой работе (раскрытие информации об изобретении Университета Мэриленда PS-2017-117, поданной 9 января 2017 г.).Все остальные авторы заявляют, что у них нет конкурирующих интересов. Доступность данных и материалов: Все данные, необходимые для оценки выводов в статье, представлены в документе и / или дополнительных материалах. Дополнительные данные, относящиеся к этой статье, могут быть запрошены у авторов.

  • Copyright © 2018 Авторы, некоторые права защищены; эксклюзивный лицензиат Американской ассоциации содействия развитию науки. Нет претензий к оригинальным работам правительства США. Распространяется по некоммерческой лицензии Creative Commons Attribution 4.0 (CC BY-NC).

Поведение полиуретановых систем в качестве теплоизоляции

Ключевой основой практичности полиуретановых систем для строительного сектора являются их превосходные характеристики в качестве теплоизоляции , , обеспечивающие энергоэффективность и внутренний комфорт зданий.

Все полиуретановые системы являются результатом химической реакции между диизоцианатом и полиолом. После такой реакции создается безопасный и очень универсальный материал, который, в зависимости от его комбинации с другими веществами, приобретает такие свойства, как сопротивление , гибкость, жесткость или изоляцию .

Synthesia Technology – производитель и дистрибьютор полиуретановых систем , которые находят множество применений в строительстве и промышленных секторах. Самыми популярными применениями полиуретана в строительстве являются выступ (напыляемый полиуретан) и инжекционный (инжектированный полиуретан).

Теплоизоляция и полиуретановые системы

Полиуретановые системы входят в число лучших изоляционных материалов , используемых в строительстве.Это изолирующее свойство обусловлено структурой небольших ячеек, а также составом газа, заключенного внутри этих ячеек.

Их структура обеспечивает низкую теплопроводность , благодаря чему требуемые значения теплоизоляции достигаются при минимальной толщине. По сравнению с другими материалами, теплоизоляция из полиуретана на 700% лучше, чем из кирпича, и на 50% лучше, чем из стекловаты.

Теплопроводность и термическое сопротивление полиуретана варьируются в зависимости от толщины, но благодаря этим термическим коэффициентам эта требуемая толщина намного меньше, чем у других изоляционных материалов.Это дает преимущества в отношении пространства и экономии.

Во всей системе теплоизоляции, будь то полиуретан или другой материал, правильная установка является ключевым моментом, так что конечный результат достигает желаемых тепловых характеристик. Если установка теплоизоляции не выполнена должным образом, могут появиться такие проблемы, как проникновение воздуха , , пустоты или грязь, которые не позволят изоляционному узлу обеспечивать хорошие рабочие характеристики.

Теплопроводность полиуретановых систем

Одним из свойств, определяющих, имеет ли материал хорошие теплоизоляционные свойства, является теплопроводность.

Сравнивая теплопроводность основных изоляционных материалов, мы видим, что полиуретановые системы обеспечивают лучшую изоляцию благодаря чрезвычайно низкому уровню проводимости.

Материал Теплопроводность
Кирпич 0.49-0.87 км / Вт
Бетонный блок 0.35-0.79 км / Вт
Пенополистирол 0.031-0.050 км / Вт
Экструдированный полистирол 0,029-0,033 км / Вт
Полиуретановые системы 0,022-0,028 км / Вт
Минеральная вата 0,031-0,045 км / Вт

Термическое сопротивление изоляционного материала

В зависимости от значения проводимости, указанного в техническом паспорте системы, и как только мы узнаем нанесенную толщину, можно определить термическое сопротивление теплоизоляционного материала.

Полиуретановые системы – один из материалов, обеспечивающих лучшую теплоизоляцию при минимальной толщине. Мы пришли к такому выводу после многочисленных испытаний, в которых сравнивали необходимую толщину различных изоляционных материалов, чтобы получить определенную степень теплоизоляции.

Хотя различия в уровнях теплопроводности между пенополистиролом , экструдированным полистиролом, минеральной ватой и полиуретановыми системами (PUR) составляют несколько десятичных знаков (см. Таблицу в предыдущем разделе), они могут представлять собой разницу в 3-4 см для получения те же тепловые характеристики .

Все вышеперечисленные характеристики превращают полиуретановые системы в отличное решение для теплоизоляции как жилых, так и коммерческих или промышленных зданий.

Другие области применения полиуретановых систем

Применение полиуретановых систем в качестве теплоизоляции – не единственное их преимущество. У нас есть широкий выбор полиуретановых систем для промышленного и строительного применения.

Каковы преимущества натуральных изоляционных материалов? – Энергид

Натуральные изоляционные материалы бережно относятся к окружающей среде и вашему здоровью и становятся все более популярными.Еще одна причина их популярности заключается в том, что их эффективность сопоставима с промышленными материалами.

Виды натурального утеплителя

Натуральный утеплитель бывает трех видов:

  1. Изоляторы на основе животных : овечья шерсть, перья и др.
  2. Завод – изоляторы на основе: конопли, хлопка, целлюлозы, древесного волокна, пробки и др.
  3. Минеральные изоляторы на основе : глина, перлит и вермикулит.

Все это полезно для нашего здоровья и окружающей среды

Поскольку они не содержат раздражающих волокон, натуральные материалы обычно не вредны для здоровья. Их также легко установить, так как не требуется никаких особых мер предосторожности.

Воздействие на окружающую среду, которое они производят, также намного меньше, чем у синтетического утеплителя, хотя его нельзя полностью исключить. Действительно:

  • Вы должны принять во внимание потребление энергии, необходимое для производства и транспортировки им.
  • вам также необходимо проявлять бдительность в отношении возможных синтетических продуктов (например, лаков и средств от насекомых), которые могут быть использованы при их обработке.

10 евро / м

2 бонус на энергетические гранты в Брюсселе

Если вы живете в Брюсселе и используете натуральные изоляционные материалы из растительных и животных волокон, вы имеете право на премию в размере 10 евро / м 2 в 2019 году.

Есть одно условие: более 85% слоя (слоев) изоляции должно быть выполнено из возобновляемых материалов, а коэффициент теплопроводности материала должен быть равен 0.055 Вт / мК или ниже.

Более подробную информацию о бонусных грантах 2019 года в Брюсселе можно найти здесь.

Каждый материал имеет свои преимущества

Помимо преимуществ, присущих всем натуральным утеплителям, каждый натуральный материал может похвастаться своими достоинствами. Некоторые из них более гибкие и могут идеально вписаться в пространства необычной формы, в то время как другие имеют жесткую форму, что делает их идеальными для изоляции вертикальных поверхностей.

Конопля (от 10 до 25 евро / м

2 )

Конопля продается в виде блоков, рулонов, а также в виде гранул и является полезным материалом по ряду причин:

  • Производится в Европе
  • Это отличный акустический изолятор
  • Как материал, регулирующий влажность, предотвращает риск возникновения плесени и грибка
  • Огнестойкий: конопля не загорается и не выделяет токсичных паров
  • Поддон из конопли улавливает примерно 100 кг CO 2 в атмосфере

Овечья шерсть (от 10 до 15 евро / м

2 )

Овечью шерсть чаще всего покупают мытой и обрабатываемой от клещей.Однако вы также можете купить его в необработанном виде напрямую у фермеров. Упакован в рулоны разной толщины.

  • Обладает пониженной горючестью
  • Поскольку это влагорегулирующий материал, он может поглощать до 30% своего веса без потери своих изоляционных свойств
  • Поскольку он гибкий, он может вписываться в строительные конструкции сложной формы

Пробка (от 20 до 40 евро / м

2 )

Пробка изготавливается из коры дерева (пробкового дуба), которая измельчается в гранулы, затем нагревается и агломерируется.Он продается в виде плитки или гранул. Избегайте использования плит, армированных синтетическим клеем, выделяющим токсичные вещества!

  • Пробка очень легкая
  • Он устойчив к гниению и водонепроницаем
  • Огнестойкий и термитостойкий

Целлюлозная вата (от 10 до 25 евро / м

2 )

Целлюлозная вата производится из переработанной бумаги и продается отдельно (что дешевле) или в виде плит.

  • Он имеет такой же коэффициент изоляции, как и стекловата
  • .
  • Это очень хороший акустический изолятор
  • Легко установить

Кокосовая вата (от 25 до 30 евро / м

2 )

Кокосовая вата происходит из волокон, окружающих кокосы. Продается в виде гибких рулонов, полужестких досок, а также насыпных.

  • Это отличный шумоизолятор (шум от ударов снижается на 25-35 дБ)
  • Обладает очень хорошей паропроницаемостью (μ = от 1 до 2)
  • Не наносит вреда окружающей среде при переработке

Полное руководство по теплоизоляции оборудования для холодной погоды

Содержится в этом сообщении блога:

Введение

Как и в случае с другими ключевыми элементами вашей одежды, существует множество вариантов выбора правильного материала для тактического зимнего снаряжения.

То же самое и с теплоизоляцией, которая предлагает два различных варианта и один промежуточный вариант. Первый вариант:

Природные теплоизоляционные материалы

  • Мех
  • Гусиный пух
  • Шерсть мериноса

Они хорошо известны и тщательно исследованы.

Они обеспечивают отличные – если не лучшие в своем классе – характеристики и термические свойства, именно те, которые мы стремимся достичь для всех искусственных материалов.

Поэтому они служат основой для того, что мы ищем в желаемом теплоизоляционном материале.

Похоже, это простой выбор, который завершает наш поиск альтернативного решения, в котором наша основная цель – высокое соотношение качества и возможностей.

Увы, нет.

Поскольку тактическая отрасль – это очень специфическая область, требующая особого использования снаряжения, мы должны понимать, что не каждый материал является правильным выбором, даже если он имеет первоклассное качество.

Естественно, мы можем выйти за рамки природы и взглянуть на доступные нам синтетические решения. Во-первых, у нас есть:

Синтетические теплоизоляционные материалы:

  • Микрофлис
  • Синтетический наполнитель (примеры включают G-Loft, Polartec и Climashield)

Искусственная изоляция была разработана как попытка решить некоторые проблемы, возникающие при использовании естественных типов изоляции, которые трудно решить.

Вес – одна из двух наиболее важных проблем, вторая – это восприимчивость к воде (то есть гидрофильные свойства материала), которая может легко нарушить эффективность одежды в холодную погоду.

И то, и другое является ключевым моментом при попытке создать оптимальную тактическую одежду.

Последняя категория в материалах, которые мы обсуждаем, – это смесь двух ранее упомянутых.

Синтетика / натуральная

Примером последнего является включение верблюжьей шерсти в материал с кластерной структурой.

Мы можем взглянуть на пример на G-Loft. Его базовое двухкомпонентное волокно в этом случае будет заменено верблюжьей шерстью, сохраняя целостность кластеров.

В настоящее время мы изучаем эту область – особенно по той причине, что считаем ее очень интересной.

Но мы также понимаем, что он еще недостаточно развит, чтобы мы могли его активно преследовать.


ПОДПИСАТЬСЯ НА БОЛЬШЕ, КАК ЭТО INTEL.

Введите адрес электронной почты и будьте в курсе будущих тем о снаряжении для холодной погоды.

Вы подписываетесь на получение обновлений по электронной почте, от которых вы можете отказаться в любое время.
Посетите нашу политику конфиденциальности для получения дополнительной информации


Как работает теплоизоляция?

Термическая изоляция означает предотвращение передачи тепловой энергии от одного места к другому на куске материала.Таким образом, если материал обладает теплоизоляционными свойствами, он сможет замедлить передачу большого количества тепла.

Одежда работает на основных принципах теплопередачи или теплового потока, если хотите. Ваше тело излучает тепло при нормальной температуре от 36,5 до 37,5 ℃.

Холодным зимним днем ​​разница температур между холодным воздухом и вашим теплым телом достаточно велика, чтобы представлять реальную угрозу – если только между вами и этим ледяным воздухом нет теплоизоляции.

Без слоя одежды на вашем теле холодный наружный воздух напрямую контактирует с вашей кожей и понижает ее температуру до точки, при которой вы можете замерзнуть (если есть ветер, этот ветер охлаждает ваше тело еще быстрее).

Итак, если, например, вы находитесь в окружающей среде с минусовой температурой и надеваете зимнюю куртку, цель этой одежды будет заключаться в том, чтобы улавливать достаточно тепла от вашего тела и позволять ему передавать с достаточно медленной скоростью, чтобы вы от замерзания.

Вот как эта куртка замедлит процесс отвода тепла:

  • Куртка (особенно с теплоизоляционной опилкой) улавливает тепло вашего тела и препятствует его быстрой передаче в окружающий холодный воздух.
  • Куртка действует как слой между внешним холодом и теплом, излучаемым вашим телом, и – из-за задержанного внутри воздуха – замедляет передачу тепла.

Тепло – это просто другое слово для обозначения потока энергии.

Обычно он течет от высокого к низкому – от вашего теплого тела (высокая точка) к окружающему его холодному воздуху (низкая точка).

Мы можем нарушить этот поток и при этом оставаться в тепле, используя слой, который обладает способностью ингибировать теплопередачу.

Но что можно считать хорошим изолятором?

В основном, чем менее плотный материал используется для изоляции, тем лучше изоляционные характеристики.Один из наименее плотных материалов, о котором вы можете подумать, – это воздух.

Но не похоже, что воздух должен считаться изоляционным материалом, потому что мы можем свободно проходить через него.

Что ж, воздух – это газ, и дело в том, что газы обладают чрезвычайно хорошими характеристиками термического ингибирования благодаря своей структуре.

Плотные материалы состоят из близко расположенных атомов. Чем ближе интервал, тем плотнее материал. Однако чем шире расстояние, тем менее эффективна передача энергии от одного атома к другому.

Вот почему воздух является прекрасным теплоизолятором. Он состоит из широко расположенных атомов.

Следовательно, если воздух содержится в системе связанных небольших пакетов, он может обеспечить оптимальную длительную изоляцию во всех направлениях.

Что мы ищем в теплоизоляционных материалах?

Прежде чем изготавливать одежду для холодной погоды, ее необходимо спроектировать. Прежде чем его можно будет спроектировать, за ним должна стоять руководящая идея.

Поэтому мы всегда начинаем разработку снаряжения для холодной погоды с осознания того, что материал должен иметь высокие характеристики в каждой из этих категорий, чтобы считаться подходящим выбором:

  • Теплоизоляция
  • Прочность / уход
  • Сжимаемость
  • Воздухопроницаемость
  • Восприимчивость к воде

Давайте подробнее рассмотрим каждую из этих категорий, чтобы понять ее важность.

При этом мы сравним натуральный гусиный пух (традиционно высокоэффективный стандарт) с синтетическими неткаными материалами (если быть точным, G-Loft).

Мы не будем рассматривать мех в сравнении, потому что это такой тяжелый материал (хотя он обеспечивает лучшую теплоизоляцию даже во влажном состоянии).

Кроме того, мы не одобряем использование меха в тактической одежде именно по этой причине – из-за большого веса.

Дополнительное снаряжение, которое операторы так часто носят с собой, и так добавляет значительный вес; последнее, что им нужно, – это чтобы их тактическая одежда также много весила изнутри.

И мы также не будем сравнивать микрофлис с шерстью мериноса.

Оба являются отличным выбором для добавления защитных слоев от холода, благодаря одной только их функциональности.

Но в этом обсуждении мы хотим рассмотреть только материал, который служит первичным изолятором против отрицательных температур.

Теплоизоляционные свойства

В этой категории представлен самый простой выбор. Все, что нам нужно сделать, это проверить материалы на предмет их характеристик при низких температурах.

В этом отношении гусиный и утиный пух обладают исключительной теплоизоляцией, превосходящей по характеристикам синтетические волокна.

В частности, мы ищем материалы с высокими теплоизоляционными свойствами по индексу веса.

Наполняющая способность – это мера пуха или «пушистости» пуха, которая слабо коррелирует с изоляционной способностью пуха.

Чем выше степень наполнения, тем больше воздуха определенного веса может задержать пух; таким образом, пух будет обладать большей изоляционной способностью.

Победитель: Гусиный пух. Он имеет один из самых высоких показателей в этой категории, превосходя нетканые синтетические материалы.

Долговечность / уход

Затем мы рассмотрим, как теплоизоляция работает под воздействием времени и использования. Мы также думаем, что нужно делать, чтобы ваше снаряжение оставалось в первоклассном состоянии.

Раньше гусиный пух годился только для химчистки (что может быть настоящей болью, особенно если вы находитесь в командировке или если многократная стирка сделала ее менее эффективной).

Но недавно мы столкнулись с новыми воплощениями снаряжения с наполнителем из гусиного пуха, которое можно успешно стирать при низких температурах.

Несоблюдение надлежащего ухода за курткой этого типа со временем приводит к слипанию и слипанию. Это, в свою очередь, приводит к значительному снижению функциональности.

Группа нетканых синтетических материалов имеет здесь преимущество. Он обеспечивает более легкий уход при стирке и не образует комков, что означает, что он сохраняет свою функциональность.

Победитель: нетканый синтетический материал.

Сжимаемость

Когда дело доходит до тактической одежды, очень важно упаковать критически важную куртку.

Вы должны иметь возможность вынуть его из рюкзака и получить мгновенную защиту от холода, без необходимости предварительно размахивать им и выполнять церемониальное воскрешение, чтобы надуть его достаточным количеством воздуха, чтобы восстановить его форму и функциональность.

Хотя гусиный пух обладает отличной сжимаемостью, на самом деле, после извлечения из рюкзака, он набухает через некоторое время.

Еще одна проблема – скопления гусиного пуха после многократных сжатий, с которой вы почти наверняка столкнетесь, если будете владеть одеждой достаточно долго.

Синтетические нетканые материалы, такие как G-Loft, с другой стороны, имеют в качестве основы для кластеров волокна.

Это означает, что из-за свойств этого волокна эти кластеры сразу же возвращаются в исходное состояние после сжатия сразу после того, как вы вытаскиваете одежду из рюкзака, что позволяет ей быть готовой к использованию, когда она вам понадобится.

Победитель: нетканый синтетический материал.

Воздухопроницаемость

Физические нагрузки в холодных условиях могут вызвать потливость. Соответственно, становится существенной необходимость обеспечить адекватную воздухопроницаемость для рассеивания влаги.

И гусиный пух, и нетканый синтетический материал обладают исключительной воздухопроницаемостью, что делает их жизнеспособным выбором в этой категории.

Победитель: розыгрыш .

Чувствительность к воде

Материалы, склонные к впитыванию воды, как правило, имеют более низкие изоляционные свойства во влажном состоянии.

Вода имеет два ключевых аспекта, которые нам необходимо понять, прежде чем объявить победителя в этой категории.

  • Прежде всего, некоторые теплоизоляторы резко уменьшаются в объеме, когда они поглощают воду. Это приводит к меньшему количеству воздуха в заправке. В свою очередь, это снижает связанные с ним теплоизоляционные свойства.
  • Во-вторых, вода, захваченная наполнителем, насыщает воздух вокруг него и ограничивает перенос влаги от вашего тела наружу.

Гусиный пух впитывает воду. Когда он становится водонасыщенным, его эффективность практически исчезает. Возможно, вы столкнулись с этим явлением с снаряжением, которое у вас уже есть.

Еще один недостаток гусиного пуха – он долго сохнет.

Чтобы решить эту проблему, современные решения пропитывают пух водоотталкивающим агентом. Это делает пух пригодным для использования во влажных условиях.

Однако это решение поднимает еще одну проблему: вопрос долголетия и ухода.

В отличие от пуха синтетические волокна не впитывают влагу.

Следовательно, они гарантируют очень высокую тепловую мощность даже во влажных условиях. А когда сами волокна намокают, можно рассчитывать, что они высохнут очень быстро.

Победитель: нетканый синтетический материал.

Вниз против G-Loft

Когда дело доходит до теплоизоляции, вниз по-прежнему царит гора. Его высокие тепловые характеристики на вес вряд ли могут сравниться с синтетикой.

Как и многие другие натуральные материалы, теплоизоляционные свойства пуха со временем эволюционировали с помощью науки.

Сегодня пух – один из лучших доступных нам вариантов.

Пух, однако, является дорогостоящим в производстве – например, чтобы получить пух высочайшего качества, нужно начинать с лучших перьев и тщательно вручную выбирать из них. Не то чтобы для нас это какой-то фактор, но он примечателен.

Сравните это с G-Loft и другими подобными материалами.

Они отмечают флажки почти в каждой рассматриваемой нами категории. Флизелиновые синтетические материалы надежны, просты в уходе и долговечны.

В наших тестах на теплоизоляционные свойства нетканый синтетический материал покрывает обе ноги.

Но как – в конце концов – измерить это количественно?

Что ж, для научных целей существует удобный тест, который называется «модель кожи», и мы используем его для определения определенных параметров.

Этот метод используется для определения значений Rct и Ret наших материалов-кандидатов.В частности, мы исследуем:

  • Rct (термическое сопротивление). Это значение зависит от теплопроводности и толщины материала-кандидата.
  • Ret (сопротивление водяному пару). Это значение измеряет способность материала блокировать проникновение водяного пара.

Однако такой тест может раскрыть только часть истории, а вам нужно ее целиком.

Другой способ проверить материал – это испытать его в полевых условиях.

Наше оборудование проходит обширные полевые испытания – в реальных жизненных ситуациях, с которыми сталкиваются реальные операторы, – прежде чем мы доработаем дизайн.

Это основная причина, по которой мы выбираем G-Loft, его исключительные возможности и соответствие тому, что мы ищем в этом типе сценария.

Это остается выбором, за которым мы стоим.

Как все это сочетается в нашем снаряжении?

Как вы понимаете, при разработке идеального снаряжения для работы в экстремально холодную погоду для тактического использования необходимо учитывать множество факторов.

Исходя из всего этого, мы понимаем, что не существует материала, «который будет править всеми» для высококачественной куртки.

Это идея, которую мы в первую очередь помним, когда внедряем новаторские идеи для новой одежды.

Но почему? Ну, во-первых, нужно взвесить переменные.

Например, предназначена ли одежда для ношения физически активными людьми? Если да, то нам нужно спроектировать с учетом того, что происходит, а именно пота и высокой теплоотдачи организма.

Наша зимняя боевая рубашка AcE и зимняя тактическая куртка Delta AcE Plus Gen.2 являются примерами одежды, разработанной для людей с высокой физической активностью (читай, для тех, кто будет потеть и выделять много тепла).

Посмотрите этот обзорный видеоролик, чтобы узнать все, что нужно знать о зимней боевой рубашке AcE:

Примечательно, что эти предметы одежды имеют наполнитель G-Loft на рукавах, но не на груди и спине.

Причина в том, что в верхней части туловища обычно происходит наибольшее накопление тепла. Это особенно верно, когда грудь и спина владельца покрываются пластиной-носителем и другими значительными предметами снаряжения, которые, что довольно интересно, действуют как дополнительные слои изоляции.

Кроме того, наша зимняя боевая рубашка AcE и тактическая зимняя куртка Delta AcE Plus Gen.2 имеют вентиляционные панели на каждом рукаве для дополнительного охлаждения.

Было бы правильно подозревать, что эта одежда не является водонепроницаемой.

Вместо этого они обладают высокой водоотталкивающей способностью. Разница в том, что водонепроницаемые ламинаты менее воздухопроницаемы, тяжелее и имеют определенные конструктивные ограничения.

Обычно в холодную погоду дождь переходит в снег. Снег имеет совершенно другие свойства, чем дождь, и когда вы осматриваете поверхность одежды, вы видите, что снег тает на поверхности, а затем моросит ткань.

Кроме того, водостойкий ламинат тяжелее, хуже пропускает воздух и имеет дополнительные конструктивные ограничения – например, отсутствие вентиляционных панелей на снаряжении.

Также примечательно то, что операторы обычно носят с собой водонепроницаемую верхнюю одежду на случай, если они окажутся в очень влажных условиях.

Подкладка из микрофлиса – еще один материал, обеспечивающий эффективность наших курток.

Мы используем микрофлис COCONA 37,5. Это наш лучший выбор, потому что его характеристики идеально подходят для нашего снаряжения.В частности:

  • Он быстро отводит влагу от вашего тела наружу и выполняет двойную функцию, создавая большую площадь поверхности, с которой вода может рассеиваться;
  • Обеспечивает дополнительный слой теплоизоляционной экосистемы одежды;
  • Он приятен на ощупь (в значительной степени потому, что ткань не быстро намокает).

Дополнительные элементы для куртки и боевой рубашки, такие как наши вставки air / pac, также влияют на схему теплоизоляции, которую мы здесь иллюстрируем.

Узнайте больше о куртке Delta AcE Plus Gen.2 в этом информационном видеоролике о продукте:

Эти вставки расположены вдоль спины и плеч, чтобы одежда не давила прямо на кожу.

Этот буфер позволяет воздуху обеспечивать тепло в холодную погоду, создавая эффект «теплового моста».

Сочетание всех этих элементов делает нашу тактическую одежду лучшей в своем классе для тех, кто работает в зимних условиях.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *