Сравнение теплопроводности материалов: Сравнительная таблица теплопроводности современных строительных материалов

Содержание

Сравнительная таблица по теплопроводности строительных материалов. Сравнение теплопроводности строительных материалов по толщине. Коэффициент теплопроводности воздушной прослойки

Последние годы при строительстве дома или его ремонте большое внимание уделяется энергоэффективности. При уже существующих ценах на топливо это очень актуально. Причем похоже что дальше экономия будет приобретать все большую важность. Чтобы правильно подобрать состав и толщин материалов в пироге ограждающих конструкций (стены, пол, потолок, кровля) необходимо знать теплопроводность строительных материалов. Эта характеристика указывается на упаковках с материалами, а необходима она еще на стадии проектирования. Ведь надо решить из какого материала строить стены, чем их утеплять, какой толщины должен быть каждый слой.

Что такое теплопроводность и термическое сопротивление

При выборе строительных материалов для строительства необходимо обращать внимание на характеристики материалов. Одна из ключевых позиций — теплопроводность. Она отображается коэффициентом теплопроводности. Это количество тепла, которое может провести тот или иной материал за единицу времени. То есть, чем меньше этот коэффициент, тем хуже материал проводит тепло. И наоборот, чем выше цифра, тем тепло отводится лучше.

Материалы с низкой теплопроводностью используются для утепления, с высокой — для переноса или отвода тепла. Например, радиаторы делают из алюминия, меди или стали, так как они хорошо передают тепло, то есть имеют высокий коэффициент теплопроводности. Для утепления используются материалы с низким коэффициентом теплопроводности — они лучше сохраняют тепло. В случае если объект состоит из нескольких слоев материала, его теплопроводность определяется как сумма коэффициентов всех материалов. При расчетах, рассчитывается теплопроводность каждой из составляющих «пирога», найденные величины суммируются. В общем получаем теплоизоляцонную способность ограждающей конструкции (стен, пола, потолка).

Есть еще такое понятие как тепловое сопротивление. Оно отображает способность материала препятствовать прохождению по нему тепла. То есть, это обратная величина по отношению к теплопроводности. И, если вы видите материал с высоким тепловым сопротивлением, его можно использовать для теплоизоляции. Примером теплоизоляционных материалов может случить популярная минеральная или базальтовая вата, пенопласт и т.д. Материалы с низким тепловых сопротивлением нужны для отведения или переноса тепла. Например, алюминиевые или стальные радиаторы используют для отопления, так как они хорошо отдают тепло.

Таблица теплопроводности теплоизоляционных материалов

Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше (а лучше — хоть немного больше) рекомендованной для вашего региона.

При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.

Наименование материала Коэффициент теплопроводности Вт/(м·°C)
В сухом состоянии При нормальной влажности При повышенной влажности
Войлок шерстяной 0,036-0,041 0,038-0,044 0,044-0,050
Каменная минеральная вата 25-50 кг/м3 0,036 0,042 0,045
Каменная минеральная вата 40-60 кг/м3 0,035 0,041 0,044
Каменная минеральная вата 80-125 кг/м3 0,036 0,042 0,045
Каменная минеральная вата 140-175 кг/м3 0,037 0,043 0,0456
Каменная минеральная вата 180 кг/м3 0,038 0,045 0,048
Стекловата 15 кг/м3 0,046 0,049 0,055
Стекловата 17 кг/м3 0,044 0,047 0,053
Стекловата 20 кг/м3 0,04 0,043 0,048
Стекловата 30 кг/м3 0,04 0,042 0,046
Стекловата 35 кг/м3 0,039 0,041 0,046
Стекловата 45 кг/м3 0,039 0,041 0,045
Стекловата 60 кг/м3 0,038 0,040 0,045
Стекловата 75 кг/м3 0,04 0,042 0,047
Стекловата 85 кг/м3 0,044 0,046 0,050
Пенополистирол (пенопласт, ППС) 0,036-0,041 0,038-0,044
0,044-0,050
Экструдированный пенополистирол (ЭППС, XPS) 0,029 0,030 0,031
Пенобетон, газобетон на цементном растворе, 600 кг/м3 0,14 0,22 0,26
Пенобетон, газобетон на цементном растворе, 400 кг/м3 0,11 0,14 0,15
Пенобетон, газобетон на известковом растворе, 600 кг/м3 0,15 0,28 0,34
Пенобетон, газобетон на известковом растворе, 400 кг/м3 0,13 0,22 0,28
Пеностекло, крошка, 100 – 150 кг/м3 0,043-0,06
Пеностекло, крошка, 151 – 200 кг/м3 0,06-0,063
Пеностекло, крошка, 201 – 250 кг/м3 0,066-0,073
Пеностекло, крошка, 251 – 400 кг/м3 0,085-0,1
Пеноблок 100 – 120 кг/м3 0,043-0,045
Пеноблок 121- 170 кг/м3 0,05-0,062
Пеноблок 171 – 220 кг/м3 0,057-0,063
Пеноблок 221 – 270 кг/м3 0,073
Эковата 0,037-0,042
Пенополиуретан (ППУ) 40 кг/м3 0,029 0,031 0,05
Пенополиуретан (ППУ) 60 кг/м3 0,035 0,036 0,041
Пенополиуретан (ППУ) 80 кг/м3 0,041 0,042 0,04
Пенополиэтилен сшитый 0,031-0,038
Вакуум 0
Воздух +27°C. 1 атм 0,026
Ксенон 0,0057
Аргон 0,0177
Аэрогель (Aspen aerogels)
0,014-0,021
Шлаковата 0,05
Вермикулит 0,064-0,074
Вспененный каучук 0,033
Пробка листы 220 кг/м3 0,035
Пробка листы 260 кг/м3 0,05
Базальтовые маты, холсты 0,03-0,04
Пакля 0,05
Перлит, 200 кг/м3 0,05
Перлит вспученный, 100 кг/м3 0,06
Плиты льняные изоляционные, 250 кг/м3 0,054
Полистиролбетон, 150-500 кг/м3 0,052-0,145
Пробка гранулированная, 45 кг/м3 0,038
Пробка минеральная на битумной основе, 270-350 кг/м3 0,076-0,096
Пробковое покрытие для пола, 540 кг/м3 0,078
Пробка техническая, 50 кг/м3 0,037

Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей. Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала.

Таблица теплопроводности строительных материалов

Стены, перекрытия, пол, делать можно из разных материалов, но так повелось, что теплопроводность строительных материалов обычно сравнивают с кирпичной кладкой. Этот материал знаю все, с ним проще проводить ассоциации. Наиболее популярны диаграммы, на которых наглядно продемонстрирована разница между различными материалами. Одна такая картинка есть в предыдущем пункте, вторая — сравнение кирпичной стены и стены из бревен — приведена ниже. Именно потому для стен из кирпича и другого материала с высокой теплопроводностью выбирают теплоизоляционные материалы. Чтобы было проще подбирать, теплопроводность основных строительных материалов сведена в таблицу.

Название материала, плотность Коэффициент теплопроводности
в сухом состоянии при нормальной влажности при повышенной влажности
ЦПР (цементно-песчаный раствор) 0,58 0,76 0,93
Известково-песчаный раствор 0,47 0,7 0,81
Гипсовая штукатурка 0,25
Пенобетон, газобетон на цементе, 600 кг/м3
0,14
0,22 0,26
Пенобетон, газобетон на цементе, 800 кг/м3 0,21 0,33 0,37
Пенобетон, газобетон на цементе, 1000 кг/м3 0,29 0,38 0,43
Пенобетон, газобетон на извести, 600 кг/м3 0,15 0,28 0,34
Пенобетон, газобетон на извести, 800 кг/м3 0,23 0,39 0,45
Пенобетон, газобетон на извести, 1000 кг/м3 0,31 0,48 0,55
Оконное стекло 0,76
Арболит 0,07-0,17
Бетон с природным щебнем, 2400 кг/м3 1,51
Легкий бетон с природной пемзой, 500-1200 кг/м3 0,15-0,44
Бетон на гранулированных шлаках, 1200-1800 кг/м3 0,35-0,58
Бетон на котельном шлаке, 1400 кг/м3 0,56
Бетон на каменном щебне, 2200-2500 кг/м3 0,9-1,5
Бетон на топливном шлаке, 1000-1800 кг/м3 0,3-0,7
Керамическийй блок поризованный 0,2
Вермикулитобетон, 300-800 кг/м3 0,08-0,21
Керамзитобетон, 500 кг/м3 0,14
Керамзитобетон, 600 кг/м3 0,16
Керамзитобетон, 800 кг/м3 0,21
Керамзитобетон, 1000 кг/м3 0,27
Керамзитобетон, 1200 кг/м3 0,36
Керамзитобетон, 1400 кг/м3 0,47
Керамзитобетон, 1600 кг/м3 0,58
Керамзитобетон, 1800 кг/м3 0,66
ладка из керамического полнотелого кирпича на ЦПР 0,56 0,7 0,81
Кладка из пустотелого керамического кирпича на ЦПР, 1000 кг/м3) 0,35 0,47 0,52
Кладка из пустотелого керамического кирпича на ЦПР, 1300 кг/м3) 0,41 0,52 0,58
Кладка из пустотелого керамического кирпича на ЦПР, 1400 кг/м3) 0,47 0,58 0,64
Кладка из полнотелого силикатного кирпича на ЦПР, 1000 кг/м3) 0,7 0,76 0,87
Кладка из пустотелого силикатного кирпича на ЦПР, 11 пустот 0,64 0,7 0,81
Кладка из пустотелого силикатного кирпича на ЦПР, 14 пустот 0,52 0,64 0,76
Известняк 1400 кг/м3 0,49 0,56 0,58
Известняк 1+600 кг/м3 0,58 0,73 0,81
Известняк 1800 кг/м3 0,7 0,93 1,05
Известняк 2000 кг/м3 0,93 1,16 1,28
Песок строительный, 1600 кг/м3 0,35
Гранит 3,49
Мрамор 2,91
Керамзит, гравий, 250 кг/м3 0,1 0,11 0,12
Керамзит, гравий, 300 кг/м3 0,108 0,12 0,13
Керамзит, гравий, 350 кг/м3 0,115-0,12 0,125 0,14
Керамзит, гравий, 400 кг/м3 0,12 0,13 0,145
Керамзит, гравий, 450 кг/м3 0,13 0,14 0,155
Керамзит, гравий, 500 кг/м3 0,14 0,15 0,165
Керамзит, гравий, 600 кг/м3 0,14 0,17 0,19
Керамзит, гравий, 800 кг/м3 0,18
Гипсовые плиты, 1100 кг/м3 0,35 0,50 0,56
Гипсовые плиты, 1350 кг/м3 0,23 0,35 0,41
Глина, 1600-2900 кг/м3 0,7-0,9
Глина огнеупорная, 1800 кг/м3 1,4
Керамзит, 200-800 кг/м3 0,1-0,18
Керамзитобетон на кварцевом песке с поризацией, 800-1200 кг/м3 0,23-0,41
Керамзитобетон, 500-1800 кг/м3 0,16-0,66
Керамзитобетон на перлитовом песке, 800-1000 кг/м3 0,22-0,28
Кирпич клинкерный, 1800 – 2000 кг/м3 0,8-0,16
Кирпич облицовочный керамический, 1800 кг/м3 0,93
Бутовая кладка средней плотности, 2000 кг/м3 1,35
Листы гипсокартона, 800 кг/м3 0,15 0,19 0,21
Листы гипсокартона, 1050 кг/м3 0,15 0,34 0,36
Фанера клеенная 0,12 0,15 0,18
ДВП, ДСП, 200 кг/м3 0,06 0,07 0,08
ДВП, ДСП, 400 кг/м3 0,08 0,11 0,13
ДВП, ДСП, 600 кг/м3 0,11 0,13 0,16
ДВП, ДСП, 800 кг/м3 0,13 0,19 0,23
ДВП, ДСП, 1000 кг/м3 0,15 0,23 0,29
Линолеум ПВХ на теплоизолирующей основе, 1600 кг/м3 0,33
Линолеум ПВХ на теплоизолирующей основе, 1800 кг/м3 0,38
Линолеум ПВХ на тканевой основе, 1400 кг/м3 0,2 0,29 0,29
Линолеум ПВХ на тканевой основе, 1600 кг/м3 0,29 0,35 0,35
Линолеум ПВХ на тканевой основе, 1800 кг/м3 0,35
Листы асбоцементные плоские, 1600-1800 кг/м3 0,23-0,35
Ковровое покрытие, 630 кг/м3 0,2
Поликарбонат (листы), 1200 кг/м3 0,16
Полистиролбетон, 200-500 кг/м3 0,075-0,085
Ракушечник, 1000-1800 кг/м3 0,27-0,63
Стеклопластик, 1800 кг/м3 0,23
Черепица бетонная, 2100 кг/м3 1,1
Черепица керамическая, 1900 кг/м3 0,85
Черепица ПВХ, 2000 кг/м3 0,85
Известковая штукатурка, 1600 кг/м3 0,7
Штукатурка цементно-песчаная, 1800 кг/м3 1,2

Древесина — один из строительных материалов с относительно невысокой теплопроводностью. В таблице даны ориентировочные данные по разным породам. При покупке обязательно смотрите плотность и коэффициент теплопроводности. Далеко не у всех они такие, как прописаны в нормативных документах.

Наименование Коэффициент теплопроводности
В сухом состоянии При нормальной влажности При повышенной влажности
Сосна, ель поперек волокон 0,09 0,14 0,18
Сосна, ель вдоль волокон 0,18 0,29 0,35
Дуб вдоль волокон 0,23 0,35 0,41
Дуб поперек волокон 0,10 0,18 0,23
Пробковое дерево 0,035
Береза 0,15
Кедр 0,095
Каучук натуральный 0,18
Клен 0,19
Липа (15% влажности) 0,15
Лиственница 0,13
Опилки 0,07-0,093
Пакля 0,05
Паркет дубовый 0,42
Паркет штучный 0,23
Паркет щитовой 0,17
Пихта 0,1-0,26
Тополь 0,17

Металлы очень хорошо проводят тепло. Именно они часто являются мостиком холода в конструкции. И это тоже надо учитывать, исключать прямой контакт используя теплоизолирующие прослойки и прокладки, которые называются термическим разрывом. Теплопроводность металлов сведена в другую таблицу.

Название Коэффициент теплопроводности Название Коэффициент теплопроводности
Бронза 22-105 Алюминий 202-236
Медь 282-390 Латунь 97-111
Серебро 429 Железо 92
Олово 67 Сталь 47
Золото 318

Как рассчитать толщину стен

Для того чтобы зимой в доме было тепло, а летом прохладно, необходимо чтобы ограждающие конструкции (стены, пол, потолок/кровля) должны иметь определенное тепловое сопротивление. Для каждого региона эта величина своя. Зависит она от средних температур и влажности в конкретной области.

Термическое сопротивление ограждающих
конструкций для регионов России

Для того чтобы счета за отопление не были слишком большими, подбирать строительные материалы и их толщину надо так, чтобы их суммарное тепловое сопротивление было не меньше указанного в таблице.

Расчет толщины стены, толщины утеплителя, отделочных слоев

Для современного строительства характерна ситуация, когда стена имеет несколько слоев. Кроме несущей конструкции есть утепление, отделочные материалы. Каждый из слоев имеет свою толщину. Как определить толщину утеплителя? Расчет несложен. Исходят из формулы:

R — термическое сопротивление;

p — толщина слоя в метрах;

k — коэффициент теплопроводности.

Предварительно надо определиться с материалами, которые вы будете использовать при строительстве. Причем, надо знать точно, какого вида будет материал стен, утепление, отделка и т.д. Ведь каждый из них вносит свою лепту в теплоизоляцию, и теплопроводность строительных материалов учитывается в расчете.

Сначала считается термическое сопротивление конструкционного материала (из которого будет строится стена, перекрытие и т.д.), затем «по остаточному» принципу подбирается толщина выбранного утеплителя. Можно еще принять в расчет теплоизоляционных характеристики отделочных материалов, но обычно они идут «плюсом» к основным. Так закладывается определенный запас «на всякий случай». Этот запас позволяет экономить на отоплении, что впоследствии положительно сказывается на бюджете.

Пример расчета толщины утеплителя

Разберем на примере. Собираемся строить стену из кирпича — в полтора кирпича, утеплять будем минеральной ватой. По таблице тепловое сопротивление стен для региона должно быть не меньше 3,5. Расчет для этой ситуации приведен ниже.


Если бюджет ограничен, минеральной ваты можно взять 10 см, а недостающее покроется отделочными материалами. Они ведь будут изнутри и снаружи. Но, если хотите, чтобы счета за отопление были минимальными, лучше отделку пускать «плюсом» к расчетной величине. Это ваш запас на время самых низких температур, так как нормы теплового сопротивления для ограждающих конструкций считаются по средней температуре за несколько лет, а зимы бывают аномально холодными. Потому теплопроводность строительных материалов, используемых для отделки просто не принимают во внимание.

Процесс передачи энергии от более нагретой части тела к менее нагретой называется теплопроводностью. Числовое значение такого процесса отражает коэффициент теплопроводности материала. Это понятие является очень важным при строительстве и ремонте зданий. Правильно подобранные материалы позволяют создать в помещении благоприятный микроклимат и сэкономить на отоплении существенную сумму.

Понятие теплопроводности

Теплопроводность – процесс обмена тепловой энергией, который происходит за счет столкновения мельчайших частиц тела. Причем этот процесс не прекратится, пока не наступит момент равновесия температур. На это уходит определенный промежуток времени. Чем больше времени затрачивается на тепловой обмен, тем ниже показатель теплопроводности.

Данный показатель выражают как коэффициент теплопроводности материалов. Таблица содержит уже измеренные значения для большинства материалов. Расчет производится по количеству тепловой энергии, прошедшей сквозь заданную площадь поверхности материала. Чем больше вычисленное значение, тем быстрее объект отдаст все свое тепло.

Факторы, влияющие на теплопроводность

Коэффициент теплопроводности материала зависит от нескольких факторов:

  • При повышении данного показателя взаимодействие частиц материала становится прочнее. Соответственно, они будут передавать температуру быстрее. А это значит, что с повышением плотности материала улучшается передача тепла.
  • Пористость вещества. Пористые материалы являются неоднородными по своей структуре. Внутри них находится большое количество воздуха. А это значит, что молекулам и другим частицами будет сложно перемещать тепловую энергию. Соответственно, коэффициент теплопроводности повышается.
  • Влажность также оказывает влияние на теплопроводность. Мокрые поверхности материала пропускают большее количество тепла. В некоторых таблицах даже указывается расчетный коэффициент теплопроводности материала в трех состояниях: сухом, среднем (обычном) и влажном.

Выбирая материал для утепления помещений, важно учитывать также условия, в которых он будет эксплуатироваться.

Понятие теплопроводности на практике

Теплопроводность учитывается на этапе проектирования здания. При этом берется во внимание способность материалов удерживать тепло. Благодаря их правильному подбору жильцам внутри помещения всегда будет комфортно. Во время эксплуатации будут существенно экономиться денежные средства на отопление.

Утепление на стадии проектирования является оптимальным, но не единственным решением. Не составляет трудности утеплить уже готовое здание путем проведения внутренних или наружных работ. Толщина слоя изоляции будет зависеть от выбранных материалов. Отдельные из них (к примеру, дерево, пенобетон) могут в некоторых случаях использоваться без дополнительного слоя термоизоляции. Главное, чтобы их толщина превышала 50 сантиметров.

Особенное внимание следует уделить утеплению кровли, оконных и дверных проемов, пола. Сквозь эти элементы уходит больше всего тепла. Зрительно это можно увидеть на фотографии в начале статьи.

Конструкционные материалы и их показатели

Для строительства зданий используют материалы с низким коэффициентом теплопроводности. Наиболее популярными являются:


  • Железобетон, значение теплопроводности которого составляет 1,68Вт/м*К. Плотность материала достигает 2400-2500 кг/м 3 .
  • Древесина, издревле использующаяся как строительный материал. Ее плотность и теплопроводность в зависимости от породы составляют 150-2100 кг/м 3 и 0,2-0,23Вт/м*К соответственно.

Еще один популярный строительный материал – кирпич. В зависимости от состава он обладает следующими показателями:

  • саманный (изготовленный из глины): 0,1-0,4 Вт/м*К;
  • керамический (изготовленный методом обжига): 0,35-0,81 Вт/м*К;
  • силикатный (из песка с добавлением извести): 0,82-0,88 Вт/м*К.

Материалы из бетона с добавлением пористых заполнителей

Коэффициент теплопроводности материала позволяет использовать последний для постройки гаражей, сараев, летних домиков, бань и других сооружений. В данную группу можно отнести:

  • Керамзитобетон, показатели которого зависят от его вида. Полнотелые блоки не имеют пустот и отверстий. С пустотами внутри изготавливают которые менее прочные, нежели первый вариант. Во втором случае теплопроводность будет ниже. Если рассматривать общие цифры, то составляет 500-1800кг/м3. Его показатель находится в интервале 0,14-0,65Вт/м*К.
  • Газобетон, внутри которого образуются поры размером 1-3 миллиметра. Такая структура определяет плотность материала (300-800кг/м 3). За счет этого коэффициент достигает 0,1-0,3 Вт/м*К.

Показатели теплоизоляционных материалов

Коэффициент теплопроводности теплоизоляционных материалов, наиболее популярных в наше время:

  • пенополистирол, плотность которого такая же, как и у предыдущего материала. Но при этом коэффициент передачи тепла находится на уровне 0,029-0,036Вт/м*К;
  • стекловата. Характеризуется коэффициентом, равным 0,038-0,045Вт/м*К;
  • с показателем 0,035-0,042Вт/м*К.

Таблица показателей

Для удобства работы коэффициент теплопроводности материала принято заносить в таблицу. В ней кроме самого коэффициента могут быть отражены такие показатели как степень влажности, плотность и другие. Материалы с высоким коэффициент теплопроводности сочетаются в таблице с показателями низкой теплопроводности. Образец данной таблицы приведен ниже:

Использование коэффициента теплопроводности материала позволит возвести желаемую постройку. Главное: выбрать продукт, отвечающий всем необходимым требованиями. Тогда здание получится комфортным для проживания; в нем будет сохраняться благоприятный микроклимат.

Правильно подобранный снизит по причине чего больше не нужно будет «отапливать улицу». Благодаря этому финансовые затраты на отопление существенно снизятся. Такая экономия позволит в скором времени вернуть все деньги, которые будут затрачены на приобретение теплоизолятора.

Строительство частного дома – очень непростой процесс от начала и до конца. Одним из основных вопросов данного процесса является выбор строительного сырья. Этот выбор должен быть очень грамотным и обдуманным, ведь от него зависит большая часть жизни в новом доме. Особняком в этом выборе стоит такое понятие, как теплопроводность материалов. От неё будет зависеть, насколько в доме будет тепло и комфортно.

Теплопроводность – это способность физических тел (и веществ, из которых они изготовлены) передавать тепловую энергию. Объясняя более простым языком, это перенос энергии от тёплого места к холодному. У некоторых веществ такой перенос будет происходить быстро (например, у большинства металлов), а у некоторых, наоборот – очень медленно (резина).

Если говорить ещё более понятно, то в некоторых случаях, материалы, имея толщину в несколько метров, будут проводить тепло гораздо лучше, чем другие материалы, с толщиной в несколько десятков сантиметров. Например, несколько сантиметров гипсокартона смогут заменить внушительную стену из кирпича.

Основываясь на этих знаниях, можно предположить, что наиболее правильным будет выбор материалов с низкими значениями этой величины , чтобы дом быстро не остывал. Для наглядности, обозначим процентное соотношение потерь тепла в разных участках дома:

От чего зависит теплопроводность?

Значения данной величины могут зависеть от нескольких факторов . Например, коэффициент теплопроводности, о котором мы поговорим отдельно, влажность строительного сырья, плотность и так далее.

  • Материалы, имеющие высокие показатели плотности, имеют, в свою очередь, и высокую способность к теплоотдаче, за счёт плотного скопления молекул внутри вещества. Пористые материалы, наоборот, будут нагреваться и остывать медленнее.
  • На теплопередачу оказывает влияние и влажность материалов. Если материалы промокнут, то их теплоотдача возрастёт.
  • Также, сильно влияет на этот показатель структура материала. Например, дерево с поперечными и продольными волокнами будет иметь разные значения теплопроводности.
  • Показатель изменяется и при изменениях таких параметров, как давление и температура. С ростом температуры он увеличивается, а с ростом давления, наоборот – уменьшается.

Коэффициент теплопроводности

Для количественной оценки такого параметра, используются специальные коэффициенты теплопроводности , строго задекларированные в СНИП. Например, коэффициент теплопроводности бетона равен 0,15-1,75 ВТ/(м*С) в зависимости от типа бетона. Где С – градусы Цельсия. На данный момент расчёт коэффициентов есть практически для всех существующих типов строительного сырья, применяющихся при строительстве. Коэффициенты теплопроводности строительных материалов очень важны в любых архитектурно-строительных работах.

Для удобного подбора материалов и их сравнения, используются специальные таблицы коэффициентов теплопроводности, разработанные по нормам СНИП(строительные нормы и правила). Теплопроводность строительных материалов , таблица на которых будет приведена ниже, очень важна при строительстве любых объектов.

  • Древесные материалы. Для некоторых материалов параметры будут приведены как вдоль волокон(Индекс 1, так и поперёк – индекс 2)
  • Различные типы бетона.
  • Различные виды строительного и декоративного кирпича.

Расчёт толщины утеплителя

Из вышеприведённых таблиц мы видим, насколько могут отличаться коэффициенты проводимости тепла у разных материалов. Для расчёта теплосопротивления будущей стены, существует нехитрая формула , которая связывает толщину утеплителя и коэффициент его теплопроводности.

R = p / k , где R -показатель теплосопротивления, p -толщина слоя, k – коэффициент.

Из этой формулы несложно выделить и формулу расчёта толщины слоя утеплителя для требуемого теплосопротивления. P = R * k . Значение теплосопротивление разное для каждого региона. Для этих значений тоже существует специальная таблица, где их и можно посмотреть при расчёте толщины утеплителя.

Теперь приведём примеры некоторых наиболее популярных утеплителей и их технических характеристик.

Строительство каждого объекта лучше начинать с планировки проекта и тщательного расчета теплотехнических параметров. Точные данные позволит получить таблица теплопроводности строительных материалов. Правильное возведение зданий способствует оптимальным климатическим параметрам в помещении. А таблица поможет правильно подобрать сырье, которое будут использоваться для строительства.

Теплопроводность материалов влияет на толщину стен

Теплопроводность является показателем передачи тепловой энергии от нагреваемых предметов в помещении к предметам с более низкой температурой. Процесс теплообмена производится, пока температурные показатели не уравняются. Для обозначения тепловой энергии используется специальный коэффициент теплопроводности строительных материалов. Таблица поможет увидеть все требуемые значения. Параметр обозначает, сколько тепловой энергии пропускается через единицу площади в единицу времени. Чем больше данное обозначение, тем качественнее будет теплообмен. При возведении зданий необходимо применять материал с минимальным значением тепловой проводимости.

Коэффициент теплопроводности это такая величина, которая равна количеству теплоты, проходящей через метр толщины материала за час. Использование подобной характеристики обязательно для создания лучшей теплоизоляции. Теплопроводность следует учесть при подборе дополнительных утепляющих конструкций.

Что оказывает влияние на показатель теплопроводности?

Теплопроводность определяется такими факторами:

  • пористость определяет неоднородность структуры. При пропуске тепла через такие материалы процесс охлаждения незначительный;
  • повышенное значение плотности влияет на тесные соприкосновения частиц, что способствует более быстрому теплообмену;
  • повышенная влажность увеличивает данный показатель.

Использование значений коэффициента теплопроводности на практике

Материалы представлены конструкционными и теплоизоляционными разновидностями. Первый вид обладает большими показателями теплопроводности. Они применяются для строительства перекрытий, ограждений и стен.

При помощи таблицы определяются возможности их теплообмена. Чтобы данный показатель был достаточно низким для нормального микроклимата в помещении стены из некоторых материалов должны быть особенно толстыми. Чтобы этого избежать, рекомендуется использовать дополнительные теплоизолирующие компоненты.

Показатели теплопроводности для готовых построек. Виды утеплений

При создании проекта нужно учитывать все способы утечки тепла. Оно может выходить через стены и крышу, а также через полы и двери. Если вы неправильно проведете расчеты проектирования, то придется довольствоваться только тепловой энергией, полученной от отопительных приборов. Здания, построенные из стандартного сырья: камня, кирпича либо бетона нужно дополнительно утеплять.

Дополнительная теплоизоляция проводится в каркасных зданиях. При этом деревянный каркас придает жесткости конструкции, а утепляющий материал прокладывается в пространство между стойками. В зданиях из кирпича и шлакоблоков утепление производится снаружи конструкции.

Выбирая утеплители необходимо обращать внимание на такие факторы, как уровень влажности, влияние повышенных температур и типа сооружения. Учитывайте определенные параметры утепляющих конструкций:

  • показатель теплопроводности оказывает влияние на качество теплоизолирующего процесса;
  • влагопоглощение имеет большое значение при утеплении наружных элементов;
  • толщина влияет на надежность утепления. Тонкий утеплитель помогает сохранить полезную площадь помещения;
  • важна горючесть. Качественное сырье имеет способность к самозатуханию;
  • термоустойчивость отображает способность выдерживать температурные перепады;
  • экологичность и безопасность;
  • звукоизоляция защищает от шума.

В качестве утеплителей применяются следующие виды:

  • минеральная вата устойчива к огню и экологична. К важным характеристикам относится низкая теплопроводность;
  • пенопласт – это легкий материал с хорошими утеплительными свойствами. Он легко устанавливается и обладает влагоустойчивостью. Рекомендуется для применения в нежилых строениях;
  • базальтовая вата в отличие от минеральной отличается лучшими показателями стойкости к влаге;
  • пеноплэкс устойчив к влажности, повышенным температурам и огню. Имеет прекрасные показатели теплопроводности, прост в монтаже и долговечен;
  • пенополиуретан известен такими качествами, как негорючесть, хорошие водоотталкивающие свойства и высокая пожаростойкость;
  • экструдированный пенополистирол при производстве проходит дополнительную обработку. Обладает равномерной структурой;
  • пенофол представляет из себя многослойный утепляющий пласт. В составе присутствует вспененный полиэтилен. Поверхность пластины покрывается фольгой для обеспечения отражения.

Для теплоизоляции могут применяться сыпучие типы сырья. Это бумажные гранулы или перлит. Они имеют стойкость к влаге и к огню. А из органических разновидностей можно рассмотреть волокно из древесины, лен или пробковое покрытие. При выборе, особое внимание уделяйте таким показателям как экологичность и пожаробезопасность.

Обратите внимание! При конструировании теплоизоляции, важно продумать монтаж гидроизолирующей прослойки. Это позволит избежать высокой влажности и повысит сопротивляемость теплообмену.

Таблица теплопроводности строительных материалов: особенности показателей

Таблица теплопроводности строительных материалов содержит показатели различных видов сырья, которое применяется в строительстве. Используя данную информацию, вы можете легко посчитать толщину стен и количество утеплителя.

Как использовать таблицу теплопроводности материалов и утеплителей?

В таблице сопротивления теплопередаче материалов представлены наиболее популярные материалы. Выбирая определенный вариант теплоизоляции важно учитывать не только физические свойства, но и такие характеристики как долговечность, цена и легкость установки.

Знаете ли вы, что проще всего выполнять монтаж пенооизола и пенополиуретана. Они распределяются по поверхности в виде пены. Подобные материалы легко заполняют полости конструкций. При сравнении твердых и пенных вариантов, нужно выделить, что пена не образует стыков.

Значения коэффициентов теплопередачи материалов в таблице

При произведении вычислений следует знать коэффициент сопротивления теплопередаче. Данное значение является отношением температур с обеих сторон к количеству теплового потока. Для того чтобы найти теплосопротивление определенных стен и используется таблица теплопроводности.

Все расчеты вы можете провести сами. Для этого толщина прослойки теплоизолятора делится на коэффициент теплопроводности. Данное значение часто указывается на упаковке, если это изоляция. Материалы для дома измеряются самостоятельно. Это касается толщины, а коэффициенты можно отыскать в специальных таблицах.

Коэффициент сопротивления помогает выбрать определенный тип теплоизоляции и толщину слоя материала. Сведения о паропроницаемости и плотности можно посмотреть в таблице.

При правильном использовании табличных данных вы сможете выбрать качественный материал для создания благоприятного микроклимата в помещении.

Теплопроводность строительных материалов (видео)

Возможно Вам также будет интересно:

Как сделать отопление в частном доме из полипропиленовых труб своими руками Гидрострелка: назначение, принцип работы, расчеты Схема отопления с принудительной циркуляцией двухэтажного дома – решение проблемы с теплом

Строительство любого дома, будь то коттедж или скромный дачный домик, должно начинаться с разработки проекта. На этом этапе закладывается не только архитектурный облик будущего строения, но и его конструктивные и теплотехнические характеристики.

Основной задачей на этапе проекта будет не только разработка прочных и долговечных конструктивных решений, способных поддерживать наиболее комфортный микроклимат с минимальными затратами. Помочь определиться с выбором может сравнительная таблица теплопроводности материалов.

Понятие теплопроводности

В общих чертах процесс теплопроводности характеризуется передачей тепловой энергии от более нагретых частиц твердого тела к менее нагретым. Процесс будет идти до тех пор, пока не наступит тепловое равновесие. Другими словами, пока не сравняются температуры.

Применительно к ограждающим конструкциям дома (стены, пол, потолок, крыша) процесс теплопередачи будет определяться временем, в течение которого температура внутри помещения сравняется с температурой окружающей среды.

Чем более продолжителен по времени будет этот процесс, тем помещение будет более комфортным по ощущениям и экономичным по эксплуатационным расходам.

Численно процесс переноса тепла характеризуется коэффициентом теплопроводности. Физический смысл коэффициента показывает, какое количество тепла за единицу времени проходит через единицу поверхности. Т.е. чем выше значение этого показателя, тем лучше проводится тепло, значит, тем быстрее будет происходить процесс теплообмена.

Соответственно, на этапе проектных работ необходимо спроектировать конструкции, теплопроводность которых должна иметь по возможности наименьшее значение.

Вернуться к оглавлению

Факторы, влияющие на величину теплопроводности

Теплопроводность материалов, используемых в строительстве, зависит от их параметров:

  1. Пористость – наличие пор в структуре материала нарушает его однородность. При прохождении теплового потока часть энергии передается через объем, занятый порами и заполненный воздухом. Принято за отсчетную точку принимать теплопроводность сухого воздуха (0,02 Вт/(м*°С)). Соответственно, чем больший объем будет занят воздушными порами, тем меньше будет теплопроводность материала.
  2. Структура пор – малый размер пор и их замкнутый характер способствуют снижению скорости теплового потока. В случае использования материалов с крупными сообщающимися порами в дополнение к теплопроводности в процессе переноса тепла будут участвовать процессы передачи тепла конвекцией.
  3. Плотность – при больших значениях частицы более тесно взаимодействуют друг с другом и в большей степени способствуют передаче тепловой энергии. В общем случае значения теплопроводности материала в зависимости от его плотности определяются либо на основе справочных данных, либо эмпирически.
  4. Влажность – значение теплопроводности для воды составляет (0,6 Вт/(м*°С)). При намокании стеновых конструкций или утеплителя происходит вытеснение сухого воздуха из пор и замещение его каплями жидкости или насыщенным влажным воздухом. Теплопроводность в этом случае значительно увеличится.
  5. Влияние температуры на теплопроводность материала отражается через формулу:

λ=λо*(1+b*t), (1)

где, λо – коэффициент теплопроводности при температуре 0 °С, Вт/м*°С;

b – справочная величина температурного коэффициента;

t – температура.

Вернуться к оглавлению

Практическое применение значения теплопроводности строительных материалов

Из понятия теплопроводности напрямую вытекает понятие толщины слоя материала для получения необходимого значения сопротивления теплового потока. Тепловое сопротивление – нормируемая величина.

Упрощенная формула, определяющая толщину слоя, будет иметь вид:

где, H – толщина слоя, м;

R – сопротивление теплопередаче, (м2*°С)/Вт;

λ – коэффициент теплопроводности, Вт/(м*°С).

Данная формула применительно к стене или перекрытию имеет следующие допущения:

  • ограждающая конструкция имеет однородное монолитное строение;
  • используемые стройматериалы имеют естественную влажность.

При проектировании необходимые нормируемые и справочные данные берутся из нормативной документации:

  • СНиП23-01-99 – Строительная климатология;
  • СНиП 23-02-2003 – Тепловая защита зданий;
  • СП 23-101-2004 – Проектирование тепловой защиты зданий.

Вернуться к оглавлению

Теплопроводность материалов: параметры

Принято условное разделение материалов, применяемых в строительстве, на конструкционные и теплоизоляционные.

Конструкционные материалы применяются для возведения ограждающих конструкций (стен, перегородок, перекрытий). Они отличаются большими значениями теплопроводности.

Значения коэффициентов теплопроводности сведены в таблицу 1:

Таблица 1

Подставляя в формулу (2) данные, взятые из нормативной документации, и данные из Таблицы 1, можно получить требуемую толщину стен для конкретного климатического района.

При выполнении стен только из конструкционных материалов без использования теплоизоляции их необходимая толщина (в случае использования железобетона) может достигать нескольких метров. Конструкция в этом случае получится непомерно большой и громоздкой.

Допускают возведение стен без использования дополнительного утепления, пожалуй, только пенобетон и дерево. И даже в этом случае толщина стены достигает полуметра.

Теплоизоляционные материалы имеют достаточно малые величины значения коэффициента теплопроводности.

Основной их диапазон лежит в пределах от 0,03 до 0,07 Вт/(м*°С). Наиболее распространенные материалы – это экструдированный пенополистирол, минеральная вата, пенопласт, стекловата, утепляющие материалы на основе пенополиуретана. Их использование позволяет значительно снизить толщину ограждающих конструкций.

Коэффициент теплопроводности строительных материалов – таблица и сравнение

Автор DearHouse На чтение 3 мин Просмотров 1.8к. Обновлено

Вопрос утепления квартир и домов весьма важен – постоянно повышающаяся стоимость энергоносителей обязывает бережно относиться к теплу в помещении. Но как правильно выбрать материал изоляции и рассчитать его оптимальную толщину? Для этого необходимо знать показатели теплопроводности.

Что такое теплопроводность

Эта величина характеризует способность проводить тепло внутри материала. Т.е. определяет отношение количества энергии, проходящей через тело площадью 1 м² и толщиной 1 м за единицу времени — λ (Вт/м*К). Проще говоря – сколько тепла будет передано от одной поверхности материала к другой.

В качестве примера рассмотрим обыкновенную кирпичную стену.

Как видно на рисунке, температура в помещении составляет 20°С, а на улице — 10°С. Для соблюдения такого режима в комнате необходимо, чтобы материал, из которого сделана стена, был с минимальным коэффициентом теплопроводности. Именно при таком условии можно говорить об эффективном энергосбережении.

Для каждого материала существует свой определенный показатель этой величины.

При строительстве принято следующее разделение материалов, которые выполняют определенную функцию:

  • Возведение основного каркаса зданий – стен, перегородок и т.д. Для этого применяются бетон, кирпич, газобетон и т.д.

Их показатели теплопроводности довольно велики, а это значит, что для достижения хорошего энергосбережения необходимо увеличивать толщину наружных стен. Но это не практично, так как требует дополнительных затрат и возрастание веса всего здания. Поэтому принято использовать специальные дополнительные изоляционные материалы.

  • Утеплители. К ним относятся минеральная вата, пенопласт, пенополистирол и любой другой материал с низким коэффициентом теплопроводности.

Именно они обеспечивают должную защиту дома от быстрой потери тепловой энергии.

В строительстве требованиями к основным материалам являются — механическая прочность, пониженный показатель гигроскопичности (сопротивление влаги), и менее всего – их энергетические характеристики. Поэтому особое внимание уделяется теплоизоляционным материалам, которые должны компенсировать этот «недостаток».

Однако применение на практике величины теплопроводности затруднительно, так как она не учитывает толщину материала. Поэтому используют обратное ей понятие – коэффициент сопротивления теплопередачи.

Эта величина является отношением толщины материала к его коэффициенту теплопроводности.

Значение этого параметра для жилых зданий прописаны в СНиП II-3-79 и СНиП 23-02-2003. Согласно этим нормативным документам коэффициент сопротивления теплопередачи в разных регионах России не должен быть менее тех значений, которые указаны в таблице.

В качестве примера можно рассчитать минимальную толщину стен для Самары при следующих условиях:

  • Основной материал изготовления – кирпич силикатный, кладка толщиной 360 мм, λ=0,7

Для него значение Rр=0,36/0,7=0,51. Следовательно, необходимо добавить изолирующий материал до требуемой величины:

R=Rоп-Rр=3,55-0,51=3,04

Внешнее утепление будет состоять из слоя минеральной ваты 100 мм и пенопласта толщиной 50 мм:

R=(0,2/0,048)+(0,05/0,047)= 2,08+1,06=3,14

В общей сумме с кирпичной кладкой получаем значение сопротивления теплопередачи стены 3,14+0,51=3,65 м²*°С/Вт, что удовлетворяет условиям СНиП.

Эта процедура расчета является обязательно не только при планировании постройки нового здания, но и для грамотного и эффективного утепления стен уже возведенного дома.

Теплопроводность строительных материалов – таблица утеплителей, сравнение

Любое строительство независимо от его размера всегда начинается с разработки проекта. Его цель – спроектировать не только внешний вид будущего строения, еще и просчитать основные теплотехнические характеристики. Ведь основной задачей строительства считается сооружение прочных, долговечных зданий, способных поддерживать здоровый и комфортный микроклимат, без лишних затрат на отопление. Несомненную помощь при выборе сырья, используемого для возведения постройки, окажет таблица теплопроводности строительных материалов: коэффициенты.

Тепло в доме напярямую зависит от коэффициента теплопроводности строительных материалов

Что такое теплопроводность?

Теплопроводность – это процесс передачи энергии тепла от нагретых частей помещения к менее теплым. Такой обмен энергией будет происходить, пока температура не уравновесится. Применяя это правило к ограждающим системам дома, можно понять, что процесс теплопередачи определяется промежутком времени, за который происходит выравнивание температуры в комнатах с окружающей средой. Чем это время больше, тем теплопроводность материала, применяемого при строительстве, ниже.

Отсутствие теплоизоляции дома скажется на температуре воздуха внутри помещения

Для характеристики проводимости тепла материалами используют такое понятие, как коэффициент теплопроводности. Он показывает, какое количество тепла за одну единицу временного промежутка пройдет через одну единицу площади поверхности. Чем выше подобный показатель, тем сильнее теплообмен, значит, постройка будет остывать значительно быстрее. То есть при сооружении зданий, домов и прочих помещений необходимо использовать материалы, проводимость тепла которых минимальна.

Сравнительные характеристики теплопроводности и термического сопротивления стен, возведенных из кирпича и газобетонных блоков

Основные характеристики утеплителей

Соотношение качества утеплителя, в зависимости от его толщины
При выборе утеплителей нужно обращать внимание на разные факторы: тип сооружения, наличие воздействия высоких температур, открытого огня, характерный уровень влажности. Только после определения условий использования, а также уровня теплопроводности применяемых материалов для сооружения определенной части конструкции, нужно смотреть на характеристики конкретного утеплителя:

  • Теплопроводность. От этого показателя напрямую зависит качество проведенного утеплительного процесса, а также необходимое количество материала для обеспечения желаемого результата. Чем ниже теплопроводность, тем эффективнее использование утеплителя.
  • Влагопоглощение. Показатель особо важен при утеплении внешних частей конструкции, на которые может периодически воздействовать влага. К примеру, при утеплении фундамента в грунтах с высокими водами или повышенным уровнем содержания воды в своей структуре.
  • Толщина. Применение тонких утеплителей позволяет сохранить внутреннее пространство жилого сооружения, а также напрямую влияет на качество утепления.
  • Горючесть. Это свойство материалов особенно важно при использовании для понижения теплопроводной способности наземных частей сооружения жилых домов, а также зданий специального назначения. Качественная продукция отличается способностью к самозатуханию, не выделяет при воспламенении ядовитых веществ.
  • Термоустойчивость. Материал должен выдерживать критические температуры. К примеру, низкие температуры при наружном использовании.
  • Экологичность. Нужно прибегать к использованию материалов безопасных для человека. Требования к этому фактору может изменяться в зависимости от будущего назначения сооружения.
  • Звукоизоляция. Это дополнительное свойство утеплителей в некоторых ситуациях позволяет добиться хорошего уровня защиты помещения от шума, а также посторонних звуков.

Когда используется при сооружении определенной части конструкции материал с низкой теплопроводностью, то можно покупать самый дешевый утеплитель (если это позволят предварительные расчеты).
Важность конкретной характеристики напрямую зависит от условий использования и выделенного бюджета.

Что влияет на величину теплопроводности?

Тепловая проводимость любого материала зависит от множества параметров:

  • Пористая структура. Присутствие пор предполагает неоднородность сырья. При прохождении тепла через подобные структуры, где большая часть объема занята порами, охлаждение будет минимальным.
  • Плотность. Высокая плотность способствует более тесному взаимодействию частиц друг с другом. В результате теплообмен и последующее полное уравновешивание температур происходит быстрее.
  • Влажность. При высокой влажности окружающего воздуха или намокании стен постройки, сухой воздух вытесняется капельками жидкости из пор. Теплопроводность в подобном случае значительно увеличивается.
  • Теплопроводность, плотность и водопоглощение некоторых строительных материалов

Монтаж и эффективность в эксплуатации

Монтаж ППУ – быстро и легко.

Сравнение характеристик утеплителей должно осуществляться с учетом монтажа, ведь это тоже важно. Легче всего работать с жидкой теплоизоляцией, такой как ППУ и пеноизол, но для этого требуется специальное оборудование. Также не составляет труда укладка эковаты (целлюлозы) на горизонтальные поверхности, например, при или чердачного перекрытия. Для напыления эковаты на стены мокрым методом также нужны специальные приспособления.

Пенопласт укладывается как по обрешетке, так и сразу на рабочую поверхность. В принципе, это касается и плит из каменной ваты. Причем укладывать плитные утеплители можно и на вертикальные, и на горизонтальные поверхности (под стяжку в том числе). Мягкую стекловату в рулонах укладывают только по обрешетке.

В процессе эксплуатации теплоизоляционный слой может претерпевать некоторых нежелательных изменений:

  • напитать влагу;
  • дать усадку;
  • стать домом для мышей;
  • разрушиться от воздействия ИК лучей, воды, растворителей и прочее.

Кроме всего вышеуказанного, важное значение имеет пожаробезопасность теплоизоляции. Сравнение утеплителей, таблица группы горючести:

Применение показателя теплопроводности на практике

В строительстве все материалы условно подразделяются на теплоизоляционные и конструкционные. Конструкционное сырье отличается наибольшими показателями теплопроводности, но именно его применяют для постройки стен, перекрытий, прочих ограждений. Согласно таблице теплопроводности строительных материалов, при возведении стен из железобетона, для низкого теплообмена с окружающей средой толщина конструкции должна быть около 6 метров. В таком случае строение получится огромным, громоздким и потребует немалых затрат.

Наглядный пример — при какой толщине различных материалов их коэффициент теплопроводности будет одинаковым

Поэтому при возведении постройки следует отдельное внимание уделять дополнительным теплоизолирующим материалам. Слой теплоизоляции может не понадобиться только для построек из дерева или пенобетона, но даже при использовании подобного низкопроводного сырья толщина конструкции должна быть не менее 50 см.

Сравнение с помощью таблицы

NНаименованиеПлотностьТеппопроводностьЦена , евро за куб.м.Затраты энергии на
кг/куб.мминмаксЕвросоюзРоссияквт*ч/куб. м.
1целлюлозная вата30-700,0380,04548-9615-306
2древесноволокнистая плита150-2300,0390,052150800-1400
3древесное волокно30-500,0370,05200-25013-50
4киты из льняного волокна300,0370,04150-20021030
5пеностекло100-1500.050,07135-1681600
6перлит100-1500,050.062200-40025-30230
7пробка100-2500,0390,0530080
8конопля, пенька35-400,040.04115055
9хлопковая вата25-300,040,04120050
10овечья шерсть15-350,0350,04515055
11утиный пух25-350,0350,045150-200
12солома300-4000,080,12165
13минеральная (каменная) вата20-800.0380,04750-10030-50150-180
14стекповопокнистая вата15-650,0350,0550-10028-45180-250
15пенополистирол (безпрессовый)15-300.0350.0475028-75450
16пенополистирол экструзионный25-400,0350,04218875-90850
17пенополиуретан27-350,030,035250220-3501100

Показатель теплопроводных свойств является основным критерием при выборе утеплительного материала. Остается только сравнить ценовые политики разных поставщиков и определить необходимое количество.

Утеплитель – один из основных способов получить сооружение с необходимой энергоэффективностью. Перед его окончательным выбором точно определите условия использования и, вооружившись приведенной таблицей, совершите правильный выбор.

Теплопроводность готового здания. Варианты утепления конструкций

При разработке проекта постройки необходимо учесть все возможные варианты и пути потери тепла. Большое его количество может уходить через:

  • стены – 30%;
  • крышу – 30%;
  • двери и окна – 20%;
  • полы – 10%.
  • Теплопотери неутепленного частного дома

    При неверном расчете теплопроводности на этапе проектирования, жильцам остается довольствоваться только 10% тепла, получаемого от энергоносителей. Именно поэтому дома, возведенные из стандартного сырья: кирпича, бетона, камня рекомендуют дополнительно утеплять. Идеальная постройка согласно таблице теплопроводности строительных материалов должна быть выполнена полностью из теплоизолирующих элементов. Однако малая прочность и минимальная устойчивость к нагрузкам ограничивает возможности их применения.

    Сравнительный график коэффициентов теплопроводности некоторых строительных материалов и утеплителей

    Самым распространенным вариантом сочетание несущей конструкции из высокопрочных материалов с дополнительным слоем теплоизоляции. Сюда можно отнести:

  • Каркасный дом. При его постройке каркасом из древесины обеспечивается жесткость всей конструкции, а укладка утеплителя производится в пространство между стойками. При незначительном уменьшении теплообмена в некоторых случая может потребоваться утепление еще и снаружи основного каркаса.
  • Дом из стандартных материалов. При выполнении стен из кирпича, шлакоблоков, утепление должно проводиться по наружной поверхности конструкции.
  • Необходимая тепло- и гидроизоляция для сохранения тепла в частном доме

    Сравнение паропроницаемости утеплителей

    Высокая паропроницаемость=отсутствие конденсата.

    Паропроницаемость – это способность материала пропускать воздух, а вместе с ним и пар. То есть теплоизоляция может дышать. На этой характеристике утеплителей для дома последнее время производители акцентируют много внимания. На самом деле высокая паропроницаемость нужна только при . Во всех остальных случаях данный критерий не является категорически важным.

    Характеристики утеплителей по паропроницаемости, таблица:

    Сравнение утеплителей для стен показало, что самой высокой степенью паропроницаемости обладают натуральные материалы, в то время как у полимерных утеплителей коэффициент крайне низок. Это свидетельствует о том, что такие материалы как ППУ и пенопласт обладают способностью задерживать пар, то есть выполняют . Пеноизол – это тоже своего рода полимер, который изготавливается из смол. Его отличие от ППУ и пенопласта заключается в структуре ячеек, которые открытие. Иными словами, это материал с открытоячеистой структурой. Способность теплоизоляции пропускать пар тесно связан со следующей характеристикой – поглощение влаги.

    Таблица теплопроводности строительных материалов: коэффициенты

    В этой таблице собраны показатели теплопроводности самых распространенных строительных материалов. Пользуясь подобными справочниками, можно без проблем рассчитать необходимую толщину стен и применяемого утеплителя.

    Таблица коэффициента теплопроводности строительных материалов:

    Таблица теплопроводности строительных материалов: коэффициенты

    Обзор гигроскопичности теплоизоляции

    Высокая гигроскопичность – это недостаток, который нужно устранять.

    Гигроскопичность – способность материала впитывать влагу, измеряется в процентах от собственного веса утеплителя. Гигроскопичность можно назвать слабой стороной теплоизоляции и чем выше это значение, тем серьезнее потребуются меры для ее нейтрализации. Дело в том, что вода, попадая в структуру материала, снижает эффективность утеплителя. Сравнение гигроскопичности самых распространенных теплоизоляционных материалов в гражданской строительстве:

    Сравнение гигроскопичности утеплителей для дома показало высокое влагопоглощение пеноизола, при этом данная теплоизоляция обладает способностью распределять и выводить влагу. Благодаря этому, даже намокнув на 30%, коэффициент теплопроводности не уменьшается. Несмотря на то, что у минеральной ваты процент поглощения влаги низкий, она особенно нуждается в защите. Напитав воды, она удерживает ее, не давая выходить наружу. При этом способность предотвращать теплопотери катастрофически снижается.

    Чтобы исключить попадание влаги в минвату используют пароизоляционные пленки и диффузионные мембраны. В основном полимеры устойчивы к длительному воздействию влаги, за исключением обычного пенополистирола, он быстро разрушается. В любом случае вода ни одному теплоизоляционному материалу на пользу не пошла, поэтому крайне важно исключить или минимизировать их контакт.

    Разновидности и описание

    На выбор потребителей предлагаются материалы с различными механическими свойствами.

    От этого во многом зависит удобство монтажа и свойства. По данному показателю различают:

    1. Пеноблоки
      . Изготавливаются из бетона со специальными добавками. В результате химической реакции структура получается пористой.
    2. Плиты.
      Строительный материал различной толщины и плотности изготавливается при помощи прессования или склеивания.
    3. Вата.
      Продается в рулонах и характеризуется волокнистой структурой.
    4. Гранулы (крошка).
      с пеновеществами различной фракции.

    Важно знать:

    подбор материала осуществляется с учетом свойств, стоимости и предназначения. Применение одинакового утеплителя для стен и чердачного перекрытия не позволит получить желаемый эффект, если не указано, что он предназначен для конкретной поверхности.

    Сырьем для утеплителей могут выступать различные вещества. Они все делятся на две категории:

    • органические на основе торфа, камыша, древесины;
    • неорганические — изготавливаются из вспененного бетона, минералов, асбестосодержащих веществ и др.

    Особенности применения

    Прежде чем определиться с материалами для отделки частного дома или квартиры, необходимо правильно рассчитать толщину слоя конкретного утеплителя.

    1. Для горизонтальных поверхностей (пол, потолок) можно использовать практически любой материал. Применение дополнительного слоя с высокой механической прочностью обязательно.
    2. Цокольные перекрытия рекомендуется утеплять стройматериалами с низкой гигроскопичностью. Повышенная влажность должна быть учтена.
      В противном случае утеплитель под воздействием влаги частично или полностью потеряет свойства.
    3. Для вертикальных поверхностей (стены) необходимо использовать материалы плитно-листового типа. Насыпные или рулонные со временем будут проседать, поэтому необходимо тщательно продумать способ крепежа.

    Если задумано индивидуальное строительство

    При возведении дома важно учитывать технические характеристики всех составляющих (материала для стен, кладочного раствора, будущего утепления, гидроизоляционных и пароотводящих плёнок, финишной отделки).

    Для понимания, какие стены наилучшим образом будут сохранять тепло, нужно проанализировать коэффициент теплопроводности не только материала для стен, но и строительного раствора, что видно из таблицы ниже:

    Номер п/пМатериал для стен, строительный растворКоэффициент теплопроводности по СНиП
    1.Кирпич0,35 – 0,87
    2.Саманные блоки0,1 – 0,44
    3.Бетон1,51 – 1,86
    4.Пенобетон и газобетон на основе цемента0,11 – 0,43
    5.Пенобетон и газобетон на основе извести0,13 – 0,55
    6.Ячеистый бетон0,08 – 0,26
    7.Керамические блоки0,14 – 0,18
    8.Строительный раствор цементно-песчаный0,58 – 0,93
    9.Строительный раствор с добавлением извести0,47 – 0,81

    Важно
    . Из приведённых в таблице данных видно, что у каждого строительного материала довольно большой разброс в показателях коэффициента теплопроводности.
    Это связано с несколькими причинами:

    • Плотность. Все утеплители выпускаются или укладываются (пеноизол, эковата) различной плотности. Чем ниже плотность (больше присутствует воздуха в теплоизоляционной структуре), тем ниже проводимость тепла. И, наоборот, у очень плотных утеплителей этот коэффициент выше.
    • Вещество, из которого производят (основа). Например, кирпич бывает силикатным, керамическим, глиняным. От этого зависит и коэффициент теплопроводности.
    • Количество пустот. Это касается кирпича (пустотелый и полнотелый) и теплоизоляции. Воздух – самый худший проводник тепла. Коэффициент его теплопроводимости – 0,026. Чем больше пустот, тем ниже этот показатель.

    Строительный раствор хорошо проводит тепло, поэтому любые стены рекомендуется утеплять.

    Сравнение основных показателей

    Чтобы понять, насколько эффективным будет тот или иной утеплитель, необходимо сравнить основные показатели материалов. Это можно сделать, просмотрев таблицу 1.

    МатериалПлотность кг/м3ТеплопроводностьГигроскопичностьМинимальный слой, см
    Пенополистирол30-40Очень низкаяСредняя10
    Пластиформ50-60НизкаяОчень низкая2
    60-70НизкаяСредняя5
    Пенопласт35-50Очень низкаяСредняя10
    25-32низкаянизкая20
    35-125НизкаяВысокая10-15
    130Низкаявысокая15
    500ВысокаяНизкая20
    Ячеистый бетон400-800ВысокаяВысокая20-40
    Пеностекло100-600Низкаянизкая10-15

    Таблица 1 Сравнение теплоизоляционных свойств материалов

    При этом многие отдают предпочтение пластиформу, минеральной вате или ячеистому бетону. Это связанно с индивидуальными предпочтениями, особенностями монтажа и некоторыми физическими свойствами.

    Сравнение теплопроводности строительных материалов – изучаем важные показатели. Расчет теплопотерь Теплопроводность гидроизоляционных материалов

    Точные данные позволит получить таблица теплопроводности строительных материалов. Правильное возведение зданий способствует оптимальным климатическим параметрам в помещении.

    Строительство каждого объекта лучше начинать с планировки проекта и тщательного расчета теплотехнических параметров. Точные данные позволит получить таблица теплопроводности строительных материалов. Правильное возведение зданий способствует оптимальным климатическим параметрам в помещении. А таблица поможет правильно подобрать сырье, которое будут использоваться для строительства.

    Назначение теплопроводности

    Теплопроводность является показателем передачи тепловой энергии от нагреваемых предметов в помещении к предметам с более низкой температурой. Процесс теплообмена производится, пока температурные показатели не уравняются. Для обозначения тепловой энергии используется специальный коэффициент теплопроводности строительных материалов. Таблица поможет увидеть все требуемые значения. Параметр обозначает, сколько тепловой энергии пропускается через единицу площади в единицу времени. Чем больше данное обозначение, тем качественнее будет теплообмен. При возведении зданий необходимо применять материал с минимальным значением тепловой проводимости.


    Коэффициент теплопроводности это такая величина, которая равна количеству теплоты, проходящей через метр толщины материала за час. Использование подобной характеристики обязательно для создания лучшей теплоизоляции. Теплопроводность следует учесть при подборе дополнительных утепляющих конструкций.

    Что оказывает влияние на показатель теплопроводности?

    Теплопроводность определяется такими факторами:

    Пористость определяет неоднородность структуры. При пропуске тепла через такие материалы процесс охлаждения незначительный;

    Повышенное значение плотности влияет на тесные соприкосновения частиц, что способствует более быстрому теплообмену;

    Повышенная влажность увеличивает данный показатель.

    Использование значений коэффициента теплопроводности на практике.

    Материалы представлены конструкционными и теплоизоляционными разновидностями. Первый вид обладает большими показателями теплопроводности. Они применяются для строительства перекрытий, ограждений и стен.

    При помощи таблицы определяются возможности их теплообмена. Чтобы данный показатель был достаточно низким для нормального микроклимата в помещении стены из некоторых материалов должны быть особенно толстыми. Чтобы этого избежать, рекомендуется использовать дополнительные теплоизолирующие компоненты.

    Показатели теплопроводности для готовых построек. Виды утеплений.

    При создании проекта нужно учитывать все способы утечки тепла. Оно может выходить через стены и крышу, а также через полы и двери. Если вы неправильно проведете расчеты проектирования, то придется довольствоваться только тепловой энергией, полученной от отопительных приборов. Здания, построенные из стандартного сырья: камня, кирпича либо бетона нужно дополнительно утеплять.

    Дополнительная теплоизоляция проводится в каркасных зданиях. При этом деревянный каркас придает жесткости конструкции, а утепляющий материал прокладывается в пространство между стойками. В зданиях из кирпича и шлакоблоков утепление производится снаружи конструкции.

    Выбирая утеплители необходимо обращать внимание на такие факторы, как уровень влажности, влияние повышенных температур и типа сооружения. Учитывайте определенные параметры утепляющих конструкций:

    Показатель теплопроводности оказывает влияние на качество теплоизолирующего процесса;

    Влагопоглощение имеет большое значение при утеплении наружных элементов;

    Толщина влияет на надежность утепления. Тонкий утеплитель помогает сохранить полезную площадь помещения;

    Важна горючесть. Качественное сырье имеет способность к самозатуханию;

    Термоустойчивость отображает способность выдерживать температурные перепады;

    Экологичность и безопасность;

    Звукоизоляция защищает от шума.

    В качестве утеплителей применяются следующие виды:

    Минеральная вата устойчива к огню и экологична. К важным характеристикам относится низкая теплопроводность;

    Пенопласт – это легкий материал с хорошими утеплительными свойствами. Он легко устанавливается и обладает влагоустойчивостью. Рекомендуется для применения в нежилых строениях;

    Базальтовая вата в отличие от минеральной отличается лучшими показателями стойкости к влаге;

    Пеноплэкс устойчив к влажности, повышенным температурам и огню. Имеет прекрасные показатели теплопроводности, прост в монтаже и долговечен;

    Пенополиуретан известен такими качествами, как негорючесть, хорошие водоотталкивающие свойства и высокая пожаростойкость;

    Экструдированный пенополистирол при производстве проходит дополнительную обработку. Обладает равномерной структурой;

    Пенофол представляет из себя многослойный утепляющий пласт. В составе присутствует вспененный полиэтилен. Поверхность пластины покрывается фольгой для обеспечения отражения.

    Для теплоизоляции могут применяться сыпучие типы сырья. Это бумажные гранулы или перлит. Они имеют стойкость к влаге и к огню. А из органических разновидностей можно рассмотреть волокно из древесины, лен или пробковое покрытие. При выборе, особое внимание уделяйте таким показателям как экологичность и пожаробезопасность.

    ОБРАТИТЕ ВНИМАНИЕ! При конструировании теплоизоляции, важно продумать монтаж гидроизолирующей прослойки. Это позволит избежать высокой влажности и повысит сопротивляемость теплообмену.

    Таблица теплопроводности строительных материалов: особенности показателей.

    Таблица теплопроводности строительных материалов содержит показатели различных видов сырья, которое применяется в строительстве. Используя данную информацию, вы можете легко посчитать толщину стен и количество утеплителя.

    Как использовать таблицу теплопроводности материалов и утеплителей?

    В таблице сопротивления теплопередаче материалов представлены наиболее популярные материалы. Выбирая определенный вариант теплоизоляции важно учитывать не только физические свойства, но и такие характеристики как долговечность, цена и легкость установки.

    Знаете ли вы, что проще всего выполнять монтаж пенооизола и пенополиуретана. Они распределяются по поверхности в виде пены. Подобные материалы легко заполняют полости конструкций. При сравнении твердых и пенных вариантов, нужно выделить, что пена не образует стыков.


    Значения коэффициентов теплопередачи материалов в таблице.

    При произведении вычислений следует знать коэффициент сопротивления теплопередаче. Данное значение является отношением температур с обеих сторон к количеству теплового потока. Для того чтобы найти теплосопротивление определенных стен и используется таблица теплопроводности.

    Все расчеты вы можете провести сами. Для этого толщина прослойки теплоизолятора делится на коэффициент теплопроводности. Данное значение часто указывается на упаковке, если это изоляция. Материалы для дома измеряются самостоятельно. Это касается толщины, а коэффициенты можно отыскать в специальных таблицах.

    Коэффициент сопротивления помогает выбрать определенный тип теплоизоляции и толщину слоя материала. Сведения о паропроницаемости и плотности можно посмотреть в таблице.

    При правильном использовании табличных данных вы сможете выбрать качественный материал для создания благоприятного микроклимата в помещении. опубликовано

    Отправим материал вам на e-mail

    Любые строительные работы начинаются с создания проекта. При этом планируется как расположение комнат в здании, так и рассчитываются главные теплотехнические показатели. От данных значений зависит, насколько будущая постройка будет теплой, долговечной и экономичной. Позволит определить теплопроводность строительных материалов – таблица, в которой отображены основные коэффициенты. Правильные расчеты являются гарантией удачного строительства и создания благоприятного микроклимата в помещении.

    Чтобы дом был теплым без утеплителя потребуется определенная толщина стен, которая отличается в зависимости от вида материала

    Теплопроводность представляет собой процесс перемещения тепловой энергии от прогретых частей к холодным. Обменные процессы происходят до полного равновесия температурного значения.

    Процесс теплопередачи характеризуется промежутком времени, в течение которого выравниваются температурные значения. Чем больше времени проходит, тем ниже теплопроводность строительных материалов, свойства которых отображает таблица. Для определения данного показателя применяется такое понятие как коэффициент теплопроводности. Он определяет, какое количество тепловой энергии проходит через единицу площади определенной поверхности. Чем данный показатель больше, тем с большей скоростью будет остывать здание. Таблица теплопроводности нужна при проектировании защиты постройки от теплопотерь. При этом можно снизить эксплуатационный бюджет.

    Поэтому при возведении постройки стоит использовать дополнительные материалы. При этом значение имеет теплопроводность строительных материалов, таблица показывает все значения.

    Полезная информация! Для построек из древесины и пенобетона не обязательно использовать дополнительное утепление. Даже применяя низкопроводной материал, толщина сооружения не должна быть менее 50 см.

    Особенности теплопроводности готового строения

    Планируя проект будущего дома, нужно обязательно учесть возможные потери тепловой энергии. Большая часть тепла уходит через двери, окна, стены, крышу и полы.

    Если не выполнять расчеты по теплосбережению дома, то в помещении будет прохладно. Рекомендуется постройки из , бетона и камня дополнительно утеплять.

    Полезный совет! Перед тем как утеплять жилище, необходимо продумать качественную гидроизоляцию. При этом даже повышенная влажность не повлияет на особенности теплоизоляции в помещении.

    Разновидности утепления конструкций

    Теплое здание получится при оптимальном сочетании конструкции из прочных материалов и качественного теплоизолирующего слоя. К подобным сооружениям можно отнести следующие:

    • здание из стандартных материалов: шлакоблоков или кирпича. При этом утепление часто проводится по наружной стороне.

    Как определить коэффициенты теплопроводности строительных материалов: таблица

    Помогает определить коэффициент теплопроводности строительных материалов – таблица. В ней собраны все значения самых распространенных материалов. Используя подобные данные, можно рассчитать толщину стен и используемый утеплитель. Таблица значений теплопроводности:

    Чтобы определить величину теплопроводности используются специальные ГОСТы. Значение данного показателя отличается в зависимости от вида бетона. Если материал имеет показатель 1,75, то пористый состав обладает значением 1,4. Если раствор выполнен с применением каменного щебня, то его значение 1,3.

    Потери через потолочные конструкции значительны для проживающих на последних этажах. К слабым участкам относится пространство между перекрытиями и стеной. Подобные участки считаются мостиками холода. Если над квартирой присутствует технический этаж, то при этом потери тепловой энергии меньше.

    На верхнем этаже производится снаружи. Также потолок можно утеплить внутри квартиры. Для этого применяется пенополистирол или теплоизоляционные плиты.

    Прежде чем утеплять любые поверхности, стоит узнать теплопроводность строительных материалов, таблица СНиПа поможет в этом. Утеплять напольное покрытие не так сложно как другие поверхности. В качестве утепляющих материалов применяются такие материалы как керамзит, стекловата ил пенополистирол.

    Теплопроводность строительных материалов (таблица ее значений будет приведена в статье ниже) – это очень важный критерий, на который категорически нужно обращать внимание, во время такого этапа организации строительных работ, как: закупка сырья.

    Этот показатель следует учитывать не только при возведении какого-либо объекта с нуля, а и при ремонтных работах, включающих в себя установку стен (как внешних, так и внутренних).

    В основном, от теплопроводности выбранных материалов, зависит будущий уровень комфорта внутри помещения. Однако, данный критерий влияет и на некоторые технические показатели, о чем можно узнать более детально в этой статье.

    Теплопроводность – определение

    Перед тем, как определять коэффициент теплопроводности того, или иного материала, важно заранее знать: а что вообще представляет из себя данный термин.

    Как правило, под определением «теплопроводность», принято понимать уровень теплообмена определенного материала, выраженный в ваттах/метр кельвина.

    Более простым языком, данный коэффициент показывает способность получения материалом энергии от более нагретых тел, и уровень отдачи его энергии телам, с пониженной температурой. Как правило, этот показатель рассчитывается по одной, из двух основных формул: q = x*grad(T) или P=-x*.

    Что влияет на теплопроводность

    Коэффициент теплопроводности каждого строительного материала определяется строго индивидуально, на что следует обратить особое внимание, и зависит он от нескольких основных критериев:

    • плотности;
    • уровня пористости;
    • строения и формы пор;
    • природной температуры;
    • уровня влажности;
    • химической структуры (атомной группы).

    К примеру, при наличии в структуре материала большого количества мелких пор, замкнутого типа, его уровень теплопроводности существенно понизится. Однако, при варианте с крупными порами, данный коэффициент будет наоборот повышен, за счет возникновения в порах конвективных воздушных потоков.

    Таблица

    Как было сказано ранее: каждый строительный материал имеет индивидуальный коэффициент теплопроводности, который рассчитывается исходя из некоторых характерных критериев.

    Для более ясной картины, приведем в таблице примеры теплопроводности некоторых, самых распространенных материалов, используемых в строительстве:

    Материал Плотность (кг*м3) Теплопроводность (Вт\(м*К))
    Железобетон 2500 1,69
    Бетон 2400 1,51
    Керамзитобетон 1800 0,66
    Пенобетон 1000 0,29
    Минеральная вата От 50 до 200 От 0,04 до 0,07 соответственно
    Пенополистирол От 33 до 150 От 0,03 до 0,05 соответственно
    От 30 до 80 От 0,02 до 0,04 соответственно
    Керамзит 800 0,18
    Пеностекло 400 0,11

    Разновидности утепления конструкций

    Вермикулит

    Подбор материала для утепления любой конструкции, в первую очередь осуществляется исходя из ее типа: наружная или внутренняя. В первом варианте, в качестве утеплителя хорошо подойдут вещества, не поддающиеся воздействию погодных условий, и других внешних факторов, а именно:

    • керамзит;
    • перлитовый щебень.

    Для большего эффекта, утеплитель можно наносить в два слоя, где вышеперечисленные материалы будут считаться защитным слоем, а в качестве основы, вполне смогут выступить:

    • пенопласт;
    • пеноизол;
    • пенополистирол;
    • пенополиуретан.

    Пеноизол

    Что же касается исключительно внутреннего варианта утепления конструкций, то для этого вполне сгодятся такие материалы:

    • минеральная вата;
    • стекловата;
    • вата из базальтового волокна;

    Помимо сферы применения, утеплители значительно отличаются между собой и своей стоимость, теплопроводностью, герметичностью, а также сроком службы, на что следует обратить внимание при их выборе.

    При выборе утеплителя, в первую очередь, важно обращать внимание на сферу его применения. К примеру, подбирая материал утепления для наружной отделки объекта, следите за тем, чтоб его плотность была достаточно высокой, а его структура имела надежную защиту от перепадов температуры, попадания влаги, физического воздействия и т.д.

    Также, старайтесь подбирать такие материалы, вес которых будет не очень большим, дабы не разрушать основу постройки. Ведь не редко, утеплитель приходится крепить на глиняную поверхность, или же поверх обычной «шубы», что вполне может стать причиной быстрого его разрушения.

    Подводя итог, можно сделать вывод, что подборка подходящего материала для утепления какой-либо конструкции – процесс весьма тяжелый, требующий повышенного внимания. Помните, что в данном вопросе, лучше всего полагаться только на себя, и на свои знания, так как в большинстве случаев, консультанты магазинов могут советовать

    Вам приобрести качественный дорогой утеплитель туда, где и без него вполне можно обойтись (к примеру, под линолеум, или на внутренние стенки). Поэтому, осуществляйте выбор самостоятельно, опираясь на характеристики материала, и на его качество. Также, важно помнить, что цена – это далеко не всегда важный критерий, на который стоит ориентироваться при выборе.

    Смотрите в следующем видео пояснения таблицы теплопроводности материалов с примерами:

    Термин «теплопроводность» применяется к свойствам материалов пропускать тепловую энергию от горячих участков к холодным. Теплопроводность основана на движении частиц внутри веществ и материалов. Способность передавать энергию тепла в количественном измерении – это коэффициент теплопроводности. Круговорот тепловой энергопередачи, или тепловой обмен, может проходить в любых веществах с неравнозначным размещением разных температурных участков, но коэффициент теплопроводности зависим от давления и температуры в самом материале, а также от его состояния – газообразного, жидкого или твердого.

    Физически теплопроводность материалов равняется количеству тепла, которое перетекает через однородный предмет установленных габаритов и площади за определенный временной отрезок при установленной температурной разнице (1 К). В системе СИ единичный показатель, который имеет коэффициент теплопроводности, принято измерять в Вт/(м К).

    Как рассчитать теплопроводность по закону Фурье

    В заданном тепловом режиме плотность потока при передаче тепла прямо пропорциональна вектору максимального увеличения температуры, параметры которой изменяются от одного участка к другим, и по модулю с одинаковой скоростью увеличения температуры по направлению вектора:

    q → = − ϰ х grad х (T), где:

    • q → – направление плотности предмета, передающего тепло, или объем теплового потока, который протекает по участку за заданную временную единицу через определенную площадь, перпендикулярный всем осям;
    • ϰ – удельный коэффициент теплопроводности материала;
    • T – температура материала.

    При применении закона Фурье не принимают во внимание инерционность перетекания тепловой энергии, а это значит, что имеется в виду мгновенная передача тепла из любой точки на любое расстояние. Поэтому формулу нельзя использовать для расчетов передачи тепла при протекании процессов, имеющих высокую частоту повторения. Это ультразвуковое излучение, передача тепловой энергии волнами ударного или импульсного типа и т.д. Существует решение по закону Фурье с релаксационным членом:

    τ х ∂ q / ∂ t = − (q + ϰ х ∇T) .

    Если ре­лак­са­ция τ мгновенная, то формула превращается в закон Фурье.

    Ориентировочная таблица теплопроводности материалов:

    Основа Значение теплопроводности, Вт/(м К)
    Жесткий графен 4840 + / – 440 – 5300 + / – 480
    Алмаз 1001-2600
    Графит 278,4-2435
    Бора арсенид 200-2000
    SiC 490
    Ag 430
    Cu 401
    BeO 370
    Au 320
    Al 202-236
    AlN 200
    BN 180
    Si 150
    Cu 3 Zn 2 97-111
    Cr 107
    Fe 92
    Pt 70
    Sn 67
    ZnO 54
    Черная сталь 47-58
    Pb 35,3
    Нержавейка Теплопроводность стали – 15
    SiO2 8
    Высококачественные термостойкие пасты 5-12
    Гранит

    (состоит из SiO 2 68-73 %; Al 2 O 3 12,0-15,5 %; Na 2 O 3,0-6,0 %; CaO 1,5-4,0 %; FeO 0,5-3,0 %; Fe 2 O 3 0,5-2,5 %; К 2 О 0,5-3,0 %; MgO 0,1-1,5 %; TiO 2 0,1-0,6 %)

    2,4
    Бетонный раствор без заполнителей 1,75
    Бетонный раствор со щебнем или с гравием 1,51
    Базальт

    (состоит из SiO 2 – 47-52%, TiO 2 – 1-2,5%, Al2O 3 – 14-18%, Fe 2 O 3 – 2-5%, FeO – 6-10%, MnO – 0,1-0,2%, MgO – 5-7%, CaO – 6-12%, Na 2 O – 1,5-3%, K 2 O – 0,1-1,5%, P 2 O 5 – 0,2-0,5 %)

    1,3
    Стекло

    (состоит из SiO 2 , B 2 O 3 , P 2 O 5 , TeO 2 , GeO 2 , AlF 3 и т.д.)

    1-1,15
    Термостойкая паста КПТ-8 0,7
    Бетонный раствор с наполнителем из песка, без щебня или гравия 0,7
    Вода чистая 0,6
    Силикатный

    или красный кирпич

    0,2-0,7
    Масла

    на основе силикона

    0,16
    Пенобетон 0,05-0,3
    Газобетон 0,1-0,3
    Дерево Теплопроводность дерева – 0,15
    Масла

    на основе нефти

    0,125
    Снег 0,10-0,15
    ПП с группой горючести Г1 0,039-0,051
    ЭППУ с группой горючести Г3, Г4 0,03-0,033
    Стеклянная вата 0,032-0,041
    Вата каменная 0,035-0,04
    Воздушная атмосфера (300 К, 100 кПа) 0,022
    Гель

    на основе воздуха

    0,017
    Аргон (Ar) 0,017
    Вакуумная среда 0

    Приведенная таблица теплопроводности учитывает теплопередачу посредством теплового излучения и теплообмена частиц. Так как вакуум не передает тепло, то оно перетекает при помощи солнечного излучения или другого типа генерации тепла. В газовой или жидкой среде слои с разной температурой смешиваются искусственно или естественным способом.


    Проводя расчет теплопроводности стены, необходимо принимать во внимание, что теплопередача сквозь стеновые поверхности меняется от того, что температура в здании и на улице всегда разная, и зависит от площади всех поверхностей дома и от теплопроводности стройматериалов.

    Чтобы количественно оценить теплопроводность, ввели такое значение, как коэффициент теплопроводности материалов. Он показывает, как тот или иной материал способен передавать тепло. Чем выше это значение, например, коэффициент теплопроводности стали, тем эффективнее сталь будет проводить тепло.

    • При утеплении дома из древесины рекомендуется выбирать стройматериалы с низким коэффициентом.
    • Если стена кирпичная, то при значении коэффициента 0,67 Вт/(м2 К) и толщине стены 1 м при ее площади 1 м 2 при разнице наружной и внутридомовой температуры 1 0 С кирпич будет пропускать 0,67 Вт энергии. При разнице температур 10 0 С кирпич будет пропускать 6,7 Вт и т.д.

    Стандартное значение коэффициента теплопроводимости теплоизоляции и других строительных материалов верно для толщины стены 1 м. Чтобы провести расчет теплопроводности поверхности другой толщины, следует коэффициент поделить на выбранное значение толщины стены (метры).

    В СНиП и при проведении расчетов фигурирует термин «тепловое сопротивление материала», он означает обратную теплопроводность. То есть при теплопроводности листа пенопласта 10 см и его теплопроводности 0,35 Вт/(м 2 К) тепловое сопротивление листа – 1 / 0,35 Вт/(м 2 К) = 2,85 (м 2 К)/Вт.

    Ниже – таблица теплопроводности для востребованных строительных материалов и теплоизоляторов:

    Стройматериалы Коэффициент теплопроводимости, Вт/(м 2 К)
    Плиты из алебастра 0,47
    Al 230
    Шифер асбоцементный 0,35
    Асбест (волокно, ткань) 0,15
    Асбоцемент 1,76
    Асбоцементные изделия 0,35
    Асфальт 0,73
    Асфальт для напольного покрытия 0,84
    Бакелит 0,24
    Бетон с заполнителем щебнем 1,3
    Бетон с заполнителем песком 0,7
    Пористый бетон – пено- и газобетон 1,4
    Сплошной бетон 1,75
    Термоизоляционный бетон 0,18
    Битумная масса 0,47
    Бумажные материалы 0,14
    Рыхлая минвата 0,046
    Тяжелая минвата 0,05
    Вата – теплоизолятор на основе хлопка 0,05
    Вермикулит в плитах или листах 0,1
    Войлок 0,046
    Гипс 0,35
    Глиноземы 2,33
    Гравийный заполнитель 0,93
    Гранитный или базальтовый заполнитель 3,5
    Влажный грунт, 10% 1,75
    Влажный грунт, 20% 2,1
    Песчаники 1,16
    Сухая почва 0,4
    Уплотненный грунт 1,05
    Гудроновая масса 0,3
    Доска строительная 0,15
    Фанерные листы 0,15
    Твердые породы дерева 0,2
    ДСП 0,2
    Дюралюминиевые изделия 160
    Железобетонные изделия 1,72
    Зола 0,15
    Известняковые блоки 1,71
    Раствор на песке и извести 0,87
    Смола вспененная 0,037
    Природный камень 1,4
    Картонные листы из нескольких слоев 0,14
    Каучук пористый 0,035
    Каучук 0,042
    Каучук с фтором 0,053
    Керамзитобетонные блоки 0,22
    Красный кирпич 0,13
    Пустотелый кирпич 0,44
    Полнотелый кирпич 0,81
    Сплошной кирпич 0,67
    Шлакокирпич 0,58
    Плиты на основе кремнезема 0,07
    Латунные изделия 110
    Лед при температуре 0 0 С 2,21
    Лед при температуре -20 0 С 2,44
    Лиственное дерево при влажности 15% 0,15
    Медные изделия 380
    Мипора 0,086
    Опилки для засыпки 0,096
    Сухие опилки 0,064
    ПВХ 0,19
    Пенобетон 0,3
    Пенопласт марки ПС-1 0,036
    Пенопласт марки ПС-4 0,04
    Пенопласт марки ПХВ-1 0,05
    Пенопласт марки ФРП 0,044
    ППУ марки ПС-Б 0,04
    ППУ марки ПС-БС 0,04
    Лист из пенополиуретана 0,034
    Панель из пенополиуретана 0,024
    Облегченное пеностекло 0,06
    Тяжелое вспененное стекло 0,08
    Пергаминовые изделия 0,16
    Перлитовые изделия 0,051
    Плиты на цементе и перлите 0,085
    Влажный песок 0% 0,33
    Влажный песок 0% 0,97
    Влажный песок 20% 1,33
    Обожженный камень 1,52
    Керамическая плитка 1,03
    Плитка марки ПМТБ-2 0,035
    Полистирол 0,081
    Поролон 0,04
    Раствор на основе цемента без песка 0,47
    Плита из натуральной пробки 0,042
    Легкие листы из натуральной пробки 0,034
    Тяжелые листы из натуральной пробки 0,05
    Резиновые изделия 0,15
    Рубероид 0,17
    Сланец 2,100
    Снег 1,5
    Хвойная древесина влажностью 15% 0,15
    Хвойная смолистая древесина влажностью 15% 0,23
    Стальные изделия 52
    Стеклянные изделия 1,15
    Утеплитель стекловата 0,05
    Стекловолоконные утеплители 0,034
    Стеклотекстолитовые изделия 0,31
    Стружка 0,13
    Тефлоновое покрытие 0,26
    Толь 0,24
    Плита на основе цементного раствора 1,93
    Цементно-песчаный раствор 1,24
    Чугунные изделия 57
    Шлак в гранулах 0,14
    Шлак зольный 0,3
    Шлакобетонные блоки 0,65
    Сухие штукатурные смеси 0,22
    Штукатурный раствор на основе цемента 0,95
    Эбонитовые изделия 0,15

    Кроме того, необходимо учитывать теплопроводность утеплителей из-за их струйных тепловых потоков. В плотной среде возможно «переливание» квазичастиц из одного нагретого стройматериала в другой, более холодный или более теплый, через поры субмикронных размеров, что помогает распространять звук и тепло, даже если в этих порах будет абсолютный вакуум.

    Строительство коттеджа или дачного дома – это сложный и трудоемкий процесс. И для того, чтобы будущее строение простояло не один десяток лет, нужно соблюдать все нормы и стандарты при его возведении. Поэтому каждый этап строительства требует точных расчетов и качественного выполнения необходимых работ.

    Одним из самых важных показателей при строительстве и отделке строения является теплопроводность строительных материалов. СНИП (строительные нормы и правила) дает полный спектр информации по данному вопросу. Ее необходимо знать, чтобы будущее здание было комфортным для проживания как в летний, так и в зимний период.

    Идеальный теплый дом

    От конструктивных особенностей строения и применяемых при его возведении материалов зависит комфорт и экономичность проживания в нем. Комфорт заключается в создании оптимального микроклимата внутри вне зависимости от внешних погодных условий и температуры окружающей среды. Если материалы подобраны правильно, а котельное оборудование и вентиляция установлены согласно нормам, то в таком доме будет комфортная прохладная температура летом и тепло зимой. К тому же если все материалы, используемые при строительстве, обладают хорошими теплоизоляционными свойствами, то расходы на энергоносители при отоплении помещений будут минимальны.

    Понятие теплопроводности

    Теплопроводность – это передача тепловой энергии между непосредственно соприкасающимися телами или средами. Простыми словами теплопроводность – это способность материала проводить температуру. То есть, попадая в какую-то среду с отличающейся температурой, материал начинает принимать температуру этой среды.

    Этот процесс имеет большое значение и в строительстве. Так, в доме с помощью отопительного оборудования поддерживается оптимальная температура (20-25°C). Если температура на улице будет ниже, то когда отключается отопление, все тепло из дома через некоторое время выйдет на улицу, и температура понизится. Летом происходит обратная ситуация. Чтобы сделать температуру в доме ниже уличной, приходится использовать кондиционер.

    Коэффициент теплопроводности

    Потеря тепла в доме неизбежна. Она происходит постоянно, когда температура снаружи меньше, чем в помещении. А вот ее интенсивность – это переменная величина. Она зависит от множества факторов, главными среди которых являются:

    • Площадь поверхностей, участвующих в теплообмене (крыша, стены, перекрытия, пол).
    • Показатель теплопроводности строительных материалов и отдельных элементов здания (окна, двери).
    • Разница между температурами на улице и внутри дома.
    • И другие.

    Для количественной характеристики теплопроводности строительных материалов используют специальный коэффициент. Используя этот показатель, можно довольно просто рассчитать необходимую теплоизоляцию для всех частей дома (стены, крыша, перекрытия, пол). Чем выше коэффициент теплопроводности строительных материалов, тем больше интенсивность потери тепла. Таким образом, для постройки теплого дома лучше применять материалы с более низким показателем этой величины.

    Коэффициент теплопроводности строительных материалов, как и любых других веществ (жидких, твердых или газообразных), обозначается греческой буквой λ. Единицей его измерения является Вт/(м*°C). При этом расчет ведется на один квадратный метр стены толщиной в один метр. Разница температур здесь берется 1°. Практически в любом строительном справочнике имеется таблица теплопроводности строительных материалов, в которой можно посмотреть значение этого коэффициента для различных блоков, кирпичей, бетонных смесей, пород дерева и других материалов.

    Определение потерь тепла

    Потери тепла в любом здании всегда есть, но в зависимости от материала они могут изменять свое значение. В среднем потеря тепла происходит через:

    • Крышу (от 15 % до 25 %).
    • Стены (от 15 % до 35 %).
    • Окна (от 5 % до 15 %).
    • Дверь (от 5 % до 20 %).
    • Пол (от 10 % до 20 %).

    Для определения потерь тепла применяют специальный тепловизор, который определяет наиболее проблемные места. Они выделяются на нем красным цветом. Меньшая потеря тепла происходит в желтых зонах, далее – в зеленых. Зоны с наименьшей потерей тепла выделяются синим цветом. А определение теплопроводности строительных материалов должно проводиться в специальных лабораториях, о чем должен свидетельствовать сертификат качества, прилагаемый к продукции.

    Пример расчета потерь тепла

    Если взять, к примеру, стену из материала с коэффициентом теплопроводности 1, то при разности температур с двух сторон этой стены в 1°, потери тепла составят 1 Вт. Если же толщину стены взять не 1 метр, а 10 см, то потери составят уже 10 Вт. В случае, если разность температур будет 10°, то тепловые потери также составят 10 Вт.

    Рассмотрим теперь на конкретном примере расчет потери тепла целого здания. Высоту его возьмем 6 метров (8 с коньком), ширину – 10 метров, а длину – 15 метров. Для простоты расчетов берем 10 окон площадью 1 м 2 . Температуру внутри помещения будем считать равную 25°C, а на улице -15°C. Вычисляем площадь всех поверхностей, через которые происходит потеря тепла:

    • Окна – 10 м 2 .
    • Пол – 150 м 2 .
    • Стены – 300 м 2 .
    • Крыша (со скатами по длинной стороне) – 160 м 2 .

    Формула теплопроводности строительных материалов позволяет вычислить коэффициенты для всех частей здания. Но проще использовать уже готовые данные из справочника. Там есть таблица теплопроводности строительных материалов. Рассмотрим каждый элемент по отдельности и определим его тепловое сопротивление. Оно рассчитывается по формуле R = d/λ, где d – толщина материала, а λ – коэффициент его теплопроводности.

    Пол – 10 см бетона (R=0,058 (м 2 *°C)/Вт) и 10 см минеральной ваты (R=2,8 (м 2 *°C)/Вт). Теперь складываем эти два показателя. Таким образом, тепловое сопротивление пола равняется 2,858 (м 2 *°C)/Вт.

    Аналогично считаются стены, окна и кровля. Материал – ячеистый бетон (газобетон), толщина 30 см. В таком случае R=3,75 (м 2 *°C)/Вт. Тепловое сопротивление пластового окна – 0,4 (м 2 *°C)/Вт.

    Следующая формула позволяет выяснить потери тепловой энергии.

    Q = S * T / R, где S – площадь поверхности, T – разница температур снаружи и внутри (40°C). Рассчитаем потери тепла для каждого элемента:

    • Для крыши: Q = 160*40/2,8=2,3 кВт.
    • Для стен: Q = 300*40/3,75=3,2 кВт.
    • Для окон: Q = 10*40/0,4=1 кВт.
    • Для пола: Q = 150*40/2,858=2,1 кВт.

    Далее все эти показатели суммируются. Таким образом, для данного коттеджа тепловые потери составят 8,6 кВт. А для поддержания оптимальной температуры потребуется котельное оборудование мощностью не менее 10 кВт.

    Материалы для внешних стен

    На сегодняшний день существует множество стеновых строительных материалов. Но наибольшей популярностью в частном домостроении по-прежнему пользуются строительные блоки, кирпичи и дерево. Основные отличия – это плотность и теплопроводность строительных материалов. Сравнение дает возможность выбрать золотую середину в соотношении плотность/теплопроводность. Чем выше плотность материала, тем выше его несущая способность, а следовательно, и прочность конструкции в целом. Но при этом ниже его тепловое сопротивление, а как следствие, расходы на энергоносители выше. С другой стороны, чем выше тепловое сопротивление, тем ниже плотность материала. Меньшая плотность, как правило, подразумевает наличие пористой структуры.

    Чтобы взвесить все за и против, необходимо знать плотность материала и его коэффициент теплопроводности. Следующая таблица теплопроводности строительных материалов для стен дает значение этого коэффициента и его плотность.

    Материал

    Теплопроводность, Вт/(м*°C)

    Плотность, т/м 3

    Железобетон

    Керамзитобетонные блоки

    Керамический кирпич

    Силикатный кирпич

    Газобетонные блоки

    Утеплители для стен

    При недостаточной тепловой сопротивляемости внешних стен могут применяться различные утеплители. Так как значения теплопроводности строительных материалов для утепления могут иметь весьма низкий показатель, то чаще всего толщины в 5-10 см будет достаточно для создания комфортной температуры и микроклимата в помещениях. Широкое применение на сегодняшний день получили такие материалы, как минеральная вата, пенополистирол, пенопласт, пенополиуритан и пеностекло.

    Следующая таблица теплопроводности строительных материалов, используемых для утепления наружных стен, дает значение коэффициента λ.

    Особенности применения стеновых утеплителей

    Применение утеплителей для наружных стен имеет некоторые ограничения. Это прежде всего связанно с таким параметром, как паропроницаемость. Если стена сделана из пористого материала, такого как газобетон, пенобетон или керамзитобетон, то применять лучше минеральную вату, так как этот параметр у них практически одинаковый. Использование пенополистирола, пенополиуритана или пеностекла возможно только при наличии специального вентиляционного зазора между стеной и утеплителем. Для дерева это также критично. А вот для кирпичных стен данный параметр не так критичен.

    Теплая кровля

    Утепление кровли позволяет избежать ненужных перерасходов при отоплении дома. Для этого могут применяться все виды утеплителей как листового формата, так и напыляемые (пенополиуритан). При этом не следует забывать про пароизоляцию и гидроизоляцию. Это весьма важно, так как мокрый утеплитель (минеральная вата) теряет свои свойства по тепловой сопротивляемости. Если же кровля не утепляется, то необходимо основательно утеплить перекрытие между чердаком и последним этажом.

    Пол

    Утепление пола весьма важный этап. При этом также необходимо применять пароизоляцию и гидроизоляцию. В качестве утеплителя используется более плотный материал. Он, соответственно, имеет более высокий коэффициент теплопроводности, чем кровельный. Дополнительной мерой для утепления пола может послужить подвал. Наличие воздушной прослойки позволяет повысить тепловую защиту дома. А оборудование системы теплого пола (водяного или электрического) дает дополнительный источник тепла.

    Заключение

    При строительстве и отделке фасада необходимо руководствоваться точными расчетами по тепловым потерям и учитывать параметры используемых материалов (теплопроводность, паропроницаемость и плотность).

    сравнение по толщине, сколько у бетона

    На чтение 5 мин Просмотров 332 Опубликовано

    Любой человек согласится, что дома должно быть всегда уютно: летом не жарко, зимой – тепло. За сохранение тепла и прохлады «отвечает» показатель теплопроходимости. Чем лучше перегородка проводит, то есть отдает тепло, тем быстрее он будет остывать и нагреваться. Стены и крыша дома должны иметь низкую проводность, а некоторые элементы, например, радиаторные батареи, могут быть хорошими проводниками. Узнать теплопроводность бетона и других смесей и блоков можно по таблицам или рассчитать по формуле.

    Что это такое

    Теплопроводность строительных материалов играет важную роль при их выборе. Термин означает количество тепла, которое разные перегородки одинаковой толщины могут провести за единицу времени. Чем ниже показатель, тем хуже тепло проходит – плоскость плохо нагревается и медленно остывает.

    Коэффициент проницаемости показывает, сколько тепла может пройти через 1 метр метровой стены при разнице температур в 1 градус. Единицей измерения является Вт/(м*С), где м – это метры, а С – градус Цельсия.

    В зависимости от значения стройматериалы используют для разных целей: с низкой проводимостью применяют для утепления, чтобы дома не было холодно, с высокой – для отвода тепла и быстрого охлаждения, например, для батарей.

    Обратите внимание! Плоскости с низким значением будут медленнее остывать. Это позволит сэкономить на отоплении.

    Тепловое или термическое сопротивление – это величина, обратная теплопроходимости. Она отражает, насколько сильно перегородка мешает прохождению тепла. То есть чем выше сопротивление, тем ниже проводность – этот стройматериал можно использовать для утепления. Формула для расчета сопротивления

    R = H/λ, где

    • R – нормативное температурное сопротивление.
    • H – толщина в метрах.
    • λ – значение проводимости.

    Величина измеряется в (м*С)/Вт, где м – метр, С- градус Цельсия.

    Особенности выбора на основе этих показателей

    Чтобы построить хороший, прочный дом важно не забывать про теплопроницаемость стен и потолков. Увидеть важность этого свойства можно в простом примере: стена из бетона толщиной в 30 сантиметров и перегородка из кирпича в 50 см одинаково справляются с теплопотерей. Плита из железобетона должна быть примерно в 3 раза толще плиты из керамзитобетона.

    При выборе стоит помнить не только о показателе конкретного материала, но и об используемом утеплителе. Например, показатель пенополистирола – 0,031-0,05 Вт/(м*С), изолона – 0,031-0,037 Вт/(м*С). Для сравнения: теплопроводность железобетона плотностью 2,5 тонны на куб. метр – 1,7, а дерева – 0,2-0,23.

    Стоит отметить, зачем вообще нужно определять этот показатель при строительстве. Специалистами рассчитана норма для разных климатических поясов России и для разных мест: для стен, крыш, перекрытий. Если выбранные стройматериалы не дотягивают до нормы СНиП, их необходимо утеплить.

    Обратите внимание! Если при строительстве использовались несколько стройматериалов в одном месте (например, для крыши или пола), для определения итогового коэффициента все значения складываются.

    Влияющие факторы

    Если сравнить свойства одного и того же стройматериала в разных условиях, легко увидеть, что теплоизоляционный коэффициент будет разным. Различается величина также у разных марок, причем разница может быть довольно значимой.

    На проводимость влияют следующие факторы:

    1. Плотность. При высокой плотности частицы расположены близко друг от друга, следовательно, передача тепла будет происходить довольно быстро. Легкие стройматериалы (например, керамзит) хуже отдают тепло, чем тяжелые.
    2. Пористость. Чем она выше, тем меньше тепла пропускается. Воздух отличается маленькой проводимостью, значит, чем больше отверстий в поверхности, тем слабее будет теплопередача.
    3. Структура самих пор. Большие, сообщающиеся между собой поры повышают проницаемость бетонной перегородки. Чтобы сохранить тепло внутри, лучше выбирать мелкие, замкнутые отверстия.
    4. Влажность. При намокании бетона или кирпича воздух вытесняется, заменяется жидкостью или становится влажным воздухом. Коэффициент увеличивается почти в 20 раз.
    5. Температура. Чем она выше, тем выше коэффициент.

    Обратите внимание! Зимой, когда влага превращается в лед, теплопотери увеличиваются еще сильнее. Кроме того, промерзание ведет к разрушению.

    Коэффициент материалов из бетона

    Бетонный раствор – это неоднородная цементно-песчаная смесь, которая имеет сложную структуру. Его коэффициент зависит от конкретного состава.

    Узнать теплопроводность бетона можно по таблицам или по характеристике конкретной марки. Средние значения следующие:

    1. Теплопроводность железобетонной плиты плотностью 2,5 – 1,7.
    2. Пенобетона – 0,08-0,29.
    3. Керамзитобетона – 0,14-0,66.
    4. Красный глиняный кирпич – 0,56.
    5. Силикатный кирпич – 0,7.
    6. Блоков из газосиликата – 0,072-0,165.
    7. Теплопроводность штукатурки – 0,1-1.

    Точные данные теплопроводности бетонной стены зависят от конкретных марок и их характеристик.

    Сравнение строительных материалов по толщине

    Таблица теплопроводности строительных материалов позволит быстро просчитать, хватает ли коэффициента перекрытия, а также найти необходимую толщину. Также можно воспользоваться онлайн калькулятором на сайтах строительных материалов.

    Обратите внимание! В таблицах зачастую присутствует не одно значение теплопроницаемости, а несколько. Основное дается для сухого стройматериала при испытании в лабораторных условиях по ГОСТу, другие – для различных условий эксплуатации, например, при сухом и влажном воздухе, при разных температурах.

    Для самостоятельного расчета толщины стены можно воспользоваться формулой:

    H = R * λ.

    Показание R можно узнать в таблице «Строительная климатология», в которой для каждого региона даны свои значения. Показания λ даны в технических характеристиках материала.

    Пример расчета:

    Для Москвы R составляет 3,28. Если перегородки будут выполнены из железобетона (плотность 2,5 т/ куб. м, λ= 1,690), их толщина должна составить больше 5,5 метра.

    Если взять керамзитобетон плотностью 1,8 т/куб. м. (λ = 0,66), величина «снизится» до 2,16 метров. Для пенобетона плотностью 1 т/куб. м. (λ = 0,29), размер составит меньше метра – 95 см.

    Легко увидеть, что, чем выше показатель проводимости тепла, тем больше должна быть толщина. Чтобы уменьшить эту величину, их дополнительно оббивают более тонкими утеплителями.

    При выборе материала для пола, стены, крыши или перегородки стоит обратить внимание на теплопроводность стройматериалов. Эта величина отвечает за проведение тепла через материал, то есть за то, как быстро будет нагреваться и остывать дом. Чем она ниже, тем хуже проходит тепло и тем медленнее здание будет промерзать.

    Какой толщины должен быть утеплитель, сравнение теплопроводности материалов. Особенности определения теплопроводности строительных материалов Что такое теплопроводность строительных материалов

    Вопрос утепления квартир и домов весьма важен – постоянно повышающаяся стоимость энергоносителей обязывает бережно относиться к теплу в помещении. Но как правильно выбрать материал изоляции и рассчитать его оптимальную толщину? Для этого необходимо знать показатели теплопроводности.

    Эта величина характеризует способность проводить тепло внутри материала. Т.е. определяет отношение количества энергии, проходящей через тело площадью 1 м² и толщиной 1 м за единицу времени – λ (Вт/м*К). Проще говоря – сколько тепла будет передано от одной поверхности материала к другой.

    В качестве примера рассмотрим обыкновенную кирпичную стену.

    Как видно на рисунке, температура в помещении составляет 20°С, а на улице – 10°С. Для соблюдения такого режима в комнате необходимо, чтобы материал, из которого сделана стена, был с минимальным коэффициентом теплопроводности. Именно при таком условии можно говорить об эффективном энергосбережении.

    Для каждого материала существует свой определенный показатель этой величины.

    При строительстве принято следующее разделение материалов, которые выполняют определенную функцию:

    Их показатели теплопроводности довольно велики, а это значит, что для достижения хорошего энергосбережения необходимо увеличивать толщину наружных стен. Но это не практично, так как требует дополнительных затрат и возрастание веса всего здания. Поэтому принято использовать специальные дополнительные изоляционные материалы.

    Именно они обеспечивают должную защиту дома от быстрой потери тепловой энергии.

    В строительстве требованиями к основным материалам являются – механическая прочность, пониженный показатель гигроскопичности (сопротивление влаги), и менее всего – их энергетические характеристики. Поэтому особое внимание уделяется теплоизоляционным материалам, которые должны компенсировать этот «недостаток».

    Однако применение на практике величины теплопроводности затруднительно, так как она не учитывает толщину материала. Поэтому используют обратное ей понятие – коэффициент сопротивления теплопередачи.

    Эта величина является отношением толщины материала к его коэффициенту теплопроводности.

    Значение этого параметра для жилых зданий прописаны в СНиП II-3-79 и СНиП 23-02-2003. Согласно этим нормативным документам коэффициент сопротивления теплопередачи в разных регионах России не должен быть менее тех значений, которые указаны в таблице.

    СНиП .

    Эта процедура расчета является обязательно не только при планировании постройки нового здания, но и для грамотного и эффективного утепления стен уже возведенного дома.

    Необходимость использования Систем теплоизоляции WDVS вызвана высокой экономической эффективностью.

    Вслед за странами Европы, в Российской Федерации приняли новые нормы теплосопротивления ограждающих и несущих конструкций, направленные на снижение эксплуатационных расходов и энергосбережение. С выходом СНиП II-3-79*, СНиП 23-02-2003 “Тепловая защита зданий” прежние нормы теплосопротивления устарели. Новыми нормами предусмотрено резкое возрастание требуемого сопротивления теплопередаче ограждающих конструкций. Теперь прежде использовавшиеся подходы в строительстве не соответствуют новым нормативным документам, необходимо менять принципы проектирования и строительства, внедрять современные технологии.

    Как показали расчёты, однослойные конструкции экономически не отвечают принятым новым нормам строительной теплотехники. К примеру, в случае использования высокой несущей способности железобетона или кирпичной кладки, для того, чтобы этим же материалом выдержать нормы теплосопротивления, толщину стен необходимо увеличить соответственно до 6 и 2,3 метров, что противоречит здравому смыслу. Если же использовать материалы с лучшими показателями по теплосопротивлению, то их несущая способность сильно ограничена, к примеру, как у газобетона и керамзитобетона, а пенополистирол и минвата, эффективные утеплители, вообще не являются конструкционными материалами. На данный момент нет абсолютного строительного материала, у которого бы была высокая несущая способность в сочетании с высоким коэффициентом теплосопротивления.

    Чтобы отвечать всем нормам строительства и энергосбережения необходимо здание строить по принципу многослойных конструкций, где одна часть будет выполнять несущую функцию, вторая – тепловую защиту здания. В таком случае толщина стен остаётся разумной, соблюдается нормированное теплосопротивление стен. Системы WDVS по своим теплотехническим показателям являются самыми оптимальными из всех представленных на рынке фасадных систем.

    Таблица необходимой толщины утеплителя для выполнения требований действующих норм по теплосопротивлению в некоторых городах РФ:


    Таблица, где: 1 – географическая точка 2 – средняя температура отопительного периода 3 – продолжительность отопительного периода в сутках 4 – градусо-сутки отопительного периода Dd, °С * сут 5 – нормируемое значение сопротивления теплопередаче Rreq, м2*°С/Вт стен 6 – требуемая толщина утеплителя

    Условия выполнения расчётов для таблицы:

    1. Расчёт основывается на требованиях СНиП 23-02-2003
    2. За пример расчёта взята группа зданий 1 – Жилые, лечебно-профилактические и детские учреждения, школы, интернаты, гостиницы и общежития.
    3. За несущую стену в таблице принимается кирпичная кладка толщиной 510 мм из глиняного обыкновенного кирпича на цементно-песчаном растворе l = 0,76 Вт/(м * °С)
    4. Коэффициент теплопроводности берётся для зон А.
    5. Расчётная температура внутреннего воздуха помещения + 21 °С “жилая комната в холодный период года” (ГОСТ 30494-96)
    6. Rreq рассчитано по формуле Rreq=aDd+b для данного географического места
    7. Расчёт: Формула расчёта общего сопротивления теплопередаче многослойных ограждений:
    R0= Rв + Rв.п + Rн.к + Rо.к + Rн Rв – сопротивление теплообмену у внутренней поверхности конструкции
    Rн – сопротивление теплообмену у наружной поверхности конструкции
    Rв.п – сопротивление теплопроводности воздушной прослойки (20 мм)
    Rн.к – сопротивление теплопроводности несущей конструкции
    Rо.к – сопротивление теплопроводности ограждающей конструкции
    R = d/l d – толщина однородного материала в м,
    l – коэффициент теплопроводности материала, Вт/(м * °С)
    R0 = 0,115 + 0,02/7,3 + 0,51/0,76 + dу/l + 0,043 = 0,832 + dу/l
    dу – толщина теплоизоляции
    R0 = Rreq
    Формула расчёта толщины утеплителя для данных условий:
    dу = l * (Rreq – 0,832)

    а) – за среднюю толщину воздушной прослойки между стеной и теплоизоляцией принято 20 мм
    б) – коэффициент теплопроводности пенополистирола ПСБ-С-25Ф l = 0,039 Вт/(м * °С) (на основании протокола испытаний)
    в) – коэффициент теплопроводности фасадной минваты l = 0,041 Вт/(м * °С) (на основании протокола испытаний)

    * в таблице даны усреднённые показатели необходимой толщины этих двух типов утеплителя.

    Примерный расчёт толщины стен из однородного материала для выполнения требований СНиП 23-02-2003 “Тепловая защита зданий”.

    * для сравнительного анализа используются данные климатической зоны г. Москвы и Московской области.

    Условия выполнения расчётов для таблицы:

    1. Нормируемое значение сопротивления теплопередаче Rreq = 3,14
    2. Толщина однородного материала d= Rreq * l

    Таким образом, из таблицы видно, что для того, чтобы построить здание из однородного материала, отвечающее современным требованиям теплосопротивления, к примеру, из традиционной кирпичной кладки, даже из дырчатого кирпича, толщина стен должна быть не менее 1,53 метра.

    Чтобы наглядно показать, какой толщины необходим материал для выполнения требований по теплосопротивлению стен из однородного материала, выполнен расчёт, учитывающий конструктивные особенности применения материалов, получились следующие результаты:

    В данной таблице указаны расчётные данные по теплопроводности материалов.

    По данным таблицы для наглядности получается следующая диаграмма:

    Страница в разработке

  • Утеплённая Шведская Плита

    Утеплённая Шведская плита (УШП) – один из видов мелкозаглублённого фундамента. Технология пришла с Европы.Данный тип фундамента имеет два основных слоя. Нижний, теплоизоляционный слой, препятствует промерзанию грунта под домом. Верхний слой…

  • Фильм – пошаговая инструкция по технологии СФТК (“мокрый фасад”)

    При поддержке компании СИБУР, Ассоциации Производителей и Продавцов Пенополистирола, а также при сотрудничестве с компаниями “КРАЙЗЕЛЬ РУС”, “ТЕРМОКЛИП” и “АРМАТ-ТД” создан уникальный обучающий фильм по технологии производства штукатурных теплоизоляционных фасадных…

    В феврале 2015 года выпущен очередной обучающий видеофильм по фасадным системам. Как правильно изготавливать декор-элементы для украшения коттеджа – об этом пошагово в видеофильме.

    • При поддержке СИБУРа состоялась I практическая конференция «Полимеры в теплоизоляции»

      27 мая в Москве состоялась I практическая конференция «Полимеры в теплоизоляции», организованная информационно-аналитическим центром Rupec и журналом «Нефтегазовая вертикаль» при поддержке СИБУРа. Главными темами конференции стали тенденции в области нормативной…

    • Справочник – вес, диаметр, ширина чёрного металлопроката (арматура, уголок, швеллер, двутавр, трубы)

      1. Справочник: диаметр, вес погонного метра арматуры, сечение, класс стали

    • Системы «БОЛАРС ТВД-1» и «БОЛАРС ТВД-2» абсолютно пожаробезопасны!

      Системы «БОЛАРС ТВД-1» и «БОЛАРС ТВД-2» абсолютно пожаробезопасны!К такому выводу пришли специалисты, проведя огневые испытания на фасадных теплоизоляционных системах ТМ «БОЛАРС». Системам присвоен класс пожарной опасности К0 – самые безопасные. Огромную…

    Prev Next

    Отправим материал вам на e-mail

    Любые строительные работы начинаются с создания проекта. При этом планируется как расположение комнат в здании, так и рассчитываются главные теплотехнические показатели. От данных значений зависит, насколько будущая постройка будет теплой, долговечной и экономичной. Позволит определить теплопроводность строительных материалов – таблица, в которой отображены основные коэффициенты. Правильные расчеты являются гарантией удачного строительства и создания благоприятного микроклимата в помещении.

    Чтобы дом был теплым без утеплителя потребуется определенная толщина стен, которая отличается в зависимости от вида материала

    Теплопроводность представляет собой процесс перемещения тепловой энергии от прогретых частей к холодным. Обменные процессы происходят до полного равновесия температурного значения.

    Процесс теплопередачи характеризуется промежутком времени, в течение которого выравниваются температурные значения. Чем больше времени проходит, тем ниже теплопроводность строительных материалов, свойства которых отображает таблица. Для определения данного показателя применяется такое понятие как коэффициент теплопроводности. Он определяет, какое количество тепловой энергии проходит через единицу площади определенной поверхности. Чем данный показатель больше, тем с большей скоростью будет остывать здание. Таблица теплопроводности нужна при проектировании защиты постройки от теплопотерь. При этом можно снизить эксплуатационный бюджет.

    Поэтому при возведении постройки стоит использовать дополнительные материалы. При этом значение имеет теплопроводность строительных материалов, таблица показывает все значения.

    Полезная информация! Для построек из древесины и пенобетона не обязательно использовать дополнительное утепление. Даже применяя низкопроводной материал, толщина сооружения не должна быть менее 50 см.

    Особенности теплопроводности готового строения

    Планируя проект будущего дома, нужно обязательно учесть возможные потери тепловой энергии. Большая часть тепла уходит через двери, окна, стены, крышу и полы.

    Если не выполнять расчеты по теплосбережению дома, то в помещении будет прохладно. Рекомендуется постройки из , бетона и камня дополнительно утеплять.

    Полезный совет! Перед тем как утеплять жилище, необходимо продумать качественную гидроизоляцию. При этом даже повышенная влажность не повлияет на особенности теплоизоляции в помещении.

    Разновидности утепления конструкций

    Теплое здание получится при оптимальном сочетании конструкции из прочных материалов и качественного теплоизолирующего слоя. К подобным сооружениям можно отнести следующие:

    • здание из стандартных материалов: шлакоблоков или кирпича. При этом утепление часто проводится по наружной стороне.

    Как определить коэффициенты теплопроводности строительных материалов: таблица

    Помогает определить коэффициент теплопроводности строительных материалов – таблица. В ней собраны все значения самых распространенных материалов. Используя подобные данные, можно рассчитать толщину стен и используемый утеплитель. Таблица значений теплопроводности:

    Чтобы определить величину теплопроводности используются специальные ГОСТы. Значение данного показателя отличается в зависимости от вида бетона. Если материал имеет показатель 1,75, то пористый состав обладает значением 1,4. Если раствор выполнен с применением каменного щебня, то его значение 1,3.

    Потери через потолочные конструкции значительны для проживающих на последних этажах. К слабым участкам относится пространство между перекрытиями и стеной. Подобные участки считаются мостиками холода. Если над квартирой присутствует технический этаж, то при этом потери тепловой энергии меньше.

    На верхнем этаже производится снаружи. Также потолок можно утеплить внутри квартиры. Для этого применяется пенополистирол или теплоизоляционные плиты.

    Прежде чем утеплять любые поверхности, стоит узнать теплопроводность строительных материалов, таблица СНиПа поможет в этом. Утеплять напольное покрытие не так сложно как другие поверхности. В качестве утепляющих материалов применяются такие материалы как керамзит, стекловата ил пенополистирол.

    Чтобы определить, какой толщины возводить стену при постройке дома, нужно научиться рассчитать теплопроводность стен. Этот показатель зависит от используемых строительных материалов, климатических условий.

    Нормы толщины стен в южных и северных регионах будут различаться. Если не сделать расчет до начала строительства, то может оказаться так, что в доме зимой будет холодно и сыро, а летом слишком влажно.

    Для чего нужен расчет


    Толщина стен в южных и северных широтах должна отличаться

    Чтобы сэкономить на отоплении и способствовать созданию здорового микроклимата в помещении, нужно правильно и утеплительных материалов, которые будем использовать при строительстве. По закону физики, когда на улице холодно, а в помещении тепло, то через стену и кровлю тепловая энергия выходит наружу.

    • зимой стены будут промерзать;
    • на обогрев помещения будут затрачиваться значительные средства;
    • сместиться , что приведет к образованию конденсата и влажности в помещении, заведется плесень;
    • летом в доме будет так же жарко, как и под палящим солнцем.

    Чтобы избежать этих неприятностей, нужно перед началом строительства просчитать показатели теплопроводности материала и определиться, какой толщины возводить стену, и каким теплосберегающим материалом ее утеплять.

    От чего зависит теплопроводность


    Проводимость тепла во многом зависит от материала стен

    Проводимость тепла рассчитывают исходя из количества тепловой энергии, проходящей через материал площадью 1 кв. м. и толщиной 1 м при разнице температур внутри и снаружи в один градус. Испытания проводят в течение 1 часа.

    Проводимость тепловой энергии зависит от:

    • физических свойств и состава вещества;
    • химического состава;
    • условий эксплуатации.

    Теплосберегающими считаются материалы с показателем менее 17 ВТ/ (м·°С).

    Выполняем расчеты


    Сопротивление передаче тепла должно быть больше минимума, указанного в нормативах

    По теплопроводности является важным фактором в строительстве. При проектировании зданий архитектор рассчитывает толщину стен, но это стоит дополнительных денег. Чтобы сэкономить, можно разобраться, как рассчитать нужные показатели самостоятельно.

    Скорость передачи тепла материалом зависит от компонентов, входящих в его состав. Сопротивление передачи тепла должно быть больше минимального значения, указанного в нормативном документе «Тепловая изоляция зданий».

    Рассмотрим, как рассчитать толщину стены в зависимости от применяемых в строительстве материалов.

    Формула расчета:

    R=δ/ λ (м2·°С/Вт), где:

    δ это толщина материала, используемого для строительства стены;

    λ показатель удельной теплопроводности, рассчитывается в (м2·°С/Вт).

    Когда приобретаете стройматериалы, в паспорте на них обязательно должен быть указан коэффициент теплопроводности.

    Значения параметров для жилых домов указаны в СНиП II-3-79 и СНиП 23-02-2003.

    Допустимые значения в зависимости от региона

    Минимально допустимое значение проводимости тепла для различных регионов указано в таблице:


    У каждого материала есть свой показатель проводимости тепла. Чем он выше, тем больше тепла пропускает через себя этот материал.

    Показатели теплопередачи для различных материалов

    Величины проводимости тепла материалами и их плотность указаны в таблице:

    Теплопроводность строительных материалов зависит от их плотности и влажности. Одни и те же материалы, изготовленные разными производителями, могут отличаться по свойствам, поэтому коэффициент нужно смотреть в инструкции к ним.

    Расчет многослойной конструкции


    При расчете многослойной конструкции суммируйте показатели теплосопротивляемости всех материалов

    Если стену будем строить из различных материалов, допустим, минеральная вата, штукатурка, рассчитывать величины следует для каждого отдельного материала. Зачем полученные числа суммировать.

    В этом случае стоит работать по формуле:

    Rобщ= R1+ R2+…+ Rn+ Ra, где:

    R1-Rn- термическое сопротивление слоев разных материалов;

    Ra.l- термосопротивление закрытой воздушной прослойки. Величины можно узнать в таблице 7 п. 9 в СП 23-101-2004. Прослойка воздуха не всегда предусмотрена при постройке стен. Подробнее о расчетах смотрите в этом видео:

    На основании этих подсчетов можно сделать вывод о том, можно ли применять выбранные стройматериалы, и какой они должны быть толщины.

    Последовательность действий

    Первым делом, нужно выбрать строительные материалы, которые будете использовать для постройки дома. После этого рассчитываем термическое сопротивление стены по описанной выше схеме. Полученные величины следует сравнивать с данными таблиц. Если они совпадают или оказываются выше, хорошо.

    Если величина ниже, чем в таблице, тогда нужно увеличить или стены, и снова выполнить подсчет. Если в конструкции присутствует воздушная прослойка, которая вентилируется наружным воздухом, тогда в учет не следует брать слои, находящиеся между воздушной камерой и улицей.

    Как выполнить подсчеты на онлайн калькуляторе

    Чтобы получить нужные величины, стоит ввести в онлайн калькулятор регион, в котором будет эксплуатироваться постройка, выбранный материал и предполагаемую толщину стен.

    В сервис занесены сведения по каждой отдельной климатической зоне:

    • t воздуха;
    • средняя температура в отопительный сезон;
    • длительность отопительного сезона;
    • влажность воздуха.

    Температура и влажность внутри помещения — одинаковы для каждого региона

    Сведения, одинаковые для всех регионов:

    • температура и влажность воздуха внутри помещения;
    • коэффициенты теплоотдачи внутренних, наружных поверхностей;
    • перепад температур.

    Чтобы дом был теплым, и в нем сохранялся здоровый микроклимат, при выполнении строительных работ нужно обязательно выполнять расчет теплопроводности материалов стены. Это несложно сделать самостоятельно или воспользовавшись онлайн калькулятором в интернете. Подробнее о том, как пользоваться калькулятором, смотрите в этом видео:

    Для гарантировано точного определения толщины стен можно обратиться в строительную компанию. Ее специалисты выполнят все необходимые расчеты согласно требованиям нормативных документов.

    Строительство любого дома, будь то коттедж или скромный дачный домик, должно начинаться с разработки проекта. На этом этапе закладывается не только архитектурный облик будущего строения, но и его конструктивные и теплотехнические характеристики.

    Основной задачей на этапе проекта будет не только разработка прочных и долговечных конструктивных решений, способных поддерживать наиболее комфортный микроклимат с минимальными затратами. Помочь определиться с выбором может сравнительная таблица теплопроводности материалов.

    Понятие теплопроводности

    В общих чертах процесс теплопроводности характеризуется передачей тепловой энергии от более нагретых частиц твердого тела к менее нагретым. Процесс будет идти до тех пор, пока не наступит тепловое равновесие. Другими словами, пока не сравняются температуры.

    Применительно к ограждающим конструкциям дома (стены, пол, потолок, крыша) процесс теплопередачи будет определяться временем, в течение которого температура внутри помещения сравняется с температурой окружающей среды.

    Чем более продолжителен по времени будет этот процесс, тем помещение будет более комфортным по ощущениям и экономичным по эксплуатационным расходам.

    Численно процесс переноса тепла характеризуется коэффициентом теплопроводности. Физический смысл коэффициента показывает, какое количество тепла за единицу времени проходит через единицу поверхности. Т.е. чем выше значение этого показателя, тем лучше проводится тепло, значит, тем быстрее будет происходить процесс теплообмена.

    Соответственно, на этапе проектных работ необходимо спроектировать конструкции, теплопроводность которых должна иметь по возможности наименьшее значение.

    Вернуться к оглавлению

    Факторы, влияющие на величину теплопроводности

    Теплопроводность материалов, используемых в строительстве, зависит от их параметров:

    1. Пористость – наличие пор в структуре материала нарушает его однородность. При прохождении теплового потока часть энергии передается через объем, занятый порами и заполненный воздухом. Принято за отсчетную точку принимать теплопроводность сухого воздуха (0,02 Вт/(м*°С)). Соответственно, чем больший объем будет занят воздушными порами, тем меньше будет теплопроводность материала.
    2. Структура пор – малый размер пор и их замкнутый характер способствуют снижению скорости теплового потока. В случае использования материалов с крупными сообщающимися порами в дополнение к теплопроводности в процессе переноса тепла будут участвовать процессы передачи тепла конвекцией.
    3. Плотность – при больших значениях частицы более тесно взаимодействуют друг с другом и в большей степени способствуют передаче тепловой энергии. В общем случае значения теплопроводности материала в зависимости от его плотности определяются либо на основе справочных данных, либо эмпирически.
    4. Влажность – значение теплопроводности для воды составляет (0,6 Вт/(м*°С)). При намокании стеновых конструкций или утеплителя происходит вытеснение сухого воздуха из пор и замещение его каплями жидкости или насыщенным влажным воздухом. Теплопроводность в этом случае значительно увеличится.
    5. Влияние температуры на теплопроводность материала отражается через формулу:

    λ=λо*(1+b*t), (1)

    где, λо – коэффициент теплопроводности при температуре 0 °С, Вт/м*°С;

    b – справочная величина температурного коэффициента;

    t – температура.

    Вернуться к оглавлению

    Практическое применение значения теплопроводности строительных материалов

    Из понятия теплопроводности напрямую вытекает понятие толщины слоя материала для получения необходимого значения сопротивления теплового потока. Тепловое сопротивление – нормируемая величина.

    Упрощенная формула, определяющая толщину слоя, будет иметь вид:

    где, H – толщина слоя, м;

    R – сопротивление теплопередаче, (м2*°С)/Вт;

    λ – коэффициент теплопроводности, Вт/(м*°С).

    Данная формула применительно к стене или перекрытию имеет следующие допущения:

    • ограждающая конструкция имеет однородное монолитное строение;
    • используемые стройматериалы имеют естественную влажность.

    При проектировании необходимые нормируемые и справочные данные берутся из нормативной документации:

    • СНиП23-01-99 – Строительная климатология;
    • СНиП 23-02-2003 – Тепловая защита зданий;
    • СП 23-101-2004 – Проектирование тепловой защиты зданий.

    Вернуться к оглавлению

    Теплопроводность материалов: параметры

    Принято условное разделение материалов, применяемых в строительстве, на конструкционные и теплоизоляционные.

    Конструкционные материалы применяются для возведения ограждающих конструкций (стен, перегородок, перекрытий). Они отличаются большими значениями теплопроводности.

    Значения коэффициентов теплопроводности сведены в таблицу 1:

    Таблица 1

    Подставляя в формулу (2) данные, взятые из нормативной документации, и данные из Таблицы 1, можно получить требуемую толщину стен для конкретного климатического района.

    При выполнении стен только из конструкционных материалов без использования теплоизоляции их необходимая толщина (в случае использования железобетона) может достигать нескольких метров. Конструкция в этом случае получится непомерно большой и громоздкой.

    Допускают возведение стен без использования дополнительного утепления, пожалуй, только пенобетон и дерево. И даже в этом случае толщина стены достигает полуметра.

    Теплоизоляционные материалы имеют достаточно малые величины значения коэффициента теплопроводности.

    Основной их диапазон лежит в пределах от 0,03 до 0,07 Вт/(м*°С). Наиболее распространенные материалы – это экструдированный пенополистирол, минеральная вата, пенопласт, стекловата, утепляющие материалы на основе пенополиуретана. Их использование позволяет значительно снизить толщину ограждающих конструкций.

    Коэффициент теплопроводности строительных материалов – таблица и сравнение

    Это количественное свойство веществ пропускать тепло, которое определяется коэффициентом. Этот показатель равен суммарному количеству тепла, которое проходит сквозь однородный материал, имеющий единицу длины, площади и времени при одинарной разнице в температурах.

    Система СИ преобразует эту величину в коэффициент теплопроводности, это в буквенном обозначении выглядит так – Вт/(м*К). Тепловая энергия распространяется по материалу посредством быстро движущихся нагретых частиц, которые при столкновении с медленными и холодными частицами передают им долю тепла.

    Чем лучше нагретые частицы будут защищены от холодных, тем лучше будет сохраняться накопленное тепло в материале.


    При расчете многослойной конструкции суммируйте показатели теплосопротивляемости всех материалов
    Если стену будем строить из различных материалов, допустим, кирпич, минеральная вата, штукатурка, рассчитывать величины следует для каждого отдельного материала. Зачем полученные числа суммировать.

    R1-Rn- термическое сопротивление слоев разных материалов;

    Ra.l– термосопротивление закрытой воздушной прослойки. Величины можно узнать в таблице 7 п. 9 в СП 23-101-2004. Прослойка воздуха не всегда предусмотрена при постройке стен. Подробнее о расчетах смотрите в этом видео:

    Главной особенностью теплоизолирующих материалов и строительных деталей является внутренняя структура и коэффициент сжатия молекулярной основы сырья, из которого состоят материалы. Значения коэффициентов теплопроводности строительными материалами таблично описаны ниже.

    Современные теплоизоляционные материалы для применения в строительстве и ремонте делятся на множество разновидностей: промышленные и бытовые, природные и искусственные, гибкие и жесткие теплоизоляционные материалы и т.д.

    К примеру, по форме современная теплоизоляция разделяется на такие образцы, как:

    По структуре отличают следующие типы термоизоляции со своей уникальной особенностью:

    По виду сырья выделяют такие изделия различного класса качества:

    Определение лучшего изделия зависит не только от цены. Их выбирают по качественным характеристикам, эргономичным свойствам и экологичности.

    Первым делом, нужно выбрать строительные материалы, которые будете использовать для постройки дома. После этого рассчитываем термическое сопротивление стены по описанной выше схеме. Полученные величины следует сравнивать с данными таблиц. Если они совпадают или оказываются выше, хорошо.

    Если величина ниже, чем в таблице, тогда нужно увеличить толщину утеплителя или стены, и снова выполнить подсчет. Если в конструкции присутствует воздушная прослойка, которая вентилируется наружным воздухом, тогда в учет не следует брать слои, находящиеся между воздушной камерой и улицей.

    МатериалПлотность, кг/м3Теплопроводность, Вт/(м·град)Теплоемкость, Дж/(кг·град)
    ABS (АБС пластик)1030…10600.13…0.221300…2300
    Аглопоритобетон и бетон на топливных (котельных) шлаках1000…18000.29…0.7840
    Акрил (акриловое стекло, полиметилметакрилат, оргстекло) ГОСТ 17622—721100…12000.21
    Альфоль20…400.118…0.135
    Алюминий (ГОСТ 22233-83)2600221897
    Асбест волокнистый4700.161050
    Асбестоцемент1500…19001.761500
    Асбестоцементный лист16000.41500
    Асбозурит400…6500.14…0.19
    Асбослюда450…6200.13…0.15
    Асботекстолит Г ( ГОСТ 5-78)1500…17001670
    Асботермит5000.116…0.14
    Асбошифер с высоким содержанием асбеста18000.17…0.35
    Асбошифер с 10-50% асбеста18000.64…0.52
    Асбоцемент войлочный1440.078
    Асфальт1100…21100.71700…2100
    Асфальтобетон (ГОСТ 9128-84)21001.051680
    Асфальт в полах0.8
    Ацеталь (полиацеталь, полиформальдегид) POM14000.22
    Аэрогель (Aspen aerogels)110…2000.014…0.021700
    Базальт2600…30003.5850
    Бакелит12500.23
    Бальза110…1400.043…0.052
    Береза510…7700.151250
    Бетон легкий с природной пемзой500…12000.15…0.44
    Бетон на гравии или щебне из природного камня24001.51840
    Бетон на вулканическом шлаке800…16000.2…0.52840
    Бетон на доменных гранулированных шлаках1200…18000.35…0.58840
    Бетон на зольном гравии1000…14000.24…0.47840
    Бетон на каменном щебне2200…25000.9…1.5
    Бетон на котельном шлаке14000.56880
    Бетон на песке1800…25000.7710
    Бетон на топливных шлаках1000…18000.3…0.7840
    Бетон силикатный плотный18000.81880
    Бетон сплошной1.75
    Бетон термоизоляционный5000.18
    Битумоперлит300…4000.09…0.121130
    Битумы нефтяные строительные и кровельные (ГОСТ 6617-76, ГОСТ 9548-74)1000…14000.17…0.271680
    Блок газобетонный400…8000.15…0.3
    Блок керамический поризованный0.2
    Бронза7500…930022…105400
    Бумага700…11500.141090…1500
    Бут1800…20000.73…0.98
    Вата минеральная легкая500.045920
    Вата минеральная тяжелая100…1500.055920
    Вата стеклянная155…2000.03800
    Вата хлопковая30…1000.042…0.049
    Вата хлопчатобумажная50…800.0421700
    Вата шлаковая2000.05750
    Вермикулит (в виде насыпных гранул) ГОСТ 12865-67100…2000.064…0.076840
    Вермикулит вспученный (ГОСТ 12865-67) — засыпка100…2000.064…0.074840
    Вермикулитобетон300…8000.08…0.21840
    Воздух сухой при 20°С1.2050.02591005
    Войлок шерстяной150…3300.045…0.0521700
    Газо — и пенобетон, газо- и пеносиликат280…10000.07…0.21840
    Газо- и пенозолобетон800…12000.17…0.29840
    Гетинакс13500.231400
    Гипс формованный сухой1100…18000.431050
    Гипсокартон500…9000.12…0.2950
    Гипсоперлитовый раствор0.14
    Гипсошлак1000…13000.26…0.36
    Глина1600…29000.7…0.9750
    Глина огнеупорная18001.04800
    Глиногипс800…18000.25…0.65
    Глинозем3100…39002.33700…840
    Гнейс (облицовка)28003.5880
    Гравий (наполнитель)18500.4…0.93850
    Гравий керамзитовый (ГОСТ 9759-83) — засыпка200…8000.1…0.18840
    Гравий шунгизитовый (ГОСТ 19345-83) — засыпка400…8000.11…0.16840
    Гранит (облицовка)2600…30003.5880
    Грунт 10% воды1.75
    Грунт 20% воды17002.1
    Грунт песчаный1.16900
    Грунт сухой15000.4850
    Грунт утрамбованный1.05
    Гудрон950…10300.3
    Доломит плотный сухой28001.7
    Дуб вдоль волокон7000.232300
    Дуб поперек волокон (ГОСТ 9462-71, ГОСТ 2695-83)7000.12300
    Дюралюминий2700…2800120…170920
    Железо787070…80450
    Железобетон25001.7840
    Железобетон набивной24001.55840
    Зола древесная7800.15750
    Золото19320318129
    Известняк (облицовка)1400…20000.5…0.93850…920
    Изделия из вспученного перлита на битумном связующем (ГОСТ 16136-80)300…4000.067…0.111680
    Изделия вулканитовые350…4000.12
    Изделия диатомитовые500…6000.17…0.2
    Изделия ньювелитовые160…3700.11
    Изделия пенобетонные400…5000.19…0.22
    Изделия перлитофосфогелевые200…3000.064…0.076
    Изделия совелитовые230…4500.12…0.14
    Иней0.47
    Ипорка (вспененная смола)150.038
    Каменноугольная пыль7300.12
    Камень керамический поризованный Braer 14,3 НФ и 10,7 НФ810…8400.14…0.185
    Камни многопустотные из легкого бетона500…12000.29…0.6
    Камни полнотелые из легкого бетона DIN 18152500…20000.32…0.99
    Камни полнотелые из природного туфа или вспученной глины500…20000.29…0.99
    Камень строительный22001.4920
    Карболит черный11000.231900
    Картон асбестовый изолирующий720…9000.11…0.21
    Картон гофрированный7000.06…0.071150
    Картон облицовочный10000.182300
    Картон парафинированный0.075
    Картон плотный600…9000.1…0.231200
    Картон пробковый1450.042
    Картон строительный многослойный (ГОСТ 4408-75)6500.132390
    Картон термоизоляционный (ГОСТ 20376-74)5000.04…0.06
    Каучук вспененный820.033
    Каучук вулканизированный твердый серый0.23
    Каучук вулканизированный мягкий серый9200.184
    Каучук натуральный9100.181400
    Каучук твердый0.16
    Каучук фторированный1800.055…0.06
    Кедр красный500…5700.095
    Кембрик лакированный0.16
    Керамзит800…10000.16…0.2750
    Керамзитовый горох900…15000.17…0.32750
    Керамзитобетон на кварцевом песке с поризацией800…12000.23…0.41840
    Керамзитобетон легкий500…12000.18…0.46
    Керамзитобетон на керамзитовом песке и керамзитопенобетон500…18000.14…0.66840
    Керамзитобетон на перлитовом песке800…10000.22…0.28840
    Керамика1700…23001.5
    Керамика теплая0.12
    Кирпич доменный (огнеупорный)1000…20000.5…0.8
    Кирпич диатомовый5000.8
    Кирпич изоляционный0.14
    Кирпич карборундовый1000…130011…18700
    Кирпич красный плотный1700…21000.67840…880
    Кирпич красный пористый15000.44
    Кирпич клинкерный1800…20000.8…1.6
    Кирпич кремнеземный0.15
    Кирпич облицовочный18000.93880
    Кирпич пустотелый0.44
    Кирпич силикатный1000…22000.5…1.3750…840
    Кирпич силикатный с тех. пустотами0.7
    Кирпич силикатный щелевой0.4
    Кирпич сплошной0.67
    Кирпич строительный800…15000.23…0.3800
    Кирпич трепельный700…13000.27710
    Кирпич шлаковый1100…14000.58
    Кладка бутовая из камней средней плотности20001.35880
    Кладка газосиликатная630…8200.26…0.34880
    Кладка из газосиликатных теплоизоляционных плит5400.24880
    Кладка из глиняного обыкновенного кирпича на цементно-перлитовом растворе16000.47880
    Кладка из глиняного обыкновенного кирпича (ГОСТ 530-80) на цементно-песчаном растворе18000.56880
    Кладка из глиняного обыкновенного кирпича на цементно-шлаковом растворе17000.52880
    Кладка из керамического пустотного кирпича на цементно-песчаном растворе1000…14000.35…0.47880
    Кладка из малоразмерного кирпича17300.8880
    Кладка из пустотелых стеновых блоков1220…14600.5…0.65880
    Кладка из силикатного 11-ти пустотного кирпича на цементно-песчаном растворе15000.64880
    Кладка из силикатного 14-ти пустотного кирпича на цементно-песчаном растворе14000.52880
    Кладка из силикатного кирпича (ГОСТ 379-79) на цементно-песчаном растворе18000.7880
    Кладка из трепельного кирпича (ГОСТ 648-73) на цементно-песчаном растворе1000…12000.29…0.35880
    Кладка из ячеистого кирпича13000.5880
    Кладка из шлакового кирпича на цементно-песчаном растворе15000.52880
    Кладка «Поротон»8000.31900
    Клен620…7500.19
    Кожа800…10000.14…0.16
    Композиты технические0.3…2
    Краска масляная (эмаль)1030…20450.18…0.4650…2000
    Кремний2000…2330148714
    Кремнийорганический полимер КМ-911600.21150
    Латунь8100…885070…120400
    Лед -60°С9242.911700
    Лед -20°С9202.441950
    Лед 0°С9172.212150
    Линолеум поливинилхлоридный многослойный (ГОСТ 14632-79)1600…18000.33…0.381470
    Линолеум поливинилхлоридный на тканевой подоснове (ГОСТ 7251-77)1400…18000.23…0.351470
    Липа, (15% влажности)320…6500.15
    Лиственница6700.13
    Листы асбестоцементные плоские (ГОСТ 18124-75)1600…18000.23…0.35840
    Листы вермикулитовые0.1
    Листы гипсовые обшивочные (сухая штукатурка) ГОСТ 62668000.15840
    Листы пробковые легкие2200.035
    Листы пробковые тяжелые2600.05
    Магнезия в форме сегментов для изоляции труб220…3000.073…0.084
    Мастика асфальтовая20000.7
    Маты, холсты базальтовые25…800.03…0.04
    Маты и полосы из стеклянного волокна прошивные (ТУ 21-23-72-75)1500.061840
    Маты минераловатные прошивные (ГОСТ 21880-76) и на синтетическом связующем (ГОСТ 9573-82)50…1250.048…0.056840
    МБОР-5, МБОР-5Ф, МБОР-С-5, МБОР-С2-5, МБОР-Б-5 (ТУ 5769-003-48588528-00)100…1500.038
    Мел1800…28000.8…2.2800…880
    Медь (ГОСТ 859-78)8500407420
    Миканит2000…22000.21…0.41250
    Мипора16…200.0411420
    Морозин100…4000.048…0.084
    Мрамор (облицовка)28002.9880
    Накипь котельная (богатая известью, при 100°С)1000…25000.15…2.3
    Накипь котельная (богатая силикатом, при 100°С)300…12000.08…0.23
    Настил палубный6300.211100
    Найлон0.53
    Нейлон13000.17…0.241600
    Неопрен0.211700
    Опилки древесные200…4000.07…0.093
    Пакля1500.052300
    Панели стеновые из гипса DIN 1863600…9000.29…0.41
    Парафин870…9200.27
    Паркет дубовый18000.421100
    Паркет штучный11500.23880
    Паркет щитовой7000.17880
    Пемза400…7000.11…0.16
    Пемзобетон800…16000.19…0.52840
    Пенобетон300…12500.12…0.35840
    Пеногипс300…6000.1…0.15
    Пенозолобетон800…12000.17…0.29
    Пенопласт ПС-11000.037
    Пенопласт ПС-4700.04
    Пенопласт ПХВ-1 (ТУ 6-05-1179-75) и ПВ-1 (ТУ 6-05-1158-78)65…1250.031…0.0521260
    Пенопласт резопен ФРП-165…1100.041…0.043
    Пенополистирол (ГОСТ 15588-70)400.0381340
    Пенополистирол (ТУ 6-05-11-78-78)100…1500.041…0.051340
    Пенополистирол Пеноплэкс22…470.03…0.0361600
    Пенополиуретан (ТУ В-56-70, ТУ 67-98-75, ТУ 67-87-75)40…800.029…0.0411470
    Пенополиуретановые листы1500.035…0.04
    Пенополиэтилен0.035…0.05
    Пенополиуретановые панели0.025
    Пеносиликальцит400…12000.122…0.32
    Пеностекло легкое100..2000.045…0.07
    Пеностекло или газо-стекло (ТУ 21-БССР-86-73)200…4000.07…0.11840
    Пенофол44…740.037…0.039
    Пергамент0.071
    Пергамин (ГОСТ 2697-83)6000.171680
    Перекрытие армокерамическое с бетонным заполнением без штукатурки1100…13000.7850
    Перекрытие из железобетонных элементов со штукатуркой15501.2860
    Перекрытие монолитное плоское железобетонное24001.55840
    Перлит2000.05
    Перлит вспученный1000.06
    Перлитобетон600…12000.12…0.29840
    Перлитопласт-бетон (ТУ 480-1-145-74)100…2000.035…0.0411050
    Перлитофосфогелевые изделия (ГОСТ 21500-76)200…3000.064…0.0761050
    Песок 0% влажности15000.33800
    Песок 10% влажности0.97
    Песок 20% влажности1.33
    Песок для строительных работ (ГОСТ 8736-77)16000.35840
    Песок речной мелкий15000.3…0.35700…840
    Песок речной мелкий (влажный)16501.132090
    Песчаник обожженный1900…27001.5
    Пихта450…5500.1…0.262700
    Плита бумажная прессованая6000.07
    Плита пробковая80…5000.043…0.0551850
    Плита огнеупорная теплоизоляционная Avantex марки Board200…5000.04
    Плитка облицовочная, кафельная20001.05
    Плитка термоизоляционная ПМТБ-20.04
    Плиты алебастровые0.47750
    Плиты из гипса ГОСТ 64281000…12000.23…0.35840
    Плиты древесно-волокнистые и древесно-стружечные (ГОСТ 4598-74, ГОСТ 10632-77)200…10000.06…0.152300
    Плиты из керзмзито-бетона400…6000.23
    Плиты из полистирол-бетона ГОСТ Р 51263-99200…3000.082
    Плиты из резольноформальдегидного пенопласта (ГОСТ 20916-75)40…1000.038…0.0471680
    Плиты из стеклянного штапельного волокна на синтетическом связующем (ГОСТ 10499-78)500.056840
    Плиты из ячеистого бетона ГОСТ 5742-76350…4000.093…0.104
    Плиты камышитовые200…3000.06…0.072300
    Плиты кремнезистые0.07
    Плиты льнокостричные изоляционные2500.0542300
    Плиты минераловатные на битумной связке марки 200 ГОСТ 10140-80150…2000.058
    Плиты минераловатные на синтетическом связующем марки 200 ГОСТ 9573-962250.054
    Плиты минераловатные на синтетической связке (Финляндия)170…2300.042…0.044
    Плиты минераловатные повышенной жесткости ГОСТ 22950-952000.052840
    Плиты минераловатные повышенной жесткости на органофосфатном связующем (ТУ 21-РСФСР-3-72-76)2000.064840
    Плиты минераловатные полужесткие на крахмальном связующем125…2000.056…0.07840
    Плиты минераловатные на синтетическом и битумном связующих0.048…0.091
    Плиты мягкие, полужесткие и жесткие минераловатные на синтетическом и битумном связующих (ГОСТ 9573-82, ГОСТ 10140-80, ГОСТ 12394-66)50…3500.048…0.091840
    Плиты пенопластовые на основе резольных фенолформальдегидных смол ГОСТ 20916-8780…1000.045
    Плиты пенополистирольные ГОСТ 15588-86 безпрессовые30…350.038
    Плиты пенополистирольные (экструзионные) ТУ 2244-001-47547616-00320.029
    Плиты перлито-битумные ГОСТ 16136-803000.087
    Плиты перлито-волокнистые1500.05
    Плиты перлито-фосфогелевые ГОСТ 21500-762500.076
    Плиты перлито-1 Пластбетонные ТУ 480-1-145-741500.044
    Плиты перлитоцементные0.08
    Плиты строительный из пористого бетона500…8000.22…0.29
    Плиты термобитумные теплоизоляционные200…3000.065…0.075
    Плиты торфяные теплоизоляционные (ГОСТ 4861-74)200…3000.052…0.0642300
    Плиты фибролитовые (ГОСТ 8928-81) и арболит (ГОСТ 19222-84) на портландцементе300…8000.07…0.162300
    Покрытие ковровое6300.21100
    Покрытие синтетическое (ПВХ)15000.23
    Пол гипсовый бесшовный7500.22800
    Поливинилхлорид (ПВХ)1400…16000.15…0.2
    Поликарбонат (дифлон)12000.161100
    Полипропилен (ГОСТ 26996– 86)900…9100.16…0.221930
    Полистирол УПП1, ППС10250.09…0.14900
    Полистиролбетон (ГОСТ 51263)150…6000.052…0.1451060
    Полистиролбетон модифицированный на активированном пластифицированном шлакопортландцементе200…5000.057…0.1131060
    Полистиролбетон модифицированный на композиционном малоклинкерном вяжущем в стеновых блоках и плитах200…5000.052…0.1051060
    Полистиролбетон модифицированный монолитный на портландцементе250…3000.075…0.0851060
    Полистиролбетон модифицированный на шлакопортландцементе в стеновых блоках и плитах200…5000.062…0.1211060
    Полиуретан12000.32
    Полихлорвинил1290…16500.151130…1200
    Полиэтилен высокой плотности9550.35…0.481900…2300
    Полиэтилен низкой плотности9200.25…0.341700
    Поролон340.04
    Портландцемент (раствор)0.47
    Прессшпан0.26…0.22
    Пробка гранулированная техническая450.0381800
    Пробка минеральная на битумной основе270…3500.073…0.096
    Пробковое покрытие для полов5400.078
    Ракушечник1000…18000.27…0.63835
    Раствор гипсовый затирочный12000.5900
    Раствор гипсоперлитовый6000.14840
    Раствор гипсоперлитовый поризованный400…5000.09…0.12840
    Раствор известковый16500.85920
    Раствор известково-песчаный1400…16000.78840
    Раствор легкий LM21, LM36700…10000.21…0.36
    Раствор сложный (песок, известь, цемент)17000.52840
    Раствор цементный, цементная стяжка20001.4
    Раствор цементно-песчаный1800…20000.6…1.2840
    Раствор цементно-перлитовый800…10000.16…0.21840
    Раствор цементно-шлаковый1200…14000.35…0.41840
    Резина мягкая0.13…0.161380
    Резина твердая обыкновенная900…12000.16…0.231350…1400
    Резина пористая160…5800.05…0.172050
    Рубероид (ГОСТ 10923-82)6000.171680
    Руда железная2.9
    Сажа ламповая1700.07…0.12
    Сера ромбическая20850.28762
    Серебро10500429235
    Сланец глинистый вспученный4000.16
    Сланец2600…33000.7…4.8
    Слюда вспученная1000.07
    Слюда поперек слоев2600…32000.46…0.58880
    Слюда вдоль слоев2700…32003.4880
    Смола эпоксидная1260…13900.13…0.21100
    Снег свежевыпавший120…2000.1…0.152090
    Снег лежалый при 0°С400…5600.52100
    Сосна и ель вдоль волокон5000.182300
    Сосна и ель поперек волокон (ГОСТ 8486-66, ГОСТ 9463-72)5000.092300
    Сосна смолистая 15% влажности600…7500.15…0.232700
    Сталь стержневая арматурная (ГОСТ 10884-81)785058482
    Стекло оконное (ГОСТ 111-78)25000.76840
    Стекловата155…2000.03800
    Стекловолокно1700…20000.04840
    Стеклопластик18000.23800
    Стеклотекстолит1600…19000.3…0.37
    Стружка деревянная прессованая8000.12…0.151080
    Стяжка ангидритовая21001.2
    Стяжка из литого асфальта23000.9
    Текстолит1300…14000.23…0.341470…1510
    Термозит300…5000.085…0.13
    Тефлон21200.26
    Ткань льняная0.088
    Толь (ГОСТ 10999-76)6000.171680
    Тополь350…5000.17
    Торфоплиты275…3500.1…0.122100
    Туф (облицовка)1000…20000.21…0.76750…880
    Туфобетон1200…18000.29…0.64840
    Уголь древесный кусковой (при 80°С)1900.074
    Уголь каменный газовый14203.6
    Уголь каменный обыкновенный1200…13500.24…0.27
    Фарфор2300…25000.25…1.6750…950
    Фанера клееная (ГОСТ 3916-69)6000.12…0.182300…2500
    Фибра красная12900.46
    Фибролит (серый)11000.221670
    Целлофан0.1
    Целлулоид14000.21
    Цементные плиты1.92
    Черепица бетонная21001.1
    Черепица глиняная19000.85
    Черепица из ПВХ асбеста20000.85
    Чугун722040…60500
    Шевелин140…1900.056…0.07
    Шелк1000.038…0.05
    Шлак гранулированный5000.15750
    Шлак доменный гранулированный600…8000.13…0.17
    Шлак котельный10000.29700…750
    Шлакобетон1120…15000.6…0.7800
    Шлакопемзобетон (термозитобетон)1000…18000.23…0.52840
    Шлакопемзопено- и шлакопемзогазобетон800…16000.17…0.47840
    Штукатурка гипсовая8000.3840
    Штукатурка известковая16000.7950
    Штукатурка из синтетической смолы11000.7
    Штукатурка известковая с каменной пылью17000.87920
    Штукатурка из полистирольного раствора3000.11200
    Штукатурка перлитовая350…8000.13…0.91130
    Штукатурка сухая0.21
    Штукатурка утепляющая5000.2
    Штукатурка фасадная с полимерными добавками18001880
    Штукатурка цементная0.9
    Штукатурка цементно-песчаная18001.2
    Шунгизитобетон1000…14000.27…0.49840
    Щебень и песок из перлита вспученного (ГОСТ 10832-83) — засыпка200…6000.064…0.11840
    Щебень из доменного шлака (ГОСТ 5578-76), шлаковой пемзы (ГОСТ 9760-75) и аглопорита (ГОСТ 11991-83) — засыпка400…8000.12…0.18840
    Эбонит12000.16…0.171430
    Эбонит вспученный6400.032
    Эковата35…600.032…0.0412300
    Энсонит (прессованный картон)400…5000.1…0.11
    Эмаль (кремнийорганическая)0.16…0.27

    Какие металлы лучше всего проводят тепло?

    Теплопроводность измеряет способность металла проводить тепло. Это свойство варьируется в зависимости от типа металла, и его важно учитывать в тех случаях, когда обычно используются высокие рабочие температуры.

    В чистых металлах теплопроводность остается примерно неизменной при повышении температуры. Однако в сплавах теплопроводность увеличивается с температурой.

    Какие металлы лучше всего проводят тепло?

    Распространенные металлы, ранжированные по теплопроводности
    Ранг Металл Теплопроводность [BTU/(час·фут⋅°F)]
    1 Медь 223
    2 Алюминий 118
    3 Латунь 64
    4 Сталь 17
    5 Бронза 15

    Как видите, из наиболее распространенных металлов у меди и алюминия самая высокая теплопроводность, а у стали и бронзы самая низкая.Теплопроводность является очень важным свойством при принятии решения о том, какой металл использовать для конкретного применения. Поскольку медь является отличным проводником тепла, она хороша для теплообменников, радиаторов и даже дна кастрюль. Поскольку сталь является плохим проводником тепла, она хороша для высокотемпературных сред, таких как авиационные двигатели.

    Вот некоторые важные области применения, для которых требуются металлы, хорошо проводящие тепло:

    • Теплообменники
    • Радиаторы
    • Кухонная посуда

    Теплообменники

    Теплообменник является распространенным применением, где важна хорошая теплопроводность.Теплообменники выполняют свою работу, передавая тепло для нагрева или охлаждения.

    Медь

    — популярный выбор для теплообменников в промышленных объектах, системах кондиционирования воздуха, холодильных установках, резервуарах для горячей воды и системах напольного отопления. Его высокая теплопроводность позволяет теплу быстро проходить через него. Медь обладает дополнительными свойствами, необходимыми для теплообменников, включая устойчивость к коррозии, биообрастанию, стрессу и тепловому расширению.

    Алюминий

    также может использоваться в некоторых теплообменниках в качестве более экономичной альтернативы.

    Теплообменники обычно используются в следующих ситуациях:

    Промышленные объекты

    Теплообменники на промышленных объектах включают электростанции, работающие на ископаемом топливе, и атомные электростанции, химические заводы, опреснительные установки и морские службы.

    В промышленных объектах для изготовления труб теплообменника используется медно-никелевый сплав. Сплав обладает хорошей коррозионной стойкостью, которая защищает от коррозии в морской среде. Он также обладает хорошей устойчивостью к биологическому обрастанию, что позволяет избежать образования водорослей и морских мхов.Алюминиево-латунный сплав обладает аналогичными свойствами и может использоваться в качестве альтернативы.

    Солнечные термальные водные системы

    Солнечные водонагреватели — это экономичный способ нагрева воды, в котором для передачи солнечной тепловой энергии воде используется медная трубка. Медь используется из-за ее высокой теплопроводности, устойчивости к воздушной и водной коррозии и механической прочности.

    Газовые водонагреватели

    Газо-водяные теплообменники передают тепло, выделяемое газовым топливом, воде.Они распространены в жилых и коммерческих котлах. Для газовых водонагревателей предпочтительным материалом является медь из-за ее высокой теплопроводности и простоты изготовления.

    Принудительное воздушное отопление и охлаждение

    Тепловые насосы, использующие воздух, уже давно используются для отопления жилых и коммерческих помещений. Они работают за счет теплообмена воздух-воздух через испарительные блоки. Их можно использовать в дровяных печах, котлах и печах. Опять же, медь обычно используется из-за ее высокой теплопроводности.

    Радиаторы

    Радиаторы представляют собой тип теплообменника, который передает тепло, генерируемое электронным или механическим устройством, в движущуюся охлаждающую жидкость. Жидкость отводит тепло от устройства, позволяя ему охладиться до желаемой температуры. Используются металлы с высокой теплопроводностью.

    Компьютеры используют радиаторы для охлаждения центральных процессоров или графических процессоров. Радиаторы также используются в устройствах высокой мощности, таких как силовые транзисторы, лазеры и светоизлучающие диоды (СИД).

    Радиаторы

    спроектированы так, чтобы максимально увеличить площадь поверхности, соприкасающуюся с охлаждающей жидкостью.

    Алюминиевые сплавы

    являются наиболее распространенным материалом для радиаторов. Это связано с тем, что алюминий стоит дешевле меди. Однако медь используется там, где необходимы более высокие уровни теплопроводности. В некоторых радиаторах используется комбинация алюминиевых ребер с медным основанием.

    Кухонная посуда

    Более бытовое применение металла с хорошей теплопроводностью – посуда. Когда вы разогреваете еду, вы не хотите ждать весь день.Именно поэтому в днищах качественной посуды используется медь, поскольку металл быстро проводит тепло и равномерно распределяет его по поверхности.

    Однако, если у вас ограниченный бюджет, вы можете использовать алюминиевую посуду в качестве альтернативы. Разогрев еды может занять немного больше времени, но ваш кошелек скажет вам за это спасибо!

    Металлические супермаркеты

    Metal Supermarkets — крупнейший в мире поставщик мелких партий металла с более чем 100 обычными магазинами в США, Канаде и Великобритании.Мы являемся экспертами в области металлов и предоставляем качественное обслуживание клиентов и продукцию с 1985 года.

    В супермаркетах металлов мы поставляем широкий ассортимент металлов для различных применений. Наш склад включает в себя: мягкую сталь, нержавеющую сталь, алюминий, инструментальную сталь, легированную сталь, латунь, бронзу и медь.

    У нас есть широкий ассортимент форм, включая стержни, трубы, листы, пластины и многое другое. И мы можем порезать металл по вашим точным спецификациям.

    Посетите сегодня один из наших более чем 100 офисов в Северной Америке.

    SMART и проводящие текстиль, пряжа или ткани

    Салон JEC WORLD оформлен в стиле модерн; il aura вместо 3 au 5 мая 2022! c’est avec plaisir que nous vous y retrouverons!…….. Rendez vos gants tactiles ! utiisez notre fil à coudre дирижер SILVERPAM

    Металлические нагревательные или проводящие нити и гибкие структуры для технического текстиля или композиционных материалов функционализация:

    Мы разрабатываем и производим гибкие, металлические, проводящие или нагревательные нити для передачи энергии или функционализации материалов.
    Вы можете поместить их в ткань или встроить в гибкие структуры или композиты.

    Что мы подразумеваем под

    Передача энергии :

    • Электроэнергия
    • Оптическая энергия
    • Тепловая энергия (передача, контролируемая материалами или жидкостями)

    Что мы подразумеваем под

    проводящими или резистивными волокнами :

    • ультратонкие волокна или комплексные нити из сплавов металлов или нержавеющей стали;
    • Металлические, привитые или покрытые волокна
    • Многокомпонентные нити с добавками термопластов или смол
    • Оптические волокна
    • Капилляры или микротрубки для теплоносителей

    Что мы подразумеваем под

    гибкими конструкциями :

    • Металлическая или нержавеющая сталь Устойчивые к высоким температурам микроволокна, ленты или крученые нити:
    • В виде токопроводящих проводов:
    • На основе гибких функциональных тканей:

    Металлические нагревательные или проводящие волокна, пряжа и гибкие структуры


    для функционализации текстиля или композитов SMART

    Сосредоточьтесь на некоторых проводящих материалах

    Мы работаем с рядом ультратонких металлических или проводящих волокон, выбранных по их особым свойствам.

    Трансверсальность: мы используем множество технологий трансформации текстиля

    Благодаря нашим собственным производственным мощностям или известным партнерам мы оптимизируем свойства наших функциональных материалов для удовлетворения потребностей наших клиентов.

    Работаем на трех основных рынках

      Нагревательные нити или ткани для функционализации многослойных или композитных деталей

      Гибкие элементы для электронных целей: умный текстиль, антенны RFID, связанная одежда, соединение

      Высокотемпературная фильтрация горячего газа и катализ

    Во что мы верим:

    «Самый большой инновационный потенциал лежит на перекрестке между материалами, технологиями и людьми»

    “Прошлые или будущие инновации очень часто вдохновлены чем-то уже существующим в природе!”

    Разница между теплопроводностью и диффузионной способностью

    Опубликовано Madhu

    Ключевое различие между теплопроводностью и диффузионностью заключается в том, что теплопроводность относится к способности материала проводить тепло, тогда как температуропроводность относится к измерению скорости передачи тепла. тепла материала от его горячего конца к холодному концу.

    Теплопроводность и температуропроводность — это два термина, которые описывают передачу тепла через конкретный материал.

    СОДЕРЖАНИЕ

    1. Обзор и ключевые отличия
    2. Что такое теплопроводность
    3. Что такое температуропроводность
    4. Прямые сравнения — коэффициент теплопроводности и диффузионный в табличной форме
    5. Резюме

    Что такое теплопроводность?

    Теплопроводность — это термин, описывающий способность конкретного материала проводить через себя тепло.Есть три способа, которыми мы можем обозначить этот термин: k , λ или κ. Как правило, материал, обладающий высокой теплопроводностью, демонстрирует высокую скорость теплопередачи. Например, металлы обычно обладают высокой теплопроводностью и очень эффективно проводят тепло. Точно так же изоляционные материалы, такие как пенополистирол, имеют низкую теплопроводность и низкую скорость теплопередачи. Таким образом, мы можем использовать материалы с высокой теплопроводностью в теплоотводах, а материалы с низкой теплопроводностью — в теплоизоляции.Кроме того, «удельное тепловое сопротивление» является обратной величиной теплопроводности.

    Математически теплопроводность можно выразить как q = -k∇T, где q — тепловой поток, k — теплопроводность, а ∇T — градиент температуры. Мы называем это «законом теплопроводности Фурье».

    Мы можем определить теплопроводность как перенос энергии из-за случайного молекулярного движения через температурный градиент. Следовательно, мы можем отличить этот термин от переноса энергии посредством конвекции и молекулярной работы, поскольку он не включает никаких микроскопических потоков или внутренних напряжений, выполняющих работу.

    При рассмотрении единиц измерения теплопроводности единицами СИ являются «Ватт на метр-Кельвин» или Вт/м·К. Однако в имперских единицах мы можем измерять теплопроводность в BTU/(h.ft.°F), где BTU — британская тепловая единица, h — время в часах, ft — расстояние в футах, а F — температура в градусах Фаренгейта. Кроме того, существует два основных способа измерения теплопроводности материала: стационарный и переходный методы.

    Что такое температуропроводность?

    Температуропроводность является мерой скорости теплопередачи материала от горячего конца к холодному концу.Следовательно, это теплопроводность материала, деленная на плотность и удельную теплоемкость при постоянном давлении. Единицей измерения этого параметра является м 2 /с. Это производная единица СИ. Обычно мы можем обозначать этот термин как α. Но есть и другие символы. Математическое выражение коэффициента температуропроводности выглядит следующим образом:

    α = k/ρc p

    Здесь k — теплопроводность, c p — удельная теплоемкость, ρ si — плотность.Однако ρc p вместе называется объемной теплоемкостью.

    Чаще всего температуропроводность измеряют методом вспышки, который включает нагрев полоски или цилиндрической части образца материала коротким импульсом энергии на одном конце и анализ изменения температуры на небольшом расстоянии.

    В чем разница между теплопроводностью и диффузионной способностью?

    Теплопроводность и температуропроводность — это два термина, которые описывают передачу тепла через конкретный материал.Ключевое различие между теплопроводностью и диффузионной способностью заключается в том, что теплопроводность относится к способности материала проводить тепло, тогда как температуропроводность относится к измерению скорости передачи тепла материала от его горячего конца к холодному концу.

    Ниже в инфографике приведены различия между теплопроводностью и диффузионной способностью для параллельного сравнения.

    Резюме

    – теплопроводность и диффузионная способность

    Теплопроводность и температуропроводность — это два термина, которые описывают передачу тепла через конкретный материал.Ключевое различие между теплопроводностью и диффузионной способностью заключается в том, что теплопроводность относится к способности материала проводить тепло, тогда как температуропроводность относится к измерению скорости передачи тепла материала от его горячего конца к холодному концу.

    Артикул:

    1. «Температуропроводность».  – обзор | Темы ScienceDirect , доступны здесь.

    Изображение предоставлено:

    1. «Простое определение теплопроводности» (CC0) через Commons Wikimedia

    .

    Тепловые свойства металлов, проводимость, тепловое расширение, удельная теплоемкость

    Проектирование и проектирование теплопередачи
    Инженерные металлы и материалы
    Теплопроводность, обзор теплопередачи

    Металлы в целом обладают высокой электропроводностью, высокой теплопроводностью и высокой плотностью.Обычно они податливы и пластичны, деформируются под нагрузкой без скалывания. С точки зрения оптических свойств металлы блестящие и блестящие. Листы металла толщиной более нескольких микрометров кажутся непрозрачными, но сусальное золото пропускает зеленый свет.

    Хотя большинство металлов имеют более высокую плотность, чем большинство неметаллов, их плотности сильно различаются: литий является наименее плотным твердым элементом, а осмий — самым плотным. Щелочные и щелочноземельные металлы в группах I A и II A называются легкими металлами, потому что они имеют низкую плотность, низкую твердость и низкую температуру плавления.Высокая плотность большинства металлов обусловлена ​​плотно упакованной кристаллической решеткой металлической структуры. Прочность металлических связей для различных металлов достигает максимума вокруг центра ряда переходных металлов, поскольку эти элементы имеют большое количество делокализованных электронов в металлических связях типа сильной связи. Однако другие факторы (такие как атомный радиус, ядерный заряд, количество орбиталей связи, перекрытие орбитальных энергий и форма кристалла) также имеют значение.

    См. формулы преобразования внизу:
    Материал Теплопроводность
    БТЕ/(час-фут-F)
    Плотность (фунты/дюйм 3 ) Удельная теплоемкость
    (БТЕ/фунт/Ф)
    Температура плавления (F) Скрытая теплота плавления (БТЕ/фунт) Тепловое расширение (дюймы/дюймы/F x 10 -6 )
    Алюминий 136 0.098 0,24 1220 169 13,1
    Сурьма 120
    Латунь (желтая) 69.33 0,306 0,096 1724 11,2
    Кадмий
    Медь 231 0.322 0,095 1976 91.1 9,8
    Золото 183 0,698 0.032 1945 29 7,9
    Инколой 800 0,29 0,13 2500 7.9
    Инконель 600 0,304 0,126 2500 5,8
    Чугун, литье 46.33 0,26 0,12 2150 6
    Свинец, твердый 20,39 0,41 0.032 621 11,3 16,4
    Свинец жидкий 0,387 0,037
    Магний 0.063 0,27 1202 160 14
    Молибден 0,369 0.071 4750 126 2,9
    Монель 400 0,319 0,11 2400 6.4
    Никель 52,4 0,321 0,12 2642 133 5,8
    Нихром (80% NI-20% Cr) 0.302 0,11 2550 7,3
    Платина 41,36 0,775 0,035 3225 49 4.9
    Серебро 247,87 0,379 0,057 1760 38 10,8
    Припой (50% Pb-50% вн) 0.323 0,051 361 17 13,1
    Сталь мягкая 26,0 – 37,5 0,284 0.122 2570 6,7
    Сталь, нержавеющая сталь 304 8.09 0,286 0,120 2550 9.6
    Сталь, нержавеющая сталь 430 8.11 0,275 0,110 2650 6
    Тантал 0.6 0,035 5425 3,6
    Олово, твердое 38,48 0,263 0,065 450 26.1 13
    Олово, жидкость 0,253 0,052
    Титан 99.0% 12,65 0,164 0,13 3035 4,7
    Вольфрам 100,53 0.697 0,04 6170 79 2,5
    Тип металл (85% Pb-15% сб) 0,387 0.04 500 14+-
    Цинк 67.023 0,258 0,096 786 43.3 22,1
    Цирконий 145 0,234 0,067 3350 108 3.2

     

    Термические свойства металлов
    Материал Электропроводность
    Вт/м-C
    Плотность
    кг/м 3
    Удельная теплоемкость
    Дж/кг-°C
    Алюминий, 2024, Temper-T351 143.0 2,8 x 10 3 795,0
    Алюминий, 2024, Temper-T4 121,0 2,8 x 10 3 795,0
    Алюминий, 5052, закалка-h42 138,0 2,68 x 10 3 963,0
    Алюминий, 5052, Temper-O 144,0 2.69 х 10 3 963,0
    Алюминий, 6061, Temper-O 180,0 2,71 x 10 3 1,256 x 10 3
    Алюминий, 6061, Temper-T4 154,0 2,71 x 10 3 1,256 x 10 3
    Алюминий, 6061, Temper-T6 167.0 2,71 x 10 3 1,256 x 10 3
    Алюминий, 7075, Temper-T6 130,0 2,8 x 10 3 1,047 x 10 3
    Алюминий, A356, Temper-T6 128,0 2,76 x 10 3 900,0
    Чистый алюминий 220.0 2,707 x 10 3 896,0
    Бериллий чистый 175,0 1,85 x 10 3 1,885 x 10 3
    Латунь, красная, 85% Cu-15% Zn 151,0 8,8 x 10 3 380,0
    Латунь, желтая, 65% Cu-35% Zn 119,0 8.8 х 10 3 380,0
    Медь, сплав, 11000 388,0 8,933 x 10 3 385,0
    Медь, алюминиевая бронза, 95% Cu-5% Al 83,0 8,666 x 10 3 410,0
    Медь, латунь, 70% Cu-30% Zn 111,0 8,522 x 10 3 385.0
    Медь, бронза, 75% Cu-25% Sn 26,0 8,666 x 10 3 343,0
    Медь, константан, 60%Cu-40%Ni 22,7 8,922 x 10 3 410,0
    Медь, тянутая проволока 287,0 8,8 x 10 3 376,0
    Медь, нейзильбер, 62%Cu-15%Ni-22%Zn 24.9 8,618 x 10 3 394,0
    Медь чистая 386,0 8,954 x 10 3 380,0
    Медь, Красная латунь, 85% Cu-9% Sn-6% Zn 61,0 8,714 x 10 3 385,0
    Золото чистое 318,0 18,9 x 10 3 130.0
    Инвар, 64%Fe-35%Ni 13,8 8,13 x 10 3 480,0
    Чугун, литье 55,0 7,92 x 10 3 456,0
    Железо чистое 71,8 7,897 x 10 3 452,0
    Железо, кованое, 0.5% С 59,0 7,849 x 10 3 460,0
    Ковар, 54%Fe-29%Ni-17%Co 16,3 8,36 x 10 3 432,0
    Свинец, чистый 35,0 11,373 x 10 3 130,0
    Магний, Mg-Al, электролитический, 8% Al-2% Zn 66.0 1,81 x 10 3 1,0 x 10 3
    Магний чистый 171,0 1,746 x 10 3 1,013 x 10 3
    Молибден 130,0 10,22 x 10 3 251,0
    Нихром, 80%Ni-20%Cr 12,0 8.4 х 10 3 420,0
    Никель, Ni-Cr, 80%Ni-20%Cr 12,6 8,314 x 10 3 444,0
    Никель, Ni-Cr, 90%Ni-10%Cr 17,0 8,666 x 10 3 444,0
    Никель, чистый 99,0 8,906 x 10 3 445.9
    Серебро, чистое 418,0 10,51 x 10 3 230,0
    Припой, твердый, 80% Au-20% Sn 57,0 15,0 x 10 3 15,0
    Припой, твердый, 88% Au-12% Ge 88,0 15,0 x 10 3 Нет данных
    Припой, твердый, 95% Au-3% Si 94.0 15,7 x 10 3 147,0
    Припой, мягкий, 60%Sn-40%Pb 50,0 9,29 x 10 3 180,0
    Припой, мягкий, 63%Sn-37%Pb 51,0 9,25 x 10 3 180,0
    Припой, мягкий, 92,5% Pb-2,5% Ag-5% In 39,0 12.0 х 10 3 Нет данных
    Припой, мягкий, 95%Pb-5%Sn 32,3 11,0 x 10 3 134,0
    Сталь, углеродистая, 0,5%C 54,0 7,833 x 10 3 465,0
    Сталь, углеродистая, 1,0%C 43,0 7,801 x 10 3 473.0
    Сталь, углеродистая, 1,5%C 36,0 7,753 x 10 3 486,0
    Сталь, хром, Cr0% 73,0 7,897 x 10 3 452,0
    Сталь, хром, Cr1% 61,0 7,865 x 10 3 460,0
    Сталь, хром, Cr20% 22.0 7,689 x 10 3 460,0
    Сталь, хром, Cr5% 40,0 7,833 x 10 3 460,0
    Сталь, хром-никель, 18%Cr-8%Ni 16,3 7,817 x 10 3 460,0
    Сталь, инвар, 36% Ni 10,7 8.137 x 10 3 460,0
    Сталь, никель, Ni0% 73,0 7,897 x 10 3 452,0
    Сталь, никель, Ni20% 19,0 7,933 x 10 3 460,0
    Сталь, никель, Ni40% 10,0 8,169 x 10 3 460.0
    Сталь, никель, Ni80% 35,0 8,618 x 10 3 460,0
    Сталь, SAE 1010 59,0 7,832 x 10 3 434,0
    Сталь, SAE 1010, лист 63,9 7,832 x 10 3 434,0
    Сталь, нержавеющая сталь, 316 16.26 8,0272 x 10 3 502.1
    Сталь, вольфрам, W0% 73,0 7,897 x 10 3 452,0
    Сталь, вольфрам, W1% 66,0 7,913 x 10 3 448,0
    Сталь, вольфрам, W10% 48,0 8.314 x 10 3 419,0
    Сталь, вольфрам, W5% 54,0 8,073 x 10 3 435,0
    Олово, литье, чеканка 62,5 7,352 x 10 3 226,0
    Олово, чистое 64,0 7,304 x 10 3 226.5
    Титан 15,6 4,51 x 10 3 544,0
    Вольфрам 180,0 19,35 x 10 3 134,4
    Цинк чистый 112,2 7,144 x 10 3 384,3

    Преобразование теплопроводности:
    1 кал/см 2 /см/сек/°C = 10.63 Вт/дюйм – °C

    117 БТЕ/(ч-фут F) x (0,293 ватт-час/BTU) x (1,8F/C) x (ft/12 дюймов) = 5,14 Вт/дюйм – °C
    или
    117 Btu/(ч-ft-F) x 0,04395 ватт-час-F -ft/(Btu=°C – дюйм) = 5,14 Вт/дюйм-°C

    См. наши определения и преобразование производства материалов страницы для получения дополнительной информации!

    Тепловые свойства неметаллов


    Ссылка на эту веб-страницу :

    © Copyright 2000 – 2022, Engineers Edge, LLC
    www.www.engineersedge.com
    Все права защищены
    Отказ от ответственности | Обратная связь
    Реклама | Контакт

    Термические свойства двумерных материалов

    ZhangGLiB2010Nanoscale21058 911 [33] 05 ZhangGZhangLoG XBui физ. Lett.94213108 [113] 302 904kinEPhysTErhys.Ред. B209
    [1] FioriGBonaccorsoFIannacconeGPalaciosTNeumaierDSeabaughABanerjeeS KColomboL2014Nat. Nanotech.9768
    [2] QiuHPanLYaoZLiJShiYWangX2012Appl. физ. Lett.100123104
    [3] QiuHXuTWangZRenWNanHNiZChenQYuanSMiaoFSongFLongGshiYSunLWangJWangX2013Nat.Commun.42642
    [4] YuZPanYShenYWangZOngZ YXuTXinRPanLWangBSunLWangJZhangGZhangY WShiYWangX2014Nat. Commun.55290
    [5] LiuYWuHChengH CYangSZhuEHeQDingMLiDGuoJWeissNHuangYDuanX2015Nano. Lett.153030
    [6] YuZOngZ YPanYCuiYXinRShiYWangBZhangY WZhangGWangX2016Adv. Mater.28547
    [7] MooreG E1998P. IEEE8682
    [8] LanYMinnichA JChenGRenZ2010Adv.Функц. Матер.20357
    [9] ZhangGZhangY W2013Phys. Стат. Сол. RRL7754
    [10] Баландин А A2011Nat. Mater.10569
    [11] SadeghiM MPettesM TShiL2012Solid государственный Commum.1521321
    [12]
    [13] ZhangGManjooranN2014Nanofabrication и его применение в области возобновляемых EnergyCambridgeRoyal общества Chemistry101119
    [14] YangNXuXZhangGLiB2012AIP Доп.2041410
    [15] DubiYDi VentraM2011Rev. Мод. Phys.83131
    [16] LiuSXuXXieRZhangGLiB2012Eur. физ. J. B85337
    [17] Баландина AGhoshSBaoWCalizoITeweldebrhanDMiaoFLauC N2008Nano Lett.8902
    [18] CaiWMooreA LZhuYLiXChenSShiLRuoffR S2010Nano Lett.101645
    [19] MarconnetA MPanzerM AGoodsonK E2013Rev. Мод. Phys.851295
    [20] GuoZZhangDGongX G2009Appl.физ. Lett.95163103
    [21] XuYChenXGuB LDuanW2009Appl. физ. Летт.95233116
    [22] НикаД ЛАскеровА СБаландина А2012Нано Летт.123238
    [23] Ю13ЖЖанг2 заявл. Phys.113044306
    [24] ShenYXieGWeiXZhangKTangMZhongJZhangGZhangY W2014J. заявл. Phys.115063507
    [25] WangZXieRBuiC TLiuDNiXLiBThongJ T L2011Nano Lett.11113
    [26] GhoshSCalizoITeweldebrhandPokatilovE PNikaD LBalandinA ABaoWMiaoFLauC N2008Appl. физ. Lett.
    [27] XuXPereiraL F CWangYWuJZhangKZhaoXBaeSBuiC TXierTongJ T LHongB HLohK PDonadioDLiBÖzyilmazB2014Nat. Комм.53689
    [28] GuoZ XZhangDGongX G2011Phys. B84075470
    [29] OngZ YPopE2011Phys. B84075471
    [30] ChenJZhangGLiB2013Nanoscale5532
    [31] YuCZhangG2013J.заявл. Phys.113214304
    [32] PengX FWangX JChenL QChenK Q2012Europhys. Lett.9856001
    [33]
    [33] [33] Seolj Hjoimoeea llindsaylaitkenz hpettesm tlixyaozhuangrbroidodmingonruoffr sshil2010scies328213
    [34] Lixchenjyuczhang2013Apppl. физ. Lett.103013111
    [35] PeiQ XShaZ DZhangY W2011Carbon494752
    [36] HuangWPeiQ XLiuZ2ZhangYPhys. Lett.55297
    [37] LiuXZhangGZhangY W2014J. Phys. Chem. C11812541
    [38] WangYZhanHXiangYYangCWangCZhangY2015J. Phys. Chem. C111
    [39] WangYYangCChengYZhangY2015RSC Adv.582638
    [40] ChengYKohLLiDJiBZhangYYeoJGuanGHanMZhangY2015ACS Appl. Mater. Inter.721787
    [41] ZhangYPeiQWangCChengYZhangY2013J. Appl.Phys.114073504
    [42] WeiNXuL QWangH QZhengJ C2011Nanotechnology22105705
    [43] LiXMauteK B81245318
    [44] физ. Lett.105153105
    [46] XieGShenYWeiXYangLXiaoHZhongJZhangG2014Sci. Реп.45085
    [47] ZhanHZhangYBellJGuY2015J.физ. хим. C11
    [48] ZhangYChengYPeiQWangCXiangY2012Phys. лат. A3763668
    [49] LanJCaiYZhangGWangJ SZhangY W2014J. физ. D-прил. Phys.47265303
    [50] XieZ XChenK QDuanW h3011J. физ. -Конденсирует. Matter23315302
    [51] PengX FWangX JGongZ QChenK Q2011Appl. физ. Lett.9
    [52] BalandinAWangK L1998Phys.B581544
    [53] ChenJZhangGLiB2011J. хим. Phys.135104508
    [54] ChenJZhangGLiB2012Nano Lett.122826
    [55] LiXZhangG2013Front. Phys.119
    [56] LiuXZhangGPeiQ XZhangY W2013Appl. физ. Lett.103133113
    [57] ZhangGLiB2005J. хим. Phys.123114714
    [58] ZhangGLiB2005J. хим.Phys.123014705
    [59] CaiYLanJZhangGZhangY W2014Phys. Ред. B8
    38
    [60] SahooSGaurA P SAhmadiMGuinelM J FKatiyarR S2013J. физ. хим. C1179042
    [61]
    [61] Yanrsimpsonj rbertolazzisbriviojwatsonmwuxkisaluothight walkera rxingh g2014acs nano8986
    [62] Fand dliuh jchengljiangp hshijtangx f2014appl. физ. Lett.105133113
    [63] LiWCarreteJMingoN2013Appl.физ. Lett.103253103
    [64] JiangJ WParkH SRabczukT2013J. заявл. Phys.114064307
    [65] WuX FYangNLuoT F2015Appl. физ. Lett.1071
    [66] WeiXWangYShenYXieGXiaoHZhongJZhangG2014Appl. физ. Lett.105103902
    [67] LiWZhangGGuoMZhangY W2014Nano Res.7518
    [68]
    [69] LiuXZhangGZhangY W2016Nano Res.
    [70] LiWGuoMZhangGZhangY W2014Chem. Матер.265625
    [71] WangYRuanX LRoyA K2012Phys. B85205311
    [72] DingZ WPeiQ XJiangJ WZhangY W2015J. физ. хим. C118
    [73] ЮЗСержантNSkauliTZhangGWangHFanS2013Nat. Commun.41730
    [74] PengJZhangGLiB2015Appl. физ. Lett.107133108
    [75] IlicOJablanMJoannopoulosJ DCelanovicIBuljanHSoljačićM2012Phys.Рев. B85155422
    [76] Nanotech.9372
    [77] физ. хим. Lett.51289
    [79] CaiYZhangGZhangY W2014Sci. Реп.46677
    [80] LiWZhangGZhangY W2014J. физ. хим. C11822368
    [81] GuoHLuNDaiJWuXZengX C2014J.физ. хим. C11814051
    [82] DuYLiuHXubShengLYinJDuanC GWanX2015Sci. Реп.58921
    [83] OngZ YZhangGZhangY W2014J. заявл. Phys.116214505
    [84] MaXLuWChenBZhongDHuangLDongLJinCZhangZ2015AIP Adv.5107112
    [85] LiWYangYZhangGZhangY W2015Nano Lett.151691
    [86] NieAChengYNingSForoozanTYasaeiPLiWSongBYuanYChenLSalehi-KhojinAMashayekFShahbazian-YassarR2016Nano Lett.162240
    [87] OngZ YCaiYZhangGZhangY W2014J. Phys. Chem. C11825272
    [88] XuWZhuLCaiYZhangGLiB2015J. Appl. Phys.117214308
    [89] ZhangYPeiQJiangJWeiNZhangY2016Nanoscale8483
    [90] HongYZhangJ CHuangXZengX C2015Nanoscale718716
    [91] ZhuLZhangGLiB2014Phys. Rev. B

    302
    [92] JainAMcGaugheyA J h3015Sci.Rep.58501
    [93] QinGYanQ BQinZYueS YCuiH JZhengQ RSuG2014Sci. Rep.46946
    [94] ZhangJLiuH JChengLWeiJLiangJ HFanD DShiJTangX FZhangQ J2014Sci. Rep.46452
    [95] FeiRFaghaniniaASoklaskiRYanJ ALoCYangL2014Nano Lett.146393
    [96] LiaoBZhouJQiuBDresselhausM SChenG2015Phys. Rev. B419
    [97] ZhouHCaiYZhangGZhangY W2016J.Матер. Res.313179
    [98] YangLYangNLiB2014Nano Lett.141734
    [99] XuWZhangG2016J. физ. -Конденсирует. Matter28175401
    [100] LiNRenJWangLZhangGHänggiPLiB2012Rev. Мод. Phys.841045
    [101] HuJRuanXChenY P2009Nano Lett.
    [102] YangNZhangGLiB.2009 физ. Lett.95033107
    [103] ZhangGZhangh3011Nanoscale34604
    [104] WangYChenSRuanX2012Appl.физ. Lett.100163101
    [105] TianHXieDYangYRent LZhangGWangY FZhouC JPengP GWangL GLiuL T2012Sci. Rep.2523
    [106] ChenRCuiYTianHYaoRLiuZShuYLiCYangYRenTZhangGZouR2015Sci. Rep.58884
    [107] LiuXZhangGZhangY W2015Nano Res.82755
    [108] XuYLiZDuanW h3014Small102182
    [109] PopEVarshneyVRoyA K2012MRS Bull.371273
    [110] ChenXDuanW h3015Acta Phys.Sin.64186302на китайском
    [111] ZhangGHuangS Y2013Physics42100на китайском
    [112] XuX16JLiB20 физ. -Конденсирует. Matter28483001
    GUXYANGR2015ARXIV: 1509.07762 [COND-MAT.MTRL-SCI]
    [114]
    [114] Janghwoodjryderchersammcahilld2015Adv. Mater.278017
    [115] LuoZMaassenJDengYDuYGarreltsR PLundstromM SYeP DXuX2015Nat.Commun.68572
    [116] Commun.68573
    [117] Ouher GWangY YLuJ2015Chin. физ. B24088105
    [118] GaoJZhaoJ2012Sci. Реп.2861
    [119] GuXYangR2015J. заявл. Phys.117025102
    [120] GaoJZhangGZhangY W2016Sci. Rep.629107
    [121] ZhouHCaiYZhangGZhangY W2016Phys.B94045423
    [122] XuYYanBZhangH JWangJXuGTangPDuanWZhangS C2013Phys. Rev. Lett.111136804
    [123] TandD WWangZ LYuanK P2015Chin. физ. Lett.32104401
    [124] DingXMingY2014Chin. физ. Lett.31046601
    [125] SunL ​​KYuZ FHuangJ2015Acta Phys. Sin.64224401на китайском языке
    [126] ZhouHZhuJLiuZYanZFanXLinJWangGYanQAjayanP MTourJ M2014Nano Res.71232
    [127] TianZEsfarjaniKChenG2012Phys. B86235304
    [128] XuWZhangGLiB2014J. заявл. Phys.116134303
    [129] OngZ YZhangG2015Phys. B
    [130] ZhouYZhangXHuM2016Nanoscale81994
    [131] OngZ YZhangG1ZhangY W20G1ZhangY W20016Phys. B406
    [132] ZhanHZhangGZhangYTanV B CBellJ MGuY2016Carbon98232
    [133]
    [134] ChenJWaltherJ HKoumoutsakosP2015Adv. Функц. Mater.257539
    [135] LiuXZhangGZhangY W2016Nano Lett.164954

    Модель теплопроводности порошковых материалов в вакууме на основе экспериментальных исследований: AIP Advances: Vol 7, No 1 теоретическая модель теплопроводности порошкообразных материалов в условиях вакуума, основанная на приведенных выше экспериментальных результатах.При моделировании были приняты следующие допущения: (1) частицы имеют сферическую форму и одинаковый размер; (2) внутри слоя частиц возникает одномерный поток тепла в направлении силы тяжести; и (3) кондуктивный и радиационный теплообмен происходят параллельно, так что эффективная теплопроводность выражается как сумма твердотельной и лучистой теплопроводности. Мы моделировали твердотельную и лучистую проводимости отдельно.

    A. Модель проводимости твердого тела

    Рассмотрим шарики одинакового размера, однородно упакованные в кубический контейнер с единичной длиной и единичной площадью поперечного сечения, как показано на фиг.9. Одномерный поток тепла происходит снизу вверх по слою сферы. В этой конфигурации твердотельная проводимость эквивалентна объемной теплопроводности слоя. Объемная теплопроводность может быть сформулирована как параллельные и последовательные соединения теплопроводности в элементарной ячейке. Предположим, что N A — это количество сфер на единицу площади перпендикулярно направлению теплового потока, а N L — это количество сфер на единицу длины вдоль него. N A и N L отражают параллельное и последовательное соединения соответственно. Тогда твердотельная проводимость определяется выражением, где H — теплопроводность элементарной ячейки. В этом уравнении член N A H представляет собой эффективную теплопроводность отдельных горизонтальных слоев высотой 1/ N L . H можно также сформулировать как последовательное соединение общей проводимости контактов на контактах, H c, всего , и теплопроводности внутри каждой сферы, H s , как, кроме того, H c, всего представлено как C /2 параллельных соединения теплопроводности на каждом контакте H c , причем C среднее координационное число.
    Hc,общая=C22πHc=CπHc. (8)
    Поскольку поверхности контакта между частицами наклонены против вертикального направления (чистого теплового потока), количество теплопроводности через контакт в направлении чистого теплового потока должно быть скорректировано в сторону уменьшения. Предполагая случайные углы наклона контактных поверхностей, средний поправочный коэффициент определяется как (∫−π/2π/2cosθdθ)/(∫−π/2π/2dθ)=2/π, где θ — угол между перпендикулярной линией поверхности контакта и чистого направления теплового потока (РИС.9). Следовательно, в уравнении появляется множитель 2/π. (8). N A и N L в уравнении. (6) можно выразить через радиус частицы R p и объемную пористость ϕ. Число сфер в единице объема, N , может быть записано как: Для трехмерных случайных условий простые выражения N L и N A будут равны N 1 /3 и N 2/3 соответственно.Однако высота горизонтальных слоев 1/ N L должна быть меньше диаметра частиц, чтобы обеспечить контакт верхнего и нижнего слоев, если частицы оседают в гравитационном поле. Если мы возьмем N L = N 1/3 , 1/ N L станет больше, чем 2 R p , когда 7 ϕ > 0.4. Чтобы избежать этой проблемы, мы принимаем N L в качестве константы, не зависящей от пористости для гранецентрированной кубической структуры как, Тогда влияние пористости на число частиц накладывается на N A как
    NA=NNL=6(1−ϕ)2πRp2. (11)
    Когда пористость увеличивается, как N A , так и C уменьшаются, и результирующая проводимость твердого тела уменьшается. Применимость этого выражения будет проверена путем сравнения его с экспериментальными данными в разделе . Контактная проводимость H c может быть оценена путем аппроксимации двух контактирующих сфер как двух круговых цилиндров, соединенных с поперечным сечением π rc2, где r c — радиус контактной площадки.Когда тепловой поток задан перпендикулярно поверхности контакта и если R p значительно больше, чем r c , проводимость контакта H c пропорциональна радиусу контакта, согласно H c = 2 k m r c , где k m – теплопроводность контактирующего материала. 21 21. М. Г. Купер, Б. Б. Микич и М.Йованович М. Теплопроводность контакта // Межд. J. Heat Mass Transfer 12 , 279–300 (1969). https://doi.org/10.1016/0017-9310(69)-8 Применимость этой формулы к контакту сфер-сфер продемонстрировали Чан и Тиен. 6 6. C.K.Chan и C.L.Tien, “Проводимость упакованных сфер в вакууме”, J. Heat Transfer 95 , 302-308 (1973). https://doi.org/10.1115/1.3450056 Как следует из наших экспериментов (см. раздел и рис. 6), теплопроводность также зависит от микроскопической шероховатости поверхности частицы.При соприкосновении двух частиц с шероховатой поверхностью в области макроскопического контакта образуется множество микроскопических контактов. Это уменьшает реальную площадь поперечного сечения, через которое течет тепло, и, следовательно, теплопроводность на контактах становится ниже, чем у соответствующих частиц с идеально гладкой поверхностью. В этом исследовании влияние шероховатости поверхности на контактную теплопроводность просто добавляется к ξ в модели контактной теплопроводности, поскольку значение ξ меньше 1 для шероховатых частиц и равно 1, когда частица поверхность идеально гладкая.Обратите внимание, что r c в приведенном выше уравнении — радиус контакта идеальных сфер без шероховатости поверхности. Параметр ξ имеет значение, аналогичное отношению реальной площади контакта к кажущейся, используемой при изучении трения и теплопроводности между твердыми материалами. 22–24 22. Б. Н. Дж. Перссон, Трение скольжения – физические принципы и приложения , 2-е изд. (Спрингер, Нью-Йорк, 2000 г.).23. Дж. Дитрих и Б. Д. Килгор, «Визуализация контактов на поверхности: распределение контактов по степенному закону и контактные напряжения в кварце, кальците, стекле и акриловом пластике», Tectonophysics 256 , 219–239 (1996).https://doi.org/10.1016/0040-1951(95)00165-424. CV Madhusudana, Тепловая контактная проводимость , 2-е изд. (Springer, New York, 2014). Координационное число C зависит от пористости. Здесь мы используем модель Suzuki et al., 25 25. Судзуки М., Макино К., Ямада М., Иноя К. Исследование координационного числа в случайно упакованной системе моноразмерных сферических частиц (в японский)», Kagaku Kogaku Ronbunshu 6 , 59–64 (1980). https://doi.org/10.1252/kakoronbunshu.6.59, который предсказывает, что C уменьшается с пористостью ϕ as, 26 26. H. Masuda, K. Higashitani, and H. Yoshida, Справочник по технологии порошков , 3rd ed. (CRC Press, Лондон, 2006 г.).
    C=2,812(1−ϕ)−1/3f2(1+f2), (13)
    сфере, H s , мы аппроксимируем сферу кубом с объемом, эквивалентным объему сферы.В этом случае для неконсолидированных частиц вклад H s в проводимость H пренебрежимо мал по сравнению с H c,total , поскольку Hc,total ≪Hs. Радиус контакта между двумя сферами, r c в уравнении. (12) моделируется следующим образом. При соприкосновении двух сфер внешней нормальной силой F радиус контактной площадки соответствует теории Герца, 27 27. С.П. Тимошенко и Ю.Н.Goodier, Theory of Elasticity (McGraw-Hill Book Company, Inc., Нью-Йорк, 1951). где радиус контакта r c записывается как — модуль Юнга. Помимо внешней силы F между частицами может действовать сила сцепления, которая также создает конечную площадь контакта. Джонсон и др. 28 28.Джонсон К.Л., Кендалл К., Робертс А.Д. Поверхностная энергия и контакт упругих твердых тел // Proc. Р. Соц. Лонд. А. Мет. физ. науч. 324 , 301–313 (1971). https://doi.org/10.1098/rspa.1971.0141 расширил теорию Герца, включив эффект силы сцепления как Rp]1/3, (16) где γ — поверхностная энергия твердого материала. Эта модель называется теорией JKR (Джонсона, Кендалла и Робертса).Когда γ=0, уравнение (16) становится эквивалентным теории Герца, представленной уравнением. (15). Внешняя сила F , действующая на частицу, рассчитывается через сжимающее напряжение σ как
    F=σNA=2πRp26(1−ϕ)σ. (17)
    Коэффициент 1/ N A соответствует средней площади поперечного сечения частицы, включая окружающее пустотное пространство. Когда напряжение сжатия σ в порошкообразных средах вызвано собственным весом частиц, оно может быть представлено гидростатическим давлением как где ρm — истинная плотность твердой частицы, г — ускорение свободного падения, z – глубина захоронения материалов под поверхностью.Таким образом, пренебрегая H s в уравнении. (7), наш расчет для твердой проводимости: (13) и r c по уравнению. (16). Это уравнение означает, что проводимость твердого тела пропорциональна отношению радиуса контакта r c к радиусу частицы R p . Когда поверхностная энергия равна нулю, радиус контакта пропорционален радиусу частицы (см.15 и 17), поэтому проводимость твердого тела не зависит от размера частиц. Напротив, проводимость твердого тела уменьшается с увеличением размера частиц, когда γ>0, потому что сила сцепления оказывает большее влияние на более мелкие частицы.

    B. Модель радиационной проводимости

    Радиационная теплопередача через пустоты в порошкообразных средах моделируется одномерным тепловым излучением между множеством бесконечно тонких параллельных плоскостей, как показано на фиг. 10. Как и в модели твердотельной проводимости, радиационная проводимость эквивалентна полной теплопроводности этой многослойной среды в пределах единичного куба.Предполагается, что две соседние плоскости имеют разность температур ΔT и плоскости или частицы непрозрачны для теплового излучения. Теплопроводность между двумя плоскостями по тепловому излучению, H r , может быть рассчитана как , где ε — коэффициент излучения, σSB (= 5,67×10−8 Вт · м −2 K −4 ) — постоянная Стефана-Больцмана, а T — температура более холодной плоскости.Поскольку L r — это расстояние между двумя соседними плоскостями, количество слоев на единицу длины составляет 1/ L r . Тогда радиационная проводимость многослойных сред может быть выражена как 1/ L r последовательных соединений лучистой проводимости H r as,
    крад=LrHr=4ε2−εσSBLrT3. (21)
    где L r представляет собой эффективное расстояние для теплопередачи излучением.Это можно масштабировать по характерной длине пустот в порошкообразных средах. В однородно упакованных сферах одинакового размера объем пустот на частицу рассчитывается по радиусу частицы R p и пористости ϕ as,
    V=ϕN=43πRp3ϕ1−ϕ, (22)
    где N — количество сфер в единице объема, определяемое уравнением (9). Аппроксимируя этот типичный объем пустот как объем сферы диаметром 90 235 D 90 236 90 287 v 90 288, можно сформулировать геометрическую длину пустоты на основе Пике и Кристенсена, 90 282 17 90 283 17.S. Piqueux и P.R. Christensen, «Модель теплопроводности планетарных почв: 1. теория рыхлых почв», J. Geophys. Рез. 114 (2009 г.). https://doi.org/10.1029/2008JE003308 Мы вводим коэффициент ζ для масштабирования средней геометрической длины пустоты D v к эффективному расстоянию для переноса тепла излучением L r .
    Lr=ζDv=2ζ(ϕ1−ϕ)1/3Rp. (24)
    Повышение радиационной проводимости, вызванное агрегацией, как следует из наших экспериментов с использованием стеклянных шариков ЭМП, представлено значением ζ больше единицы.Подставляя уравнение (24) в уравнение. (21) радиационная проводимость может быть получена из
    крад=8ε2−εσSBζ(ϕ1−ϕ)1/3RpT3. (25)

    C. Сравнение модели с экспериментальными данными

    Полученные выше модели твердотельной и радиационной проводимости можно непосредственно сравнить с экспериментальными данными, представленными в разделе . Физические параметры образцов ФГБ и ЭМБ, использованных для модельных расчетов, приведены в табл. IV. К сожалению, поверхностная энергия используемых нами стеклянных шариков неизвестна.Наши экспериментальные результаты показали, что стеклянные шарики EMB обладают высокой адгезией, а стеклянные шарики FGB – нет (см. Раздел ). Поэтому поверхностная энергия 0,02 Дж·м −2 принята для стеклянных шариков EMB в качестве типичного значения для SiO 2 (ссылка 1313. B. Gundlach and J. Blum, система – II: перенос тепла в сухих, пористых поверхностных слоях пыли», Icarus 219 , 618–629 (2012). https://doi.org/10.1016/j.icarus.2012.03.013 и ссылки в нем), и поверхностная энергия стеклянных шариков FGB была установлена ​​​​на ноль, так что радиус контакта был представлен законом Герца (уравнение).(15). Для обоих типов стеклянных шариков использовали модуль Юнга 55,1 ГПа и коэффициент Пуассона 0,22. 6 6. C.K.Chan и C.L.Tien, “Проводимость упакованных сфер в вакууме”, J. Heat Transfer 95 , 302-308 (1973). https://doi.org/10.1115/1.3450056 Коэффициент излучения 0,9 был измерен устройством измерения коэффициента излучения (A&D AERD, Kyoto Electronics Manufacturing Co. Ltd., Токио, Япония).

    ТАБЛИЦА IV. Параметры модели для стеклянных шариков ФГБ и ЭМБ.

    9301
    Параметр символ FGB EBR
    диаметр частиц 2 R P Переменная (53-1000 мкм) 5 мкм
    Пористость ϕ 0.40 Переменная (0.495-0.862)
    ρm ρm 2480 кг м 2600 кг М 2600 кг м -3
    Глубина
    1 K K м 0 3
    5 Z 1 см 1 см
    0 W M -1 K -1 K -1 1.406 W M -1 K -1
    д к м / д Т 8.50 × 10 -4 W M -1 K -1 K -2 5.10 × 10 -4 K -2 K -2 K -2
    Поверхностная энергия γ 0.0 J м -2 0,02 Дж м -2
    модуль Юнга Е
    коэффициент 55,1 ГПа 55,1 ГПа Пуассона ν 0,22 0,22
    Коэффициент излучения ε 0.9 0,9
    РИС. 11(a) показаны модельные оценки проводимости твердого тела при 300 K с использованием параметров стеклянных шариков FGB, где ξ установлены на 1,0, 0,5 и 0,2. Для сравнения также показана средняя проводимость четырех измерений, полученных с использованием контейнеров с одним и тремя датчиками, где вертикальные планки погрешностей представляют собой максимальное и минимальное значения четырех измерений (такие же, как заштрихованный диапазон на фиг. 5). Как обсуждалось в разделе , проводимость твердого тела не зависит от размера частиц, если сила сцепления не принимается во внимание.Оно оценивается в 0,00341 Вт·м −1 K −1 , если ξ = 1,0, что означает сферы с гладкой поверхностью. Эта оценка по модели выше, чем любое измерение стеклянных шариков ФГБ. Разумным объяснением такой более высокой твердотельной проводимости, полученной с использованием модели, является то, что поверхность стеклянных шариков ФГБ была шероховатой и не чистой, поэтому значение ξ было меньше единицы. Предпочтительные значения ξ для стеклянных шариков FGB находятся в диапазоне от 0,29 до 0.83 (см. Таблицу V).

    ТАБЛИЦА V. Сводка значений ξ и ζ, применимых к нашим образцам стеклянных шариков. Отметим, что для стеклянных шариков ФГБ было принято γ=0 Дж·м -2 , а для стеклянных шариков ЭМБ γ=0,02 Дж·м -2 .

    9301
    Образец ξ ζ
    FGB-20 FGB-20 0.34 – 0,83 0.7 – 1.2
    FGB-40 0.30 – 0.65 1,1 – 1.9
    FGB-80 0.36 – 0.46 1.2 – 1.7
    FGB-180 0.36 – 0,44 1.8 – 2.6
    FGB-300 0.29 – 0.33 2.5 – 4,0
    EMB ~1 ~15
    На фиг. 12(а) электропроводность твердого тела, рассчитанная с использованием параметров стеклянных шариков EMB, показана как функция пористости наряду с экспериментальными данными.Модель с ξ = 1,0 согласуется с экспериментальными данными. Например, при пористости 0,862 предсказана твердотельная проводимость 0,00062 Вт·м -1 К -1 , что согласуется с экспериментальными данными. Поскольку стеклянные шарики ЭМП имели гладкую поверхность, соответствие между значениями, предсказанными моделью с ξ = 1,0, и экспериментальными данными является разумным и предполагает применимость нашей модели твердотельной проводимости в этом случае. Кроме того, зависимость проводимости твердого тела от пористости зависела от N L и N A .Мы предварительно установили N L равным значению гранецентрированной кубической решетки, независимой от пористости, и влияние пористости было принудительно установлено на N A (уравнения 10 и 11). Согласованность между моделью и экспериментальными данными, показанная на фиг. 12(а) подразумевает, что это допущение применимо на практике. На фиг. 11(b) показана радиационная проводимость, предсказанная нашей моделью при температуре 300 K для стеклянных шариков FGB, наряду с экспериментальными данными. Наша модель предсказывает, что радиационная проводимость изменяется линейно с размером частиц.При ζ = 1,0 расчетная радиационная проводимость при 300 К составляет 0,00429 Вт м -1 К -1 при диаметре частиц 1000 мкм м, что согласуется с экспериментальным результатом для самых больших стеклянных шариков. Меньшие по размеру стеклянные шарики имели относительно более высокую радиационную проводимость, чем оцененная моделью. Другими словами, значение ζ , которое является мерой отклонения длины свободного пробега фотонов от типичного размера пустоты, увеличивается с уменьшением размера частиц.Одно из возможных объяснений этой тенденции состоит в том, что более мелкие частицы не были непрозрачны для теплового излучения. При температурах около 300 К тепловое излучение черного тела имеет спектральный пик на длинах волн около λmax 10 μ м. Когда λmax≪Dp, частицы можно аппроксимировать непрозрачными для теплового излучения. Этого не происходит, когда λmax≈Dp, при котором рассеяние вперед является обычным согласно теории рассеяния Ми. 29 29. М. Ф. Модест, Радиационная теплопередача , 3-е изд.(Академическая пресса, Нью-Йорк, 2013). Следовательно, более эффективное прямое рассеяние теплового излучения более мелкими частицами может способствовать увеличению расстояния лучистой теплопередачи по сравнению с типичным размером пустот. Влияние пористости на радиационную проводимость рассмотрено на фиг. 12(b) с использованием параметров стеклянных шариков EMB. На графике представлены экспериментальные данные для стеклянных шариков EMB, за исключением данных для EMB-49.5 и EMB-58.5, которые имели большую неопределенность в их радиационной проводимости (см. раздел ).Лучевая проводимость стеклянных шариков ЭМЗ с ζ=1 оказалась на порядок выше расчетной по модели. Как показано на фиг. 8, стеклянные шарики ЭМБ образовывали агрегаты крупнее размера зерен благодаря подготовке образцов с использованием сит. ЭМБ-86.2, ЭМБ-77.9 и ЭМБ-69.5 имели агрегаты размером около 50 мкм мкм, а ЭМБ-75.3 имели агрегаты размером 500 мкм мкм и менее. Эти образцы имели большие пустоты между агрегатами, а не между отдельными частицами.Через эти большие пустоты лучистое тепло может передаваться более эффективно. 13 13. Б. Гундлах и Дж. Блюм, «Выделение газа из ледяных тел в Солнечной системе – II: перенос тепла в сухих, пористых поверхностных слоях пыли», Icarus 219 , 618–629 (2012). https://doi.org/10.1016/j.icarus.2012.03.013 Принимая постоянное значение ζ = 15, модель может быть хорошо приспособлена к экспериментальным данным для стеклянных шариков EMB. Поскольку образцы, просеянные с сеткой 53 90 235 μ 90 236 мкм, имели агрегаты примерно в 10 раз больше по размеру, чем отдельные частицы, это подогнанное значение 90 235 ζ 90 236 является разумным.Кроме того, зависимость проводимости твердого тела от напряжения сжатия была проверена путем сравнения значений, предсказанных моделью, с нашими ранее опубликованными экспериментальными данными. 15 15. Н. Сакатани, К. Огава, Ю. Иидзима, М. Аракава и С. Танака, «Влияние напряжения сжатия на теплопроводность порошкообразных материалов: измерения и их влияние на лунный реголит», Icarus 267 , 1–11 (2016). https://doi.org/10.1016/j.icarus.2015.12.012 Мы измерили теплопроводность стеклянных шариков ФГБ-20 и ФГБ-180 в зависимости от напряжения сжатия.ИНЖИР. 13 показана модель твердотельной проводимости для стеклянных шариков FGB в терминах внешнего напряжения сжатия σ . Подобно результатам этого исследования, показанным на фиг. 11(а), модель с ξ=1 предсказывает более высокую проводимость твердого тела, чем по экспериментальным данным. Наиболее подходящие значения ξ составляют 0,69 и 0,42 для ФГБ-20 и ФГБ-180 соответственно. Они согласуются со значениями × для каждого образца, определенными из результатов, показанных на фиг. 11(а), где образцы не подвергались внешнему сжатию.В таблице V приведены значения ξ и ζ для исследованных стеклянных шариков. ? . Хотя ξ и ζ рассматриваются как подходящие параметры в настоящих обстоятельствах, мы считаем, что можно рассчитать эти параметры с точки зрения шероховатости частиц, радиационного рассеяния и агрегации.Это выходит за рамки данной статьи, но должно быть рассмотрено в будущих исследованиях. Более того, мы продолжаем экспериментально проверять применимость модели к другим образцам порошков, в том числе к природным каменистым порошкам.

    Что такое теплопроводность? – Matmatch

    Теплопроводность — это мера способности определенного материала передавать или проводить тепло. Проводимость возникает, когда в материале присутствует градиент температуры. Его единицы измерения (Вт/мК) обозначаются либо λ, либо k.

    Второй закон термодинамики гласит, что тепло всегда будет течь от более высокой температуры к более низкой температуре.

    Уравнение теплопроводности рассчитывается по следующей формуле:

    представляет собой тепловую энергию, передаваемую в единицу времени через материал. Это выражается в джоулях в секунду или ваттах.

      • k – константа теплопроводности.
      • A – площадь поверхности, через которую течет тепловая энергия, измеряется в м2.
      • ∆T — разница температур, измеренная в кельвинах.
      • L относится к толщине материала, через который передается тепло, и измеряется в метрах.
      • Для расчета константы теплопроводности можно использовать следующее уравнение:

    Теплопроводность конкретного материала зависит от его плотности, содержания влаги, структуры, температуры и давления.

    Как измеряется?

    Некоторые распространенные методы измерения теплопроводности:

    Метод защищенной горячей плиты:

    Метод защищенной горячей пластины — это широко используемый стационарный метод измерения теплопроводности.Материал, который необходимо протестировать, помещают между горячей и холодной пластинами. Параметрами, используемыми для расчета теплопроводности, являются установившиеся температуры, тепло, используемое для более теплой пластины, и толщина материала. Его можно использовать в диапазоне температур от 80 до 1500 К и для таких материалов, как пластик, стекло и изоляционные образцы. Это очень точно, но для проведения теста требуется значительное количество времени.

    Метод горячей проволоки:

    Метод горячей проволоки является переходным методом и может использоваться для определения теплопроводности жидкостей, твердых тел и газов.Стандартный метод с горячей проволокой, используемый для жидкостей, заключается в том, что в образец помещается нагретая проволока. Теплопроводность определяется сравнением зависимости температуры проволоки от логарифма времени, когда заданы плотность и емкость.

    В случае с твердыми телами требуется небольшая модификация этого метода, при которой горячая проволока поддерживается на подложке, чтобы не было проникновения в твердое тело. Он работает в диапазоне температур 298–1800 К и является быстрым и точным методом, но имеет ключевое ограничение, заключающееся в том, что он работает только с материалами с низкой проводимостью.

    Сравнительный метод резки бруса:

    Сравнительный метод отрезных стержней представляет собой стационарный метод и может использоваться для испытаний металлов, керамики и пластмасс. Тепловой поток проходит через образцы, теплопроводность которых известна и неизвестна, следовательно, можно провести сравнение температурных градиентов. Он работает в диапазоне температур 293 – 1573 К, но измерения относительно неопределенны.

    Метод лазерной вспышки:

    Метод лазерной вспышки представляет собой переходный метод, при котором лазерный импульс доставляет короткий тепловой импульс к переднему концу образца, а изменение температуры измеряется на заднем конце образца.Он работает в диапазоне температур 373 – 3273 К и может использоваться как для твердых, так и для жидких тел. Его преимущество в том, что он быстрый и имеет высокую точность, но довольно дорогой.

    Метод измерения теплового потока:

    Метод измерения теплового потока представляет собой стационарный метод и аналогичен методу защищенной горячей пластины, за исключением того, что для измерения теплового потока через образец используются датчики теплового потока, а не основной нагреватель. Тепловой поток определяется на основе падения температуры внутри терморезистора.Измерители теплового потока используются в диапазоне температур 373–573 К и могут использоваться для пластмасс, керамики, изоляционных материалов и стекла. Основным преимуществом теплосчетчиков является то, что они относительно просты в настройке, однако измерения не отличаются особой точностью.

    Какие материалы имеют самую высокую/самую низкую теплопроводность?

    Как и ожидалось, материалы, которые хорошо проводят тепло, такие как металлы, имеют более высокую константу теплопроводности, чем материалы, которые не так эффективно проводят тепло, такие как полимеры и дерево.

    В группе металлов серебро имеет самую высокую константу теплопроводности, а висмут — самую низкую.

    Теплопроводность неметаллических жидкостей значительно ниже теплопроводности металлов, а самая низкая теплопроводность наблюдается у газов. Среди газов водород и гелий обладают относительно высокой теплопроводностью.

    Добавить комментарий

    Ваш адрес email не будет опубликован.