Сп ветровая нагрузка – СП 20.13330.2011 Нагрузки и воздействия. Актуализированная редакция СНиП 2.01.07-85*

Содержание

Расчет снеговой и ветровой нагрузки


(Утвержден приказом Министерства строительства и жилищно-коммунального хозяйства Российской Федерации (Минстрой России) от 3 декабря 2016 г. № 891/пр и введен в действие с 4 июня 2017 г.)


Как следует из названия нагрузок, это внешнее давление которое будет оказываться на ангар посредством снега и ветра. Расчеты производятся для того что бы закладывать в будущее здание материалы с характеристиками, которые выдержат все нагрузки в совокупности.
Расчет снеговой нагрузки производится согласно СНиП 2.01.07-85* или согласно СП 20.13330.2016.  На данный момент СНиП является обязательным к исполнению, а СП носит рекомендательный характер, но в общем в обоих документах написано одно и тоже.

В СНИП указанно 2 вида нагрузок - Нормативная и Расчетная, разберемся в чем их отличия и когда они применяются:
    *Нормативная нагрузка -  это наибольшая нагрузка, отвечающая нормальным условиям эксплуатации, учитываемая при расчетах на 2-е предельное состояние (по деформации).  Нормативную нагрузку учитывают при расчетах на прогибы балок, и провисание тента при расчетах по раскрытию трещин в ж.б. балках (когда не применяется требование по водонепроницаемости), а так же разрыву тентовой ткани.
    *Расчетная нагрузка -  это произведение нормативной нагрузки на коэффициент надежности по нагрузке. Данный коэффициент учитывает возможное отклонение нормативной нагрузки в сторону увеличения при неблагоприятном стечении обстоятельств. Для снеговой нагрузки коэффициент надежности по нагрузке равен 1,4 т.е. расчетная нагрузка на 40% больше нормативной. Расчетную нагрузку учитывают при расчетах по 1-му предельному состоянию (на прочность). В расчетных программах, как правило, учитывают именно расчетную нагрузку.

Большим плюсом каркасно-тентовой технологии строительства в этом ситуации является ее свойство по "исключению" этой нагрузки. Исключение подразумевает, что осадки не скапливаются на крыше ангара, благодаря её форме, а так же характеристикам укрывающего материала. Укрывающий материал
Ангар укомплектовывается тентовой тканью с определенной плотностью (показатель влияющий на прочность) и необходимыми вам характеристиками.

Формы крыши
Все каркасно-тентовые здания имеют покатую форму крыши. Именно покатая форма крыши позволяет снимать нагрузку от осадков с крыши ангара. 
Дополнительно к этому стоит отметить, что тентовый материал покрыт защитным слоем полевинила. Полевинил защищает ткань от химических и физических воздействий, а так же имеет хорошую антиадгезию, что способствует
скатыванию снега под своим весом.

Снеговая нагрузка.

Есть 2 варианта определить снеговую нагрузку определенного местоположения.

I Вариант - посмотреть ваш населенный пункт в таблице ниже>
II Вариант - определите на карте номер снегового района, интересующего вас местоположения и переведите их в килограммы, по приведенной ниже таблице. 

  1. Определите номер вашего снегового района на карте
  2. сопоставьте цифру с цифрой в таблице
  
  
 
Плохо видно? Скачайте все карты одним архивом в хорошем разрешении (формат TIFF).
СКАЧАТЬ КАРТЫ Обратите внимание на понятия "Нормативная нагрузка" и "Расчетная нагрузка"!!!
Старое значение
Снеговой район I II III IV V VI VII VIII
Sg (кгс/м2) 80 120 180 240
320
400 480 560
Новое значение
Снеговой район I II III IV V VI VII VIII
Нормативная нагрузка Sg (кгс/м2) 50 100 150 200 250 300 350 400
Расчетная нагрузка Sg (кгс/м2) 70 140 210 280 350 420 490 560
Изменения -12% +17% +17% +17% +9% +5% +2% 0%


В СНИП указанно 2 вида нагрузок - Нормативная и Расчетная, разберемся в чем их отличия и когда они применяются:
    *Нормативная нагрузка -  это наибольшая нагрузка, отвечающая нормальным условиям эксплуатации, учитываемая при расчетах на 2-е предельное состояние (по деформации).  Нормативную нагрузку учитывают при расчетах на прогибы балок, и провисание тента при расчетах по раскрытию трещин в ж.б. балках (когда не применяется требование по водонепроницаемости), а так же разрыву тентовой ткани.
    *Расчетная нагрузка -  это произведение нормативной нагрузки на коэффициент надежности по нагрузке. Данный коэффициент учитывает возможное отклонение нормативной нагрузки в сторону увеличения при неблагоприятном стечении обстоятельств. Для снеговой нагрузки коэффициент надежности по нагрузке равен 1,4 т.е. расчетная нагрузка на 40% больше нормативной. Расчетную нагрузку учитывают при расчетах по 1-му предельному состоянию (на прочность). В расчетных программах, как правило, учитывают именно расчетную нагрузку.

Расчётное значение снеговой нагрузки определяется по формуле:

S=Sg*µ

Sg - расчётное значение веса снегового покрова на 1м2 горизонтальной поверхности земли, принимаемое по таблице:

µ - коэффициент перехода от веса снегового покрова земли к снеговой нагрузке на покрытие.

Коэффициент µ зависит от угла наклона ската кровли:

  • µ=1 при углах наклона ската кровли меньше 25°.
  • µ=0,7 при углах наклона ската кровли от 25 до 60°.
  • µ=не учитывают углах наклона ската кровли более 60°Ветровая нагрузка.

Ветровая нагрузка.

I Вариант - посмотреть ваш населенный пункт в таблице ниже>
II Вариант - определите на карте номер ветрового района интересующего вас местоположения и переведите их в килограммы, по приведенной ниже таблице. 
  1. Определите номер вашего ветрового района на карте
  2. сопоставьте цифру с цифрой в таблице

   

Плохо видно? Скачайте все карты одним архивом в хорошем разрешении (формат TIFF).
СКАЧАТЬ КАРТЫ

Ветровой район
Ia I II III
IV
V   VI   VII
Wo (кгс/м2) 17 23 30 38 48 60 73 85

Расчётное значение средней составляющей ветровой нагрузки на высоте z над поверхностью земли определяется по формуле:

W=Wo*k

Wo - нормативное значение ветровой нагрузки, принимаемое по таблице ветрового района РФ.

k - коэффициент, учитывающий изменение ветрового давления по высоте, определяется по таблице, в зависимости от типа местности.

  • А - открытые побережья морей, озёр и водохранилищ, пустыни, степи, лесостепи и тундры.
  • B - городские территории, лесные массивы и др. местности, равномерно покрытые препятствиями более 10 м.

*При определении ветровой нагрузки типы местности могут быть различными для разных расчётных направлений ветра.

  • 5 м.- 0,75 А / 0.5 B .
  • 10 м.- 1 А / 0.65 B°.
  • 20 м.- 1,25 А / 0.85 B 

Снеговые и ветровые нагрузки в городах РФ.

Город  Снеговой район Ветровой район  
Ангарск 2
3
Арзамас 3
1
Артем 2
4
Архангельск 4
2
Астрахань 1
3
Ачинск 3
3
Балаково 3
3
Балашиха 3
1
Барнаул 3
3
Батайск 2
3
Белгород
3
2
Бийск 4
3
Благовещенск 1
2
Братск 3
2
Брянск 3
1
Великие Луки 2
1
Великий Новгород 3
1
Владивосток 2
4
Владимир 4
1
Владикавказ 1
4
Волгоград 2
3
Волжский Волгогр. Обл 3
3
Волжский Самарск. Обл 4
3
Волгодонск 2
3
Вологда 4
1
Воронеж 3
2
Грозный 1
4
Дербент 1
5
Дзержинск 4
1
Димитровград 4
2
Екатеринбург 3
1
Елец 3
2
Железнодорожный 3
1
Жуковский 3
1
Златоуст 3
2
Иваново 4
1
Ижевск 5
1
Йошкар-Ола 4
1
Иркутск 2
3
Казань 4
2
Калининград 2
2
Каменск-Уральский 3
2
Калуга 3
1
Камышин 3 3
Кемерово 4
3
Киров 5
1
Киселевск 4
3
Ковров 4
1
Коломна 3
1
Комсомольск-на-Амуре 3
4
Копейск 3
2
Красногорск 3
1
Краснодар 3
4
Красноярск 2
3
Курган 3
2
Курск 3
2
Кызыл 1
3
Ленинск-Кузнецкий 3
3
Липецк 3
2
Люберцы 3
1
Магадан 5
4
Магнитогорск 3
2
Майкоп 2
4
Махачкала 1
5
Миасс 3
2
Москва 3
1
Мурманск 4
4
Муром 3
1
Мытищи 1
3
Набережные Челны 4
2
Находка 2
5
Невинномысск 2
4
Нефтекамск 4
2
Нефтеюганск 4
1
Нижневартовск 1
5
Нижнекамск 5
2
Нижний Новгород 4
1
Нижний Тагил 3
1
Новокузнецк 4
3
Новокуйбышевск 4
3
Новомосковск 3
1
Новороссийск 6
2
Новосибирск 3
3
Новочебоксарск 4
1
Новочеркасск 2
4
Новошахтинск 2
3
Новый Уренгой 5
3
Ногинск 3
1
Норильск 4
4
Ноябрьск 5
1
Обниск 3 1
Одинцово 3
1
Омск 3
2
Орел 3
2
Оренбург 3
3
Орехово-Зуево 3
1
Орск 3
3
Пенза 3
2
Первоуральск 3
1
Пермь 5
1
Петрозаводск 4 2
Петропавловск-Камчатский 8
7
Подольск 3
1
Прокопьевск 4
3
Псков 3
1
Ростов-на-Дону 2
3
Рубцовск 2
3
Рыбинск 1
4
Рязань 3
1
Салават 4
3
Самара 4
3
Санкт-Петербург 3
2
Саранск 4
2
Саратов 3
3
Северодвинск 4
2
Серпухов 3
1
Смоленск 3
1
Сочи 2
3
Ставрополь 2
4
Старый Оскол 3
2
Стерлитамак 4
3
Сургут 4
1
Сызрань 3
3
Сыктывкар 5
1
Таганрог 2
3
Тамбов 3
2
Тверь 3
1
Тобольск 4
1
Тольятти 4
3
Томск 4
3
Тула 3
1
Тюмень 3
1
Улан-Удэ 2
3
Ульяновск 4
2
Уссурийск 2
4
Уфа 5
2
Ухта 5
2
Хабаровск 2
3
Хасавюрт 1
4
Химки 3
1
Чебоксары 4
1
Челябинск 3
2
Чита 1
2
Череповец 4
1
Шахты 2
3
Щелково 3
1
Электросталь 3
1
Энгельс 3
3
Элиста 2
3
Южно-Сахалинск 8
6
Ярославль 4
1
Якутск 2
1

www.tentmax.ru

СП 20.13330.2011 Нагрузки и воздействия. Актуализированная редакция СНиП 2.01.07-85*. Приложение Ж (рекомендуемое). Карты районирования территории Российской Федерации по климатическим характеристикам, СП (Свод правил) от 27 декабря 2010 года №20.13330.2011


СП 20.13330.2011

НАГРУЗКИ И ВОЗДЕЙСТВИЯ

Актуализированная редакция
СНиП 2.01.07-85*

 

Приложение Ж (рекомендуемое). Карты районирования территории Российской Федерации по климатическим характеристикам

 

КАРТА 1. РАЙОНИРОВАНИЕ ТЕРРИТОРИИ РОССИЙСКОЙ ФЕДЕРАЦИИ ПО ВЕСУ СНЕГОВОГО ПОКРОВА


КАРТА 1. РАЙОНИРОВАНИЕ ТЕРРИТОРИИ РОССИЙСКОЙ ФЕДЕРАЦИИ ПО ВЕСУ СНЕГОВОГО ПОКРОВА

 

КАРТА 2. РАЙОНИРОВАНИЕ ТЕРРИТОРИИ РОССИЙСКОЙ ФЕДЕРАЦИИ ПО СРЕДНЕЙ СКОРОСТИ ВЕТРА, М/С, ЗА ЗИМНИЙ ПЕРИОД


КАРТА 2. РАЙОНИРОВАНИЕ ТЕРРИТОРИИ РОССИЙСКОЙ ФЕДЕРАЦИИ ПО СРЕДНЕЙ СКОРОСТИ ВЕТРА, М/С, ЗА ЗИМНИЙ ПЕРИОД

 

КАРТА 3. РАЙОНИРОВАНИЕ ТЕРРИТОРИИ РОССИЙСКОЙ ФЕДЕРАЦИИ ПО ДАВЛЕНИЮ ВЕТРА


КАРТА 3. РАЙОНИРОВАНИЕ ТЕРРИТОРИИ РОССИЙСКОЙ ФЕДЕРАЦИИ ПО ДАВЛЕНИЮ ВЕТРА

 

КАРТА 4. РАЙОНИРОВАНИЕ ТЕРРИТОРИИ РОССИЙСКОЙ ФЕДЕРАЦИИ ПО ТОЛЩИНЕ СТЕНКИ ГОЛОЛЁДА


КАРТА 4. РАЙОНИРОВАНИЕ ТЕРРИТОРИИ РОССИЙСКОЙ ФЕДЕРАЦИИ ПО ТОЛЩИНЕ СТЕНКИ ГОЛОЛЁДА

 

КАРТА 5. РАЙОНИРОВАНИЕ ТЕРРИТОРИИ РОССИЙСКОЙ ФЕДЕРАЦИИ ПО СРЕДНЕЙ МЕСЯЧНОЙ ТЕМПЕРАТУРЕ ВОЗДУХА, °С, В ЯНВАРЕ


КАРТА 5. РАЙОНИРОВАНИЕ ТЕРРИТОРИИ РОССИЙСКОЙ ФЕДЕРАЦИИ ПО СРЕДНЕЙ МЕСЯЧНОЙ ТЕМПЕРАТУРЕ ВОЗДУХА, °С, В ЯНВАРЕ

 

КАРТА 6. РАЙОНИРОВАНИЕ ТЕРРИТОРИИ РОССИЙСКОЙ ФЕДЕРАЦИИ ПО СРЕДНЕЙ МЕСЯЧНОЙ ТЕМПЕРАТУРЕ ВОЗДУХА, °С, В ИЮЛЕ


КАРТА 6. РАЙОНИРОВАНИЕ ТЕРРИТОРИИ РОССИЙСКОЙ ФЕДЕРАЦИИ ПО СРЕДНЕЙ МЕСЯЧНОЙ ТЕМПЕРАТУРЕ ВОЗДУХА, °С, В ИЮЛЕ

 

КАРТА 7. РАЙОНИРОВАНИЕ ТЕРРИТОРИИ РОССИЙСКОЙ ФЕДЕРАЦИИ ПО ОТКЛОНЕНИЯМ СРЕДНЕЙ ТЕМПЕРАТУРЫ ВОЗДУХА НАИБОЛЕЕ ХОЛОДНЫХ СУТОК ОТ СРЕДНЕЙ МЕСЯЧНОЙ ТЕМПЕРАТУРЫ, °С, В ЯНВАРЕ


КАРТА 7. РАЙОНИРОВАНИЕ ТЕРРИТОРИИ РОССИЙСКОЙ ФЕДЕРАЦИИ ПО ОТКЛОНЕНИЯМ СРЕДНЕЙ ТЕМПЕРАТУРЫ ВОЗДУХА НАИБОЛЕЕ ХОЛОДНЫХ СУТОК ОТ СРЕДНЕЙ МЕСЯЧНОЙ ТЕМПЕРАТУРЫ, °С, В ЯНВАРЕ

 

ДОПОЛНЕНИЯ К КАРТАМ 1 И 4. РАЙОНИРОВАНИЕ ТЕРРИТОРИИ РОССИЙСКОЙ ФЕДЕРАЦИИ ПО РАСЧЕТНОМУ ЗНАЧЕНИЮ ВЕСА СНЕГОВОГО ПОКРОВА И ТОЛЩИНЕ СТЕНКИ ГОЛОЛЁДА

 

ДОПОЛНЕНИЯ К КАРТЕ 3. РАЙОНИРОВАНИЕ ТЕРРИТОРИИ РОССИЙСКОЙ ФЕДЕРАЦИИ ПО ДАВЛЕНИЮ ВЕТРА

Электронный текст документа
подготовлен АО "Кодекс" и сверен по:
/ Министерство регионального развития РФ. - М., 2011 год

docs.cntd.ru

СП 20.13330.2011 Нагрузки и воздействия

www.AlienTechnologies.ru - производство композитной арматуры в С-Пб.

СП 20.13330.2011

Т а б л и ц а 12.4

Диаметр провода, троса или каната, мм

5

10

20

30

50

70

Коэффициент

1

1,1

1,0

0,9

0,8

0,7

0,6

П р и м е ч а н и я (к таблицам 12.1– 12.4)

1 В V районе, горных и малоизученных районах, обозначенных на карте 4 приложения Ж, а также в сильнопересеченных местностях (на вершинах гор и холмов, на перевалах, на высоких насыпях, в закрытых горных долинах, котловинах, глубоких выемках и т.п.) толщину стенки гололеда необходимо определять на основании данных специальных обследований и наблюдений.

2 Промежуточные значения величин следует определять линейной интерполяцией.

3 Толщину стенки гололеда на подвешенных горизонтальных элементах кругового сечения (тросах, проводах, канатах) допускается принимать на высоте расположения их приведенного центра тяжести.

Для определения гололедной нагрузки на горизонтальные элементы круговой цилиндрической формы диаметром до 70 мм толщину стенки гололеда, приведенную в таблице 12.2, следует снижать на 10 %.

12.3 Нормативное значение ветровой нагрузки на покрытые гололедом элементы следует принимать равным 25 % нагрузки w, определяемой согласно 11.1.

П р и м е ч а н и я 1 В отдельных районах, где наблюдаются сочетания значительных скоростей ветра с большими

размерами гололедно-изморозевых отложений, толщину стенки гололеда и его плотность, а также давление ветра следует принимать в соответствии с фактическими данными.

2 При определении ветровых нагрузок на элементы сооружений, расположенных на высоте более 100 м над поверхностью земли, диаметр обледенелых проводов и тросов, установленный с учетом толщины стенки гололеда, приведенной в таблице 12.2, необходимо умножать на коэффициент, равный 1,5.

12.4 Температуру воздуха при гололеде независимо от высоты сооружений следует принимать в горных районах с отметкой: более 2000 м – минус 15 С, от 1000 до 2000 м – минус 10 С; для остальной территории для сооружений высотой до 100 м – минус 5 С, более 100 м – минус 10 С.

П р и м е ч а н и е – В районах, где при гололеде наблюдается температура ниже минус 15 С, ее следует принимать по фактическим данным.

12.5 Коэффициент надежности по нагрузке f для гололедной нагрузки следует принимать равным 1,3, за исключением случаев, оговоренных в других нормативных документах.

13 Температурные климатические воздействия

13.1 Для конструкций, не защищенных от суточных и сезонных изменений температуры, следует учитывать изменение во времени t средней температуры и

перепад температуры

по сечению элемента, за исключением случаев,

предусмотренных нормами

проектирования

конструкций. Для конструкций,

защищенных от суточных и сезонных изменений температуры, температурные климатические воздействия не учитываются.

13.2 Нормативные значения изменений средних температур по сечению элемента в теплое tw и холодное tc время года соответственно следует определять по формулам:

tw = tw – t0c;

(13.1)

tc = tc – t0w,

(13.2)

где tw, tc – нормативные значения средних температур по сечению элемента в теплое и холодное время года, принимаемые в соответствии с 13.3;

26

studfiles.net

СП 20.13330.2011. Нагрузки и воздействия

NormaCS ~ СП 20.13330.2011 ~ Обсуждение: СП 20.13330.2011. Нагрузки и воздействия

Все обсуждения

СП 20.13330.2011. Нагрузки и воздействия

  Частично действует - Заменен в части

Область применения

Документ устанавливает требования по назначению нагрузок, воздействий и их сочетаний, учитываемых при расчетах зданий и сооружений по предельным состояниям первой и второй групп, в соответствии с положениями ГОСТ 27751.

  Показать карточку документа Опечатка в пункте п. 11.1.10?

Оксана, да, Вы правы. В этом пункте действительно опечатка и она будет исправлена в новой редакции свода правил. Вот официальное письмо от разработчика по этой опечатке.

NormaCS

Администратор, 7 сентября 2016

Г.8 Здания с перепадом высоты

Пункт д) Приложения Г.8 ограничивает значение коэффициента µ значением 2h/S0 , но в пункте г) того же приложения, для нахождения значения b, описывается два случая значения коэффициента µ. Во втором случае изначальные условия подразумевают значение коэффициента µ больше значения 2h/S0 . Это опечатка?

В новой, обсуждаемой, редакции СП это так же есть.

NATA

Клиент NormaCS, 9 марта 2016

Видеодоклад по данному СП на семинаре ФАУ "ФЦС"

На семинаре ФАУ "ФЦС", состоявшемся 3 ноября, был представлен доклад Лебедевой И.В., заместителя заведующего лабораторией ЦНИИСК им. В.А. Кучеренко, разработчика этого стандарта. В докладе обсуждались изменения и дополнения, внесенные в разделы СП 20.13330.2011, касающиеся уточнения отдельных положений и формулировок статей, внесения дополнений и примечаний к статьям, а также исправления замеченных опечаток в последнем издании документа.

Читайте нашу статью на сайте и смотрите доклад.

NormaCS

Администратор, 27 ноября 2015


По теме этого документа

www.normacs.info

СП 20.13330.2011 Нагрузки и воздействия

www.AlienTechnologies.ru - производство композитной арматуры в С-Пб.

СП 20.13330.2011

5.4 К длительным Рl нагрузкам следует относить:

а) вес временных перегородок, подливок и подбетонок под оборудование; б) вес стационарного оборудования: станков, аппаратов, моторов, емкостей,

трубопроводов с арматурой, опорными частями и изоляцией, ленточных конвейеров, постоянных подъемных машин с их канатами и направляющими, а также вес жидкостей и твердых тел, заполняющих оборудование;

в) давление газов, жидкостей и сыпучих тел в емкостях и трубопроводах, избыточное давление и разрежение воздуха, возникающее при вентиляции шахт;

г) нагрузки на перекрытия от складируемых материалов и стеллажного оборудования в складских помещениях, холодильниках, зернохранилищах, книгохранилищах, архивах и подобных помещениях;

д) температурные технологические воздействия от стационарного оборудования; е) вес слоя воды на плоских водонаполненных покрытиях;

ж) вес отложений производственной пыли, если не предусмотрены соответствующие мероприятия по ее удалению;

з) пониженные нагрузки, перечисленные в 4.1; и) воздействия, обусловленные деформациями основания, не сопровождающимися

коренным изменением структуры грунта, а также оттаиванием вечномерзлых грунтов; к) воздействия, обусловленные изменением влажности, усадкой и ползучестью

материалов.

5.5 К кратковременным нагрузкам Рt следует относить:

а) нагрузки от оборудования, возникающие в пускоостановочном, переходном и испытательном режимах, а также при его перестановке или замене;

б) вес людей, ремонтных материалов в зонах обслуживания и ремонта оборудования; в) нагрузки от людей, животных, оборудования на перекрытия жилых, общественных и сельскохозяйственных зданий с полными нормативными значениями,

кроме нагрузок, указанных в 5.4, а, б, г, д; г) нагрузки от подвижного подъемно-транспортного оборудования (погрузчиков,

электрокаров, кранов-штабелеров, тельферов, а также от мостовых и подвесных кранов с полным нормативным значением), включая вес транспортируемых грузов;

д) нагрузки от транспортных средств; е) климатические (снеговые, ветровые, температурные и гололедные) нагрузки.

5.6 К особым Рs нагрузкам следует относить: а) сейсмические воздействия; б) взрывные воздействия;

в) нагрузки, вызываемые резкими нарушениями технологического процесса, временной неисправностью или поломкой оборудования;

г) воздействия, обусловленные деформациями основания, сопровождающимися коренным изменением структуры грунта (например, при замачивании просадочных грунтов) или оседанием его в районах горных выработок и в карстовых;

д) нагрузки, обусловленные пожаром; е) нагрузки от столкновений транспортных средств с частями сооружения.

Расчетные значения особых нагрузок устанавливаются в соответствующих нормативных документах или в задании на проектирование.

3

studfiles.net

Cнеговая нагрузка

Многие задаются вопросом: как рассчитать снеговую нагрузку? В этой статье я постараюсь максимально подробно рассказать, как это сделать.

Районы снеговой нагрузки

Первое, с чем нужно определиться - к какому району по весу снегового покрова относится рассматриваемая местность. Данную информацию можно найти на специальных картах в нормативных документах. Главный нормативный документ, регламентирующий снеговую нагрузку  - СП 20.13330*

Рис.1 Карта РФ по весу снегового покрова (нажмите для увеличения)

*Обратите внимание, что СП20.13330 есть 2011 и 2016 года, и карты в этих документах отличаются. На момент выхода статьи обязательным является СП 2011г. но в ближайшее время СП 2016г. официально станет действующим и расчет нужно будет проводить по картам нового документа. Расчет снеговой нагрузки так же можно найти по СНиП 2.01.07-85*, но данный расчет не будет действительным т.к. нормы устарели.

Расчет снеговой нагрузки

Снеговые нагрузки рассчитываются по СП 20.13330*

Нормативное значение снеговой нагрузки на горизонтальную проекцию покрытия следует определять по формуле:

S0=CeCtµSg

где Ce- коэффициент, учитывающий снос снега с покрытий зданий под действием ветра или иных факторов, принимаемый в соответствии с 10.5-10.9 СП 20.13330; Ct- термический коэффициент, принимаемый в соответствии с 10.10 СП 20.13330; µ - коэффициент перехода от веса снегового покрова земли к снеговой нагрузке на покрытие, принимаемый в соответствии с 10.4 СП 20.13330;  Sg - нормативное значение веса снегового покрова на 1 м2 горизонтальной поверхности земли, принимаемое в соответствии с 10.2 (см. таблицу 1 ниже).

Расчетное значение снеговой нагрузки определяют умножением нормативного значения на коэффициент надежности по снеговой нагрузке:

S=S0f

Коэффициент надежности по снеговой нагрузке  γf = 1,4.

Таблица снеговых нагрузок

Sg - нормативное значение веса снегового покрова на 1 мв зависимости от района снеговой нагрузки определяют по таблице 1.

Таблица 1: Таблица снеговых нагрузок в зависимости от района

Например:

Cнеговая нагрузка в Московской области и Санкт-Петербурге (III снеговой район по карте) - S0=CeCtµSg=1*1*1*1,5=1.5кПа=1.5кН/м2=150кг/м2 S=S0f=150*1.4=210кг/м2. Cнеговая нагрузка в Московской области (IV снеговой район по карте) - S0=CeCtµSg=1*1*1*2=2кПа=2кН/м2=200кг/м2 S=S0f=200*1.4=280кг/м2

Расчет снеговой нагрузки онлайн калькулятор

Для более быстрого расчета у нас на сайте вы можете воспользоваться онлайн калькулятором снеговой нагрузки. При возникновении сложностей вы можете заказать расчет написав нам на почту в разделе контакты.

Рис.2 Онлайн калькулятор расчета снеговой нагрузки.

>>> Перейти к онлайн калькулятору снеговой нагрузки <<<

В калькуляторе нагрузку можно посчитать как в кг / м2 так и в кН / м2. В калькуляторе реализован расчет снеговой нагрузки на кровлю (крышу) или любую наклонную (плоскую) поверхность.

Рассчитать более сложные случаи можно используя различные программы или воспользоваться следующими файлами в зависимости от типа схемы:

Г.1 Здания с односкатными и двускатными покрытиями;

 

 

см. выше онлайн калькулятор

Г.8 Здания с перепадом высоты;

Г.10 Покрытие с парапетами;

 

Г.2 Здания со сводчатыми и близкими к ним по очертанию покрытиями;

Г.3 Здания с продольными фонарями;

Г.4 Шедовые покрытия;

Г.5 Двух- и многопролетные здания с двускатными покрытиями;

Г.6 Двух- и многопролетные здания со сводчатыми и близкими к ним по очертанию покрытиями;

Г.7 Двух- и многопролетные здания с двускатными и сводчатыми покрытиями с продольным фонарем;

Г.9 Здания с двумя перепадами высоты;


Г.11 Участки покрытий, примыкающие к возвышающимся над кровлей вентиляционным шахтам и другим надстройкам;

Г.12 Висячие покрытия цилиндрической формы;

Г.13 Здания с купольными круговыми и близкими к ним по очертанию покрытиями;

Г.14 Здания с коническими круговыми покрытиями.

Автоматический расчет пока не реализован.


stroit-prosto.ru

Ветровая нагрузка | Все о ремонте и строительстве

При боковом давлении ветра воздушный поток сталкивается со стеной и крышей здания (рис. 8). У стены дома происходит завихрение потока, часть его уходит вниз к фундаменту, другая по касательной к стене ударяет в карнизный свес крыши. Ветровой поток, атакующий скат крыши, огибает по касательной конек кровли, захватывает спокойные молекулы воздуха с подветренной стороны и устремляется прочь. Таким образом, на крыше возникают сразу три силы, способные сорвать ее и опрокинуть — две касательные с наветренной стороны и подъемная сила, образующаяся от разности давлений воздуха, с подветренной стороны. Еще одна сила, возникающая от давления ветра, действует перпендикулярно склону (нормаль) и старается вдавить скат крыши внутрь и сломать его. В зависимости от крутизны скатов нормальные и касательные силы изменяют свое значение. Чем больше угол наклона ската кровли, тем большее значение принимают нормальные силы и меньшее касательные, и наоборот, на пологих крышах большее значения принимают касательные, увеличивая подъемную силу с подветренной и уменьшая нормальную с наветренной стороны.

рис. 8. Ветровые нагрузки, возникающие от давления воздушных масс

Нормативное значение средней составляющей ветровой нагрузки Wн в зависимости от высоты z над поверхностью земли следует определять по формуле:

Wн = W0×kz×c

Расчетное значение ветровой нагрузки Wр (для расчета по первому предельному состоянию) находится формулой:

Wр = γf ×W0×kz×c,

где γf — коэффициент надежности γf = 1,4; W0 — нормативное значение ветрового давления, определяется по картам приложения к СП 20.13330.2016 «Нагрузки и воздействия» или по рис. 9 и таблице 2; kz — коэффициент, учитывающий изменение ветрового давления для высоты z, определяется по таблице 3; c — аэродинамический коэффициент (переводит вертикальную нагрузку в горизонтальную), учитывающий изменение направления давления нормальных сил в зависимости от того с какой стороны находится скат по отношению к ветру, с подветренной или наветренной стороны (рис 10).

таблица 2

Ветровые районы Ia I II III IV V VI VII
Нор­ма­тив­ное дав­ле­ние ве­тра на 1 м² ве­рти­ка­аль­ной по­верх­но­сти
W0, кПа (кг/м²) 0,17 (17) 0,23 (23) 0,30 (31) 0,38 (39) 0,48 (49) 0,60 (61) 0,73 (74) 0,85 (87)
Рас­чет­ное дав­ле­ние ве­тра на 1 м² ве­рти­ка­аль­ной по­верх­но­сти
1,4×W0, кПа (кг/м²) 0,24 (24) 0,32 (33) 0,42 (43) 0,53 (54) 0,67 (68) 0,84 (86) 1,02 (104) 1,19 (121)
рис. 9. Районирование территории Российской Федерации по расчетному значению давления ветра

таблица 3

Ко­эф­фи­ци­ент k(z) для ти­пов мест­но­сти
Вы­со­та z, м А Б В
не более 5 0,75 0,5 0,4
10 1,0 0,65 0,4
20 1,25 0,85 0,55
Ти­пы мест­но­сти:
А – от­кры­тые по­бе­ре­жья мо­рей, озер и во­до­хра­ни­лищ, пу­сты­ни, сте­пи, ле­со­сте­пи, тунд­ра;
Б – го­род­ские тер­ри­то­рии, лес­ные мас­си­вы и дру­гие мест­но­сти, рав­но­мер­но по­кры­тые пре­пят­стви­я­ми вы­со­той бо­лее 10 м;
В – го­род­ские рай­о­ны с плот­ной за­строй­кой зда­ни­я­ми вы­со­той бо­лее 25 м

Со­ору­же­ние счи­та­ет­ся рас­по­ло­жен­ным в мест­нос­ти дан­но­го ти­па, если эта мест­ность со­хра­ня­ет­ся с на­вет­рен­ной сто­ро­ны со­ору­же­ния на рас­сто­я­нии 30h — при вы­со­те со­ору­же­ния h < 60 м и на рас­сто­я­нии 2 км — при h > 60 м.

 

рис. 10. Значения аэродинамических коэффициентов ветровой нагрузки

Знак «плюс» у аэродинамических коэффициентов определяет направление давления ветра на соответствующую поверхность (активное давление), знак «минус» — от поверхности (отсос). Промежуточные значения нагрузок следует находить линейной интерполяцией. При затруднении в использовании таблиц 3 и 4 изображенных на рисунке 10, нужно выбирать наибольшие значения коэффициентов для соответствующих углов наклона скатов крыш.

Крутые крыши ветер старается опрокинуть, а пологие — сорвать и унести. Для того чтобы этого не произошло нижний конец стропильных ног крепят проволочной скруткой к ершу, забитому в стену (рис. 11). Ерш — это металлический штырь с насечкой против выдергивания, который изготавливают кузнечным способом. Поскольку достоверно неизвестно с какой стороны будет дуть сильный ветер, стропила прикручивают по всему периметру здания через одно, начиная с крайних, — в районах с умеренными ветрами и каждое — в районах с сильными ветрами. В некоторых случаях этот узел может быть упрощен: ерш не устанавливается, а проволока с выпущенными концами закладывается в кладку стен в период их возведения. Такое решение допустимо, если оба конца проволоки выпускается внутрь чердака и не портят внешний вид фасада здания. Обычно для крепления стропил используется стальная предварительно отожженная (мягкая) проволока диаметром от 4 до 8 мм.

рис. 11. Пример решения карнизного узла наслонных стропил скатной крыши

Общая устойчивость стропильной системы обеспечивается раскосами, подкосами и диагональными связями (рис. 12). Устройство обрешетки также способствует общей устойчивости стропильной системы.

рис. 12. Пример обеспечения пространственной жесткости стропильной системы

 

ostroykevse.com

Notice: Trying to access array offset on value of type null in /var/www/www-root/data/www/sargorstroy.ru/wp-content/plugins/wpdiscuz/class.WpdiscuzCore.php on line 942 Notice: Trying to access array offset on value of type null in /var/www/www-root/data/www/sargorstroy.ru/wp-content/plugins/wpdiscuz/class.WpdiscuzCore.php on line 975

Отправить ответ

avatar
  Подписаться  
Уведомление о
Notice: ob_end_flush(): failed to delete and flush buffer. No buffer to delete or flush in /var/www/www-root/data/www/sargorstroy.ru/adv.php on line 309