Сопротивление теплопередаче пенополистирола: Теплопроводность пенополистирола, от чего зависит, характеристики ЭППС

Содержание

Пенопласт 2 см: теплопроводность, плотность, сопротивление теплопередаче

На современном рынке строительных материалов представлен широчайший выбор различных утеплителей, применение каждого из них обусловлено определенными требованиями в зависимости от назначения здания, условий эксплуатации и климата в данном регионе. Большинству требований, предъявляемых к утеплителям, соответствует пенопласт, который прочно занимает одну из лидирующих позиций на рынке нашей страны.

Сравнение теплопроводности пенопласта с другими утеплителями.

Содержание

  • Преимущества материала
  • Свойства и параметры утеплителя
  • Подбор плотности и толщины материала для дома

Преимущества материала

Пенопласт или пенополистирол представляет собой массив из спаянных между собой газонаполненных гранул полистирола, предварительно вспененных и отформованных беспрессовым методом. Материал изготавливается разной плотности, она зависит от размера и количества гранул в 1 м³. Если гранулы крупные, их количество на единицу объема будет меньше, а плотность материала ниже и наоборот, большое количество маленьких гранул придает ему высокую плотность и уменьшает теплопроводность. Пенопласт имеет ряд преимуществ, который и делает этот утеплитель таким популярным:

Таблица характеристик пенопластов различных марок.

  1. Превосходные теплоизоляционные показатели одни из самых высоких. Более высокие теплоизоляционные свойства имеет только пенополиуретан, но стоимость его гораздо выше.
  2. Небольшой вес упрощает процесс доставки и монтажа.
  3. Пенополистирол практически не впитывает влагу.
  4. Современный пенопласт экологичен.
  5. Не поддерживает горение, при воздействии высоких температур материал просто разрушается без воспламенения.
  6. Изделия из пенополистирола обладают прочностью и жесткостью.
  7. Материал один из самых доступных по цене.

Из недостатков этого утеплителя можно выделить два существенных: он не может быть использован при высоких противопожарных требованиях к зданию или помещению, поскольку при пожаре разрушится. Второй недостаток заключается в том, что пенополистирол грызут мыши. Они это делают с целью обустроить себе теплое гнездо, а не ради пропитания, что еще раз доказывает экологичность материала, в базальтовой вате мыши гнезд не делают.

Вернуться к оглавлению

Свойства и параметры утеплителя

Схема применения различных марок пенопласта.

Теплопроводность — это передача тепловой энергии от одной части материала, которая имеет более высокую температуру, к другой части, с меньшей температурой. То есть, простыми словами, это способность материала проводить тепловую энергию. Выражается этот параметр в единицах Вт/(м*К) и называется коэффициентом теплопередачи.

Расшифровка единицы измерения теплопередачи следующая: это количество тепловой энергии в Вт, которую способен передать материал толщиной 1 м на площади в 1 м² при перепаде температур 1 °(Кельвин) за определенную единицу времени. Коэффициент теплопередачи уменьшается по мере того, как повышается плотность материала, то есть чем выше плотность, тем лучше его теплоизоляционные свойства. Значения характеристик при различной плотности представлены в Таблице 1.

Таблица 1

Плотность,кг / м³101520253035
Коэффициенттеплопередачи,Вт/(м . К)0.0440.0380.0350.0340.0330.032

Величина теплопроводности является ключевой для расчета общего сопротивления теплопередаче ограждающих конструкций здания (стен, кровли, перекрытий). Последнее обозначается латинской буквой R, единица выражается в м² К / Вт и показывает, сколько тепла в Вт проходит через 1 м² площади стены или кровли заданной толщины за единицу времени при перепаде температур 1°К. Этот параметр зависит от материала стены и ее толщины, это видно из формулы:

R = δ / k

Схема утепления стен пенопластом.

Здесь δ — толщина стены в метрах, k — коэффициент теплопроводности. Для примера можно показать сколько тепла теряет 1 м² пенополистирола толщиной 1 сантиметр плотностью 10 кг / м³ за единицу времени при перепаде температур 1°К:

R = 0,01 / 0,044 = 0,227 м² К / Вт.

Данный параметр нормируется, он не может быть меньше того, что прописан в нормативной документации для каждого региона. Учитывая разницу климатических условий на просторах нашей страны и длительность отопительного сезона, минимальное нормируемое сопротивление теплопередаче наружных стен для южных регионов составляет 1,8 м² К / Вт, средней полосы — 3 м² К / Вт, а северных — 4,8 м² К / Вт. Значения R для пенопласта разной плотности и различной толщины отражены в таблице 2.

Таблица 2

СопротивлениетеплопередачеR, м²К / ВтПлотность 10 кг / м³Плотность 15 кг / м³Плотность 20 кг / м³Плотность 25 кг / м³Плотность 30 кг / м³Плотность 35 кг / м³
Толщина 2 см0.
45
0.530.570.590.610.63
Толщина 5 см1.141.321.431.471.521.56
Толщина 10 см2.272.632.862.943.033.13

Из таблицы 2 хорошо видно, что пенопласт толщиной 100 мм может полностью заменить другие строительные материалы стен в южных и средних регионах, так как такая конструкция соответствует современным требованиям нормативной документации (СНиП 23-02-2003). Материал толщиной 5 см и 2 см может применяться для дополнительного утепления существующих зданий из кирпича или бетона, так как ограждающие конструкции этих зданий не соответствуют современным требованиям по энергосбережению. При этом утеплитель толщиной 2 см зачастую целесообразно использовать для отделки стен изнутри помещения, это дешевле, чем выполнять наружные работы, и не отнимет много места от пространства комнаты.

Вернуться к оглавлению

Подбор плотности и толщины материала для дома

Значение представленных расчетов следующее: зная температуру воздуха снаружи и желаемую температуру внутри помещения, можно на практике подобрать пенопласт необходимой толщины и плотности, чтобы успешно утеплить свой дом и при этом не переплатить за материалы.

Для этого следует воспользоваться формулой:

Q = (1/R) х S х (tв — tн)

В этой формуле:

  • Q — количество тепла в Вт, которое будет теряться стеной;
  • R — сопротивление теплопередаче выбранного вида утеплителя;
  • S — площадь стены в кв.м;
  • tв и tн — температура внутреннего и наружного воздуха соответственно.

Подобрав толщину и плотность пенопласта, с помощью коэффициента теплопередачи высчитывается значение R, вставляется в приведенную формулу и в результате станет известно, сколько тепла будет терять вся стена здания из пенопласта.

Однако требуется учесть и существующий материал стены, кирпич или бетон, ведь он тоже задерживает тепло. Для этого по тем же формулам нужно посчитать количество тепла, уходящего через существующую кирпичную, бетонную или деревянную стену. Значения теплопроводности некоторых материалов для расчета показаны в таблице 3.

Таблица 3

Материал стеныКирпичная кладкаШлако блокКерамзи тобетонДерево (сосна)Газобетон
Коэффициенттеплопередачи,Вт/(м*К)0.410.340.140.090.1

Теплоизоляционные показатели традиционных материалов достаточно низкие, расчет покажет большие потери тепла, вот почему требуется доработка таких стен изделиями из полистирола. Полученные результаты просчета по пенопласту и существующей стене складываются. Дальше такой же расчет нужно произвести по всем стенам, суммировать результаты и сопоставить с мощностью системы отопления.

Если выяснится, что можно без ущерба для экономии уменьшить толщину утепляющего пенополистирола или его плотность, нужно пересчитать потери тепла еще раз с учетом новых параметров.

После чего смело приобретать материал.

Источник

Почему важно знать коэффициент теплопроводности полиуретана и как это влияет на качество теплоизоляции?

Зачем знать коэффициент теплопроводности при выборе утеплителя, как он влияет на качество теплоизоляции и как рассчитать толщину слоя утепления. Читайте в статье.

ППУ для теплоизоляции в сравнении с другими утеплителями

Пенополиуретан (ППУ) — газонаполненная пластмасса, которая получается в результате смешивания полиола и полиизоцианата. После химической реакции вещество увеличивается в объеме от 5 до 25 раз в зависимости от формулы.

В строительстве ППУ применяют для теплоизоляции. Его теплопроводность позволяет защитить от холода кирпичные и деревянные дома, строения из газобетона и камня, блочные и бетонные конструкции. Материал не пропускает влагу и может защищать от воды. Имеет высокую адгезию, легко заполняет щели и пустоты, устойчив к растворам щелочей, кислот, осадкам. При длительной эксплуатации пенополиуретан не плесневеет. Он не восприимчив к грибкам, защищает от насекомых и грызунов. Служит дольше 30 лет.

Пенополиуретан не горит и не выделяет в атмосферу вредные вещества. Компания «Химтраст» предлагает материалы с разным классом горючести: от «Химтраст СКН-60 Г1» (трудногорючий) до «Химтраст СКН-30 Г3» (самозатухающий).

В строительстве для теплоизоляции используют базальтовое волокно, стекловату, полиуретан, пенопласт, пенополистирол. Коэффициент теплопроводности полиуретана один из самых низких среди утеплителей. Чем ниже коэффициент, тем тоньше нужен слой утеплителя. 


Средний коэффициент теплопроводности полиуретана — 0,028 Вт/(м·К). У открытоячеистого ППУ, который используют для тепло- и шумоизоляции закрытых помещений — 0,037 Вт/(м·К). У закрытоячеистого для наружных стен — 0,022 Вт/(м·К). Этот показатель говорит о том, насколько сильно материал сопротивляется проникновению холода извне и отдаче тепла наружу. Сравнение теплопроводности ППУ приведено в Приложении 3 СНиП 2-3-79.


Базальтовый утеплитель, стекловата и эковата

Базальтовым утеплителем (каменной ватой) часто укрывают здания. Он не горит и способен к самозатуханию. Теплопроводность материала — 0,04 Вт/(м·К), это тоже хороший показатель, но, в отличие от ППУ, слой базальтового утеплителя должен быть в два раза толще, чтобы защитить конструкцию. Такой же коэффициент у стекловаты и эковаты.

Экструдированный пенополистирол

Плитами из экструдированного пенополистирола защищают жилые дома от холодов. Теплопроводность материала — 0,032 Вт/(м·К), этого достаточно для утепления, однако нужно учитывать и другие свойства пенополистирола. Его класс горючести Г4, он легко воспламеняется и выделяет токсины.

Пенопласт

Пенопласт по плотности схож с пенополистиролом, только менее устойчив к механическому воздействию и держит тепло хуже. Коэффициент теплопроводности — 0,038 Вт/(м·К). Значит, его слой при утеплении должен быть на 30 % толще, чем ППУ.

За тепло в помещении отвечает не только теплопроводность ППУ при изоляции, но и другие материалы: кирпичная кладка, облицовочные панели, слой штукатурки, гидроизоляция. Все они имеют плотность и влияют на защиту здания от холода. 

Теплопроводность ППУ в сухом и влажном состоянии

При намокании любой материал впитывает влагу и расширяется. Разбухание приводит к частичной или полной потере теплоизоляционных свойств. Поэтому важно обращать внимание на водопоглощение по объему, которое измеряется в процентах. 

У закрытоячеистого ППУ типа «Химтраст СКН-40 Г2» этот показатель — 2 %, а у базальтовых утеплителей — 35 %. Это значит, что при попадании влаги большая часть теплоизоляционных свойств минеральной ваты, эковаты и стекловаты будет утрачена. С коэффициентом водопоглощения пенополиуретана сравнимы показатели пенополистирола и пенопласта: 1 % и 4 %. Однако при утеплении эти материалы нужно укладывать плитами и не допускать зазоров между ними, иначе тепло будет уходить сквозь щели. ППУ для теплоизоляции наносят на поверхность установками безвоздушного напыления единым слоем без швов и зазоров. Подробнее прочитать о напылении ППУ можно в этой статье.

Как рассчитать толщину слоя ППУ для теплоизоляции

Толщина слоя утеплителя зависит от коэффициента теплопроводности полиуретана. Но также на нее влияют климатическая зона, влажность внутри помещения, температура, влагопоглощение и свойства материала.

Расчет теплоизоляционного слоя регламентируется нормативными документами: СНиП 23-02-2002, СП 23-101-2004 «Проектирование тепловой защиты зданий», ГОСТ Р 54851-2011.  

Один из основных показателей для расчета толщины — суммарное сопротивление теплопередаче конструкций или термическое сопротивление. Оно обозначает необходимую разницу температур снаружи и внутри материала для прохождения энергии. Измеряется в (м²·K)/Вт. Чем выше величина показателя, тем надежнее утеплитель.

Чтобы рассчитать сопротивление, нужно толщину материала в метрах разделить на коэффициент теплопроводности пенополиуретана. 

dппу = (Rтреб – Rконстр) • ʎппу = (Rтреб – dконстр / ʎконстр) • ʎппу,

где dппу — требуемый слой ППУ в метрах,

Rтреб — требуемое сопротивление теплопередаче в (м²·K)/Вт,

Rконстр — сопротивление теплопередаче существующей ограждающей конструкции в (м²·K)/Вт,

ʎппу — коэффициент теплопроводности ППУ в Вт/(м•K),

ʎконстр — коэффициент теплопроводности существующей ограждающей конструкции в Вт/(м•K).

Подробнее о том, как найти оптимальную толщину слоя утеплителя, читайте в статье.



Для утепления помещения необходимо учитывать коэффициент теплопроводности материала. В зависимости от его физико-химических свойств определяется способность удерживать тепло. Чем ниже коэффициент теплопроводности, тем лучше защищает от холода. Также важно учитывать другие особенности теплоизоляторов: способность отталкивать влагу, горючесть, экологичность и срок эксплуатации.


Технические характеристики сэндвич-панелей – размер, вес, толщина и ширина

Конструкция стеновых и кровельных сэндвич-панели состоит из:

  • двух профилированных оцинкованных металлических листов толщиной 0,5 мм с полимерным покрытием «Полиэстер». Для производства обкладок используются только рулонная горячецинкованная сталь российских металлургических комбинатов НЛМК и Северсталь;
  • одного слоя качественного утеплителя, на выбор заказчика, либо минеральная базальтовая вата (плотностью 100-140 кг/м3), либо пенополистирол (плотностью 13-25 кг/м3).
  • для прочного клеевого соединения применяется высококачественный специальный клей производства DOW. Стеновые и кровельные сэндвич-панели «СтальПрофильГрупп» выпускаются в соответствии с техническими требованиями ТУ 5284-001-18201124-2016.

Размеры сэндвич-панелей

Стеновые сэндвич-панели выпускаются в рабочей ширине 1190 мм, а по индивидуальному желанию клиента и в ширине 1000 мм. Полная (до монтажа) ширина сэндвич-панелей, включая замки Z-Lock составляет 1206 мм. Длина Стеновых и Кровельных сэндвич-панелей определяется Заказчиком и может быть любой в диапазоне от 1,5 метра до 14 метров. Толщина Стеновых и кровельных сэндвич-панелей соответствует толщине утеплителя – Минеральной Ваты или Пенополистирола.

Отклонения от номинальных размеров панелей должны соответствовать указанным в таблице.

Длина панелей, мм Допускаемые отклонения от проектных размеров, мм
по длине по ширине по толщине
до 8000 свыше 8000 ±4. 0 + 6.0 ±3.0 ±1.6

Габариты Кровельные сэндвич-панели Стеновые сэндвич-панели
Ширина 1000 мм 1000 мм, 1200 мм
Длина от 2000 мм до 13 500 мм от 2000 мм до 13 500 мм


Характеристики сэндвич-панелей с утеплителем — пенополистирол

Толщина, мм Термическое сопротивление Rt=m2×°C/Вт Звукоизоляция, дБ Теплопроводность λ=Вт/Мк Предел огнестойкости, ГОСТ 30247.0-94 Горючесть утеплителя Плотность, кг/м3 Водопоглащение за 24 часа, % по массе Водопоглащение за 2 часа, % по массе
50 1,28 25 0,042 EI 15 Г1 25 2
80 2,05 28 0,042 EI 15 Г1 25 2
100 2,56 29 0,042 EI 15 Г1 25 2
120 3,08 31 0,042 EI 15 Г1 25 2
150 3,85 33 0,042 EI 15 Г1 25 2
200 5,13 35 0,042 EI 15 Г1 25 2
250 6,41 39 0,042 EI 15 Г1 25 2


Характеристики сэндвич-панелей с утеплителем — минеральная вата

Толщина, мм Термическое сопротивление Rt=m2×°C/Вт Звукоизоляция, дБ Теплопроводность λ=Вт/Мк Предел огнестойкости, ГОСТ 30247. 0-94 Горючесть утеплителя Плотность, кг/м3 Водопоглащение за 24 часа, % по массе Водопоглащение за 2 часа, % по массе
50 1,04 30 0,05 EI 30 НГ 120-140 1,5
80 1,67 31 0,05 EI 45 НГ 120-140 1,5
100 2,08 32 0,05 EI 90 НГ 120-140 1,5
120 2,5 33 0,05 EI 150 НГ 120-140 1,5
150 3,13 35 0,05 EI 150 НГ 120-140 1,5
200 4,14 38 0,05 EI 150 НГ 120-140 1,5
250 5,21 43 0,05 EI 150 НГ 120-140 1,5

Профилирование

При производстве Стеновых сэндвич-панелей применяются следующие виды профилирования:

11 RIB

Mikro RIB

Без профилирования, с гладким листом с двух сторон. Также, вместе с профилированиями 11 RIB и Mikro RIB, можно в качестве внутренней поверхности использовать Гладкий лист.

Кровельные сэндвич-панели выпускаются в рабочей ширине 1000 мм. Полная (до монтажа) ширина кровельных сэндвич-панелей, включая замки R-Lock составляет 1085 мм. Для выпуска Кровельных сэндвич-панелей применяется один вид профилирования с пятью ребрами жесткости трапециевидной формы.

Вес стеновой панели

Удельный вес сэндвич-панелей является важным показателем, определяющим как возможности монтажа панелей, так и нагрузки на несущий каркас.

Данные Удельного веса Стеновых сэндвич с минераловатным утеплителем плотностью 110 кг/м³ панелей приведены в таблице.

Толщина панелей [мм] Ширина [мм] Длина панелей [мм] Удельный вес сендвич панели [кг/м²]
0,5 0,6 0,7
50 1190 1500 – 14000 14,61 16,26 17,93
80 17,91 19,56 21,23
100 20,11 21,76 23,43
120 22,30 23,96 25,62
150 25,61 27,26 28,93
180 28,31 30,44 32,13
200 31,11 32,76 34,43

Данные Удельного веса для стеновых панелей с утеплителем Пенополистирол «KNAUF” плотностью 25 кг/м³.

Толщина панелей [мм] Ширина [мм] Длина панелей [мм] Удельный вес сендвич-панели [кг/м²]
0,5 0,6 0,7
50 1190 1500 – 14000 10,36 12,01 13,68
80 11,11 12,76 14,43
100 11,61 13,26 14,93
120 12,11 13,76 15,43
150 12,86 14,51 16,18
170 13,30 15,01 16,68
200 14,11 15,76 17,43

Данные Удельного Веса кровельных панелей с минераловатным утеплителем плотностью 130 кг/м³ и металлическими листами толщиной 0,6 и 0,7 мм.

Толщина панелей [мм] Ширина [мм] Длина панелей [мм] Удельный вес сендвич-панели [кг/м²]
0,6 0,7
50 1000 1500 – 14000 18,34 20,18
80 22,24 24,08
100 24,84 26,68
120 27,44 29,28
150 31,34 33,18
180 34,25 35,10
200 37,84 39,68

Данные Удельного Веса кровельных панелей панелей с пенополистирольным утеплителем плотностью 25 кг/м³ и металлическими листами толщиной 0,6 и 0,7 мм.

Толщина панелей [мм] Ширина [мм] Длина панелей [мм] Удельный вес сендвич-панели [кг/м²]
0,6 0,7
50 1000 1500 – 14000 13,09 14,93
80 13,84 15,68
100 14,34 16,18
120 14,84 16,68
150 15,59 17,43
180 16,25 18,35
200 16,84 18,68


Теплоизоляционные свойства

С учетом расчетного среднего коэффициента теплопроводности минеральной ваты и пенополистирола ниже приведены значения сопротивления теплопередаче сэндвич-панелей в зависимости от их типа. При вычислении принят коэффициент теплопроводности для минеральной ваты плотностью:

110 кг/м3 – λs = 0,045 Вт/м °С

для пенополистирола плотностью:

25 кг/м³ – λs = 0,04 Вт/м °С

Толщина панели, мм Пенополистирол Минеральная вата
Приведенное сопротивление теплопередаче R0, (м2·°С)/Вт Приведенное сопротивление теплопередаче R0, (м2·°С)/Вт
50 1,250 1,111
80 2,000 1,777
100 2,500 2,222
120 3,000 2,667
150 3,750 3,333
200 5,000 4,445
250 6,250 5,555


Несущая способность

Несущая способность стеновых сэндвич-панелей при равномерно распределённой нагрузке (схема нагружения – неразрезная двухпролётная балка), кг/м².

Длина пролёта L [мм] Стандартная толщина панелей [мм]
50 80 100 120 150 180 200
1,0 191 316 397 398 597 717 798
1,5 128 210 262 317 398 478 530
2,0 95 156 195 238 296 356 396
2,5 86 122 156 189 235 283 317
3,0 61 101 129 157 197 236 262
3,5 52 87 110 133 165 201 225
4,0 47 75 96 116 146 177 197
4,5 40 66 84 102 128 156 172
5,0 35 60 76 91 115 140 156
5,5 31 53 69 88 102 119 140
6,0 27 44 58 70 88 100 119
6,5 21 38 47 59 73 90 100

Несущая способность кровельных панелей при равномерно распределённой нагрузке (схема нагружения – однопролётная балка), кг/м².

Длина пролёта L [мм] Стандартная толщина панелей [мм]
50 80 100 120 150 180 200
1,0 242 460 610 759 977 1194 1341
1,5 151 297 393 490 631 780 874
2,0 106 211 285 358 460 570 641
2,5 65 160 220 275 360 445 501
3,0 33 105 160 211 291 362 410
3,5 15 69 110 155 221 294 340
4,0 40 72 105 155 206 241
4,5 20 48 70 107 146 170
5,0 27 44 72 102 121
5,5 27 50 71 89
6,0 31 50 69
6,5 18 31 42

Несущая способность кровельных панелей при равномерно распределённой нагрузке (схема нагружения – неразрезная двухпролётная балка), кг/м².

Длина пролёта L [мм] Стандартная толщина панелей [мм]
50 80 100 120 150 180 200
1,0 170 344 460 579 753 927 1040
1,5 103 219 295 370 484 600 675
2,0 70 153 210 268 350 435 491
2,5 51 117 160 203 271 337 381
3,0 36 91 127 160 220 272 310
3,5 27 73 102 132 181 225 256
4,0 18 55 84 110 151 190 218
4,5 31 54 73 106 140 158
5,0 17 33 49 72 98 113
5,5 19 30 50 70 81
6,0 18 31 47 56
6,5 18 31 40

Характеристики

EPS | Физические свойства EPS

Федеральные спецификации: ASTM C 578-92

Минимальные и максимальные допустимые значения.

Свойство шт. Тест ASTM Тип I Тип VIII Тип II Тип IX
Плотность, номинальная шт C303 или D1622 1.00# 1.25# 1.50# 2.00#
Плотность, минимум шт C303 или D1622 0,90 1,15 1,35 1,80
Плотность, диапазон шт C303 или D1622 0,90-1,14 1,15-1,34 1,35-1,79 1,80-2,20
Коэффициент теплопроводности К при 25°F БТЕ/(ч) (кв. фут) (Ф/дюйм)C177 или C518 0,23 0,22 0,21 0,20
Коэффициент теплопроводности К при 40°F БТЕ/(ч) (кв. фут) (Ф/дюйм) С177 или С518 0,24 0,235 0,22 0,21
Коэффициент теплопроводности К при 75°F БТЕ/(ч) (кв. фут) (Ф/дюйм) С177 или С518 0,26 0,255 0,24 0,23
Коэффициент теплового сопротивления R* при 25°F при толщине 1 дюйм 4,35 4,54 4,76 5,00
Коэффициент теплового сопротивления R* при 40°F при толщине 1 дюйм 4,17 4,25 4,55 4,76
Коэффициент теплового сопротивления R* при 75°F при толщине 1 дюйм 3,85 3,92 4,17 4,35
Сжатие 10% Деформация фунтов на квадратный дюйм Д1621 10-14 13-18 15-21 25-33
Прочность на изгиб фунтов на квадратный дюйм С203 25-30 30-38 40-50 50-75
Прочность на растяжение фунтов на квадратный дюйм Д1623 16-20 17-21 18-22 23-27
Прочность на сдвиг фунтов на квадратный дюйм 18-22 23-25 ​​ 26-32 33-37
Модуль сдвига фунтов на квадратный дюйм 280-320 370-410 460-500 600-640
Модуль упругости фунтов на квадратный дюйм 180-220 250-310 320-360 460-500
Водопоглощение % С272 < 4,0% < 3,0% < 3,0% < 2,0%
Передача водяного пара Пермь. В Е96 2,0-5,0 1,5-3,5 1,0-3,5 0,6-2,0

*Значение R означает сопротивление тепловому потоку. Чем выше значение R, тем больше сопротивление тепловому потоку. Типичные проверенные значения R основаны на данных, предоставленных Nova Chemical Co., BASF Corp. и Huntsman Chemical Company.

Дополнительная информация по всем типам

  • Максимальная рабочая температура: длительное воздействие 167 градусов по Фаренгейту, периодическое воздействие 180 градусов по Фаренгейту
  • Кислородный индекс: тест ASTM D2863 = 24,0%
  • Коэффициент теплового расширения: ASTM Test D 696 = 0,000035 дюймов/(дюйм)(F)
  • Плавучесть-плавучесть: минимум 50 фунтов на кубический фут
  • Капиллярность – нет
  • Длительное воздействие 167° F, прерывистое воздействие 180° F
  • Тест ASTM D 2863 = 24,0%
  • Тест ASTM D 696 = 0,000035 дюймов/(дюйм)(F)
  • Минимум 50 фунтов/куб. фут

Классификация строительных норм и правил

ICC ESR-1349

У.Л. Файл № R12290 Контроль № 85TO Классификация BRYX

Предупреждение о воспламеняемости

Материалы из вспененного полистирола (EPS)

, продаваемые для использования в строительстве, имеют огнезащитный модификатор, но считаются горючими, как и все органические материалы. Их нельзя хранить или устанавливать вблизи открытого огня или любых других источников воспламенения. Кроме того, когда изоляционная плита EPS устанавливается внутри конструкции, она должна быть защищена надлежащим тепловым барьером, и установщик должен ознакомиться с применимыми местными, государственными и федеральными строительными нормами, чтобы определить правильный тепловой барьер для конкретного применения. .

Предупреждение о смежных материалах

Пенополистирол (EPS) подвергается воздействию жидких растворителей или некоторых клеев на основе растворителей и других жидких продуктов, таких как газ, дизельное топливо и т. д. контакт с пеной EPS.

Является ли полистирол хорошим изолятором?

Полистирол является одним из самых распространенных пластиков, используемых сегодня, но является ли полистирол хорошим изолятором?

В этой статье мы подробно рассмотрим, что такое полистирол, насколько он эффективен в обеспечении теплоизоляции и для каких целей его лучше всего использовать.

Что такое полистирол?

Полистирол — это тип пластика, который используется для изготовления широкого спектра товаров, от игрушек и упаковки до автомобильных запчастей и электроники. Когда пенополистирол вспенивается, его называют вспененным полистиролом (EPS) или экструдированным полистиролом (XPS). Иногда пенополистирол называют Styrofoam, но это торговая марка, а не техническое название.

Полистирол в расширенном виде имеет низкую теплопроводность, что делает его отличным изолятором. Пенополистирол содержит в своей структуре множество мелких воздушных карманов, и это является важным ключом к его изоляционным свойствам.

Можно ли использовать полистирол в качестве изоляции?

Вспененный полистирол (как EPS, так и XPS) используется в качестве изоляции по двум основным причинам. Во-первых, полистирол обладает высокой термостойкостью, то есть препятствует теплопередаче. Во-вторых, пенополистирол содержит в своей структуре миллионы мельчайших пузырьков воздуха, а воздух плохо проводит тепло.

Любой тип объемной изоляции работает по одному и тому же принципу, независимо от того, какой материал используется. Цель состоит в том, чтобы создать как можно больше воздушных карманов внутри материала. Чем больше воздуха вы сможете уловить внутри вашего материала, тем эффективнее ваш материал будет сопротивляться тепловому потоку. Если помимо создаваемых вами воздушных карманов сам материал обладает высокими теплоизоляционными свойствами, то у вас получилось изготовить отличный изолятор.

Является ли полистирол хорошим изолятором?

На рынке представлено множество изоляционных материалов, от стекловаты до полиэстера, минеральной ваты и минеральной ваты. Ниже мы рассмотрим преимущества использования изоляции из полистирола, такой как изоляция из пенополистирола и пенополистирола.

1) Полистирол обладает высокой термостойкостью

Экструдированный пенополистирол (XPS) и изоляция из пенополистирола (EPS) содержат миллионы воздушных карманов внутри пены. Поскольку полистирол сам по себе также очень устойчив к нагреву, в результате получается отличный теплоизолятор, который может дать отличные рейтинги R.

В дополнение к этому XPS часто облицовывают алюминиевой фольгой по крайней мере с одной стороны, что приводит к одновременному отражению и блокированию лучистого тепла. Эта комбинация объемной и отражающей изоляции очень эффективна для предотвращения потерь и притока тепла.

2) Изоляция из полистирола обладает отличной влагостойкостью

При установке других типов изоляции, таких как изоляция из стекловаты, важно убедиться, что область, в которой вы работаете, абсолютно сухая, так как попадание влаги может привести к образованию плесени. Влага также может привести к уплотнению войлока, что снижает его эффективность и, по существу, его R-значение.

Изоляция из полистирола, с другой стороны, уже уплотнена, и очень мало влаги может проникнуть внутрь, что предотвращает развитие плесени и обеспечивает постоянное и надежное значение коэффициента сопротивления теплопередаче.

3) XPS и EPS обладают высокой прочностью на сжатие

Пенопластовая изоляция может быть классифицирована как изоляция с открытыми или закрытыми порами. В типы с открытыми ячейками были добавлены наполнители, которые облегчают их пружинение и сжатие. Типы закрытых ячеек, включая XPS и EPS, более плотные и имеют более прочную структуру, что делает их более прочными и способными лучше противостоять сжатию. Сжатие может поставить под угрозу способность объемного изоляционного материала сопротивляться потоку тепловой энергии.

4) Популярен среди монтажников благодаря простоте обращения.

Изоляция из полистирола практически не имеет запаха, что делает его популярным выбором среди профессиональных монтажников. В отличие от традиционного утеплителя из стекловаты, у которого при укладке отслаиваются тысячи свободных волокон, которые часто раздражают открытые участки кожи, XPS имеет плотную структуру, что делает работу с ним более удобной. Стандартного защитного износа на стройплощадке более чем достаточно при установке XPS.

Важно отметить, что многие современные продукты из стекловаты, такие как Knauf Earthwool, в настоящее время производятся с умом и практически не вызывают зуда, характерного для традиционных продуктов из стекловаты.

Соображения по охране окружающей среды

К сожалению, много полистирола оказывается на свалке, поскольку его нелегко переработать, а биологические агенты, способные его разрушить, отсутствуют. В процессе производства в атмосферу выбрасываются вредные загрязняющие вещества и используется нефть, которая является невозобновляемым ресурсом.

Итак, пока ответ на вопрос «является ли полистирол хорошим теплоизолятором?» Да, один из его основных недостатков — это влияние, которое он оказывает на окружающую среду. Если вас интересуют более экологичные варианты изоляции, ознакомьтесь с нашей статьей об экологически чистой изоляции для австралийских домов.

Подходит ли полистирол для изоляции стен?

Пенополистирольные плиты могут использоваться в самых разных областях, включая наружные стены, потолки, прохладные помещения и под бетонные плиты как в коммерческих, так и в жилых проектах. При монтаже в стены пенопласт необходимо измерить и обрезать для плотного прилегания между деревянными балками. Большинство плат XPS и EPS можно разрезать по размеру с помощью стандартного универсального ножа.

Можно ли использовать полистирол для звукоизоляции?

Сам по себе полистирол не обладает хорошими звукоизоляционными свойствами, так как не имеет достаточной толщины или плотности. Однако, когда он прикреплен к жестким материалам, таким как структурно-изолированные панели (SIP), полистирол можно эффективно использовать для звукоизоляции.

Как долго служит изоляция из полистирола?

Изоляционные материалы из полистирола рассчитаны на несколько десятилетий, прежде чем потребуется их замена. Как один из наиболее прочных доступных изоляционных материалов, изоляция из пенополистирола часто имеет гарантию от 30 до 50 лет. Для получения дополнительной информации о сроке службы изоляции, ознакомьтесь с нашей статьей о том, как долго длится изоляция.

Где купить изоляцию онлайн?

Ищете ли вы изоляцию из пенополистирола, изоляцию из стекловаты или специальную звукоизоляцию, Pricewise Insulation поможет вам. Мы являемся крупнейшим в Австралии интернет-магазином изоляции, предлагающим широкий ассортимент высококачественных и доступных вариантов от некоторых из самых известных брендов изоляции на рынке. Свяжитесь с нами для получения дополнительной информации или разместите заказ онлайн сегодня!

Рекомендуемые товары Просмотреть все

От $ 8,97 p/m2 вкл. GST

От $ 15,48 шт/м2 вкл. GST

От $ 12,95 шт/м2 вкл. GST

От $ 8,95 шт/м2 вкл. GST

 

Значение EPS R по сравнению со значением EPS R: какая изоляция сохраняет лучшее значение R с течением времени?

При поиске жесткой изоляции часто встречаются изделия как из пенополистирола, так и из пенополистирола. Сначала они могут показаться похожими, но есть несколько ключевых отличий, которые помогут определить, какой продукт лучше всего подходит для вашего конкретного проекта.

Оба изолятора представляют собой пенопласт с закрытыми порами. Оба используют основу из полистирола. Оба обеспечивают эффективную изоляцию и используются для повышения энергоэффективности зданий.

Основное различие заключается в способе производства этих материалов. Процесс производства изоляции из пенополистирола (EPS) означает, что ваш конечный продукт является более стабильным, более настраиваемым и оказывает меньшее воздействие на окружающую среду по сравнению с изоляцией из экструдированного полистирола (XPS).

Как изготавливается формованный пенополистирол

Несмотря на то, что изоляция из пенополистирола и пенополистирола производится с использованием совершенно разных методов.

EPS – изоляция из вспененного полистирола, изготовленная с использованием форм и интегрированных вспенивателей, которые превращают материал из твердого в пенопласт.

Пар используется в начальном процессе, который размягчает и расширяет полистирол. Затем продукт переносится в форму, где пар используется во второй раз для дальнейшего размягчения и расширения полимера и продукта в блоки или необходимую нестандартную форму.

Затем блоки можно разрезать на любую форму или размер по желанию заказчика с помощью горячей проволоки.

К тому времени, когда пенополистирол продается покупателям, продукт состоит на 98 % из воздуха и на 2 % из полистирола.

Как изготавливается XPS

XPS также является продуктом из полистирола, но он производится с использованием процесса экструзии.

Ключевое отличие изоляции XPS заключается в том, что она не изготавливается в форме или замкнутом пространстве. Вместо этого он выходит как экструдерный краситель. В этом процессе полимер нагревают и смешивают с вспенивающим агентом, когда он проходит через экструдер.

В конце концов, изоляция XPS представляет собой жесткую пену с полистирольной матрицей, наполненной вспенивающим агентом. Он имеет меньшую гибкость по размеру и настройке из-за ограниченных возможностей экструзии.

Что нужно знать о значении изоляции

Когда дело доходит до изоляции, все дело в замедлении процесса теплопередачи.

Тепло передается тремя различными способами: теплопроводностью, конвекцией и излучением. Теплопроводность — это когда тепло движется через непосредственный контакт с материалом, конвекция — это движение тепла через воздух, а излучение — это передача тепловой энергии.

Значение изоляции продукта зависит от того, как оно справляется со всеми тремя факторами: оно определяется тем, как тепло проводится, конвектируется и излучается через продукт.

Значение R: EPS в сравнении с XPS

Значение R, или значение «теплового сопротивления», — это рейтинг, используемый для оценки того, насколько хорошо изоляционный продукт работает в соответствии с его проводимостью, конвекцией и сопротивлением излучению, как обсуждалось выше. выше.

XPS обычно имеет несколько более высокое начальное значение R, чем EPS, поскольку он содержит захваченный вспенивающий агент. Со временем значение R падает, потому что добавленные вспенивающие агенты, содержащиеся в конечном продукте, в конечном итоге заменяются воздухом, что делает продукт менее термостойким. Продукт XPS с первоначально оцененным значением R 5,0 в конечном итоге упадет до значения R, близкого к 4,3.

Поскольку пенополистирол состоит только из воздуха и полистирола, его R-коэффициент не снижается со временем. Значение R в первый день, десять, двадцать и даже пятьдесят лет спустя остается прежним, а это означает, что EPS работает более стабильно в долгосрочной перспективе.

Воздействие пенополистирола на окружающую среду по сравнению с XPS

При оценке воздействия различных изоляционных материалов на окружающую среду важно не ограничиваться только рассмотрением углеродного следа продукта. Более надежным и точным будет ознакомиться с Экологической декларацией продукта, которая представляет собой прозрачный, объективный и всеобъемлющий отчет, в котором рассказывается, из чего сделан продукт и как он влияет на окружающую среду на протяжении всего срока службы продукта.

Как правило, существует шесть категорий, которые являются общими для экологической декларации продукта изоляции. При прямом сравнении продуктов EPS и XPS с одинаковой плотностью их влияние близко в четырех из шести категорий. Между ними существует явная разница, если сравнивать потенциал глобального потепления и потенциал разрушения озонового слоя.

EPS немного лучше, чем XPS, когда речь идет о потенциале глобального потепления. Но с точки зрения потенциала разрушения озонового слоя EPS значительно лучше, чем XPS, и оказывает гораздо меньшее воздействие на озоновый слой.

При прямом сравнении в соответствии с отчетами экологической декларации продукции пенополистирол оказывает меньшее негативное воздействие на окружающую среду, чем пенополистирол.

Итак, каковы решающие различия между ними?

Итак, каковы самые большие различия между EPS и XPS?

Размер и возможность настройки.

XPS доступен только в нескольких вариантах толщины. Найти продукт XPS в размере, отличном от толщины 1 или 2 дюйма, может быть сложно или дороже.

Изделия из пенополистирола могут быть изготовлены на заказ любой толщины и размера, а поскольку в процессе производства пенополистирола используются пресс-формы и резка горячей проволокой, доступно гораздо больше вариантов. Кроме того, клиенты могут получить изоляционный продукт, изготовленный на заказ в соответствии с их конкретными потребностями.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *