Закон Ома — формулировка простыми словами, определение
Покажем, как применять знание физики в жизни
Начать учиться 202.1KРезистор — смелый элемент, потому что умудряется противостоять хитрому и умному электрическому току. О том, почему ток вдруг хитрый, и как все величины электрической цепи взаимосвязаны — в этой статье.
Сопротивление
Представьте, что есть труба, в которую затолкали камни. Вода, которая протекает по этой трубе, станет течь медленнее, потому что у нее появилось сопротивление. Точно также будет происходить с электрическим током.
Сопротивление — физическая величина, которая показывает способность проводника пропускать электрический ток. Чем выше сопротивление, тем ниже эта способность.
Теперь сделаем «каменный участок» длиннее, то есть добавим еще камней. Воде будет еще сложнее течь.
Сделаем трубу шире, оставив количество камней тем же — воде полегчает, поток увеличится.
Теперь заменим шероховатые камни, которые мы набрали на стройке, на гладкие камушки из моря. Через них проходить тоже легче, а значит сопротивление уменьшается.
Электрический ток реагирует на эти параметры аналогичным образом: при удлинении проводника сопротивление увеличивается, при увеличении поперечного сечения (ширины) проводника сопротивление уменьшается, а если заменить материал — изменится в зависимости от материала.
Эту закономерность можно описать следующей формулой:
Сопротивление R = ρ · l/S R — сопротивление [Ом] l — длина проводника [м] S — площадь поперечного сечения [мм2] ρ — удельное сопротивление [Ом · мм2/м] |
Единица измерения сопротивления — ом.
Названа в честь физика Георга Ома.Будьте внимательны!
Площадь поперечного сечения проводника и удельное сопротивление содержат в своих единицах измерения мм2. В таблице удельное сопротивление всегда дается в такой размерности, да и тонкий проводник проще измерять в мм2. При умножении мм2 сокращаются и мы получаем величину в СИ.
Но это не отменяет того, что каждую задачу нужно проверять на то, что там мм2 в обеих величинах! Если это не так, то нужно свести не соответствующую величину к мм2.
Знайте!
СИ — международная система единиц. «Перевести в СИ» означает перевод всех величин в метры, килограммы, секунды и другие единицы измерения без приставок. Исключение составляет килограмм с приставкой «кило».
Удельное сопротивление проводника — это физическая величина, которая показывает способность материала пропускать электрический ток. Это табличная величина, она зависит только от материала.
Практикующий детский психолог Екатерина Мурашова
Бесплатный курс для современных мам и пап от Екатерины Мурашовой. Запишитесь и участвуйте в розыгрыше 8 уроков
Таблица удельных сопротивлений различных материалов
Материал | Удельное сопротивление ρ, Ом · мм2/м |
Алюминий | 0,028 |
Бронза | 0,095–0,1 |
Висмут | 1,2 |
Вольфрам | 0,05 |
Железо | 0,1 |
Золото | 0,023 |
Иридий | 0,0474 |
Константан (сплав NiCu + Mn) | 0,5 |
Латунь | 0,025–0,108 |
Магний | 0,045 |
Манганин (сплав меди марганца и никеля — приборный) | 0,43–0,51 |
Медь | 0,0175 |
Молибден | 0,059 |
Нейзильбер (сплав меди, цинка и никеля) | 0,2 |
Натрий | 0,047 |
Никелин (сплав меди и никеля) | 0,42 |
Никель | 0,087 |
Нихром (сплав никеля, хрома, железа и марганца) | 1,05–1,4 |
Олово | 0,12 |
Платина | 0,107 |
Ртуть | 0,94 |
Свинец | |
Серебро | 0,015 |
Сталь | 0,103–0,137 |
Титан | 0,6 |
Хромаль | 1,3–1,5 |
Цинк | 0,054 |
Чугун | 0,5–1,0 |
Резистор
Все реальные проводники имеют сопротивление, но его стараются сделать незначительным.
В задачах вообще используют словосочетание «идеальный проводник», а значит лишают его сопротивления.Из-за того, что проводник у нас «кругом-бегом-такой-идеальный», чаще всего за сопротивление в цепи отвечает резистор. Это устройство, которое нагружает цепь сопротивлением.
Вот так резистор изображается на схемах:
В школьном курсе физики используют европейское обозначение, поэтому запоминаем только его. Американское обозначение можно встретить, например, в программе Micro-Cap, в которой инженеры моделируют схемы.
Вот так резистор выглядит в естественной среде обитания:
Полосочки на нем показывают его сопротивление.
На сайте компании Ekits, которая занимается продажей электронных модулей, можно выбрать цвет резистора и узнать значение его сопротивления:
Источник: сайт компании Ekits
О том, зачем дополнительно нагружать сопротивлением цепь, мы поговорим в этой же статье чуть позже.
Реостат
Есть такие выключатели, которые крутишь, а они делают свет ярче-тусклее. В такой выключатель спрятан резистор с переменным сопротивлением — реостат.
Стрелка сверху — это ползунок. По сути, он отсекает ту часть резистора, которая находится от него справа. То есть, если мы двигаем ползунок вправо — мы увеличиваем длину резистора, а значит и сопротивление. И наоборот — двигаем влево и уменьшаем.
По формуле сопротивления это очень хорошо видно, так как длина проводника находится в числителе:
Сопротивление R = ρ · l/S R — сопротивление [Ом] l — длина проводника [м] S — площадь поперечного сечения [мм2] ρ — удельное сопротивление [Ом · мм2/м] |
Закон Ома для участка цепи
С камушками в трубе все понятно, но не только же от них зависит сила, с которой поток воды идет по трубе — от насоса, которым мы эту воду качаем, тоже зависит. Чем сильнее качаем, тем больше течение. В электрической цепи функцию насоса выполняет источник тока.
Например, источником может быть гальванический элемент (привычная батарейка). Батарейка работает на основе химических реакций внутри нее. В результате этих реакций выделяется энергия, которая потом передается электрической цепи.
У любого источника обязательно есть полюса — «плюс» и «минус». Полюса — это его крайние положения, по сути клеммы, к которым присоединяется электрическая цепь. Собственно, ток как раз течет от «+» к «−».
У нас уже есть две величины, от которых зависит электрический ток в цепи — напряжение и сопротивление. Кажется, пора объединять их в закон.
Сила тока в участке цепи прямо пропорциональна напряжению на его концах и обратно пропорциональна его сопротивлению.
Математически его можно описать вот так:
Закон Ома для участка цепи I = U/R I — сила тока [A] U — напряжение [В] R — сопротивление [Ом] |
Напряжение измеряется в Вольтах и показывает разницу между двумя точками цепи: от этой разницы зависит, насколько сильно будет течь ток — чем больше разница, тем выше напряжение и ток будет течь сильнее.
Сила тока измеряется в амперах, а подробнее о ней вы можете прочитать в нашей статье. 😇
Давайте решим несколько задач на закон Ома для участка цепи.
Задача раз
Найти силу тока в лампочке накаливания торшера, если его включили в сеть напряжением 220 В, а сопротивление нити накаливания равно 880 Ом.
Решение:
Возьмем закон Ома для участка цепи:
I = U/R
Подставим значения:
I = 220/880 = 0,25 А
Ответ: сила тока, проходящего через лампочку, равна 0,25 А
Давайте усложним задачу. И найдем силу тока, зная все параметры для вычисления сопротивления и напряжение.
Задача два
Найти силу тока в лампочке накаливания, если торшер включили в сеть напряжением 220 В, а длина нити накаливания равна 0,5 м, площадь поперечного сечения 0,01 мм2, а удельное сопротивление нити равно 1,05 Ом · мм2/м.
Решение:
Сначала найдем сопротивление проводника.
R = ρ · l/S
Площадь дана в мм2, а удельное сопротивления тоже содержит мм2 в размерности.
Это значит, что все величины уже даны в СИ и перевод не требуется:
R = 1,05 · 0,5/0,01 = 52,5 Ом
Теперь возьмем закон Ома для участка цепи:
I = U/R
Подставим значения:
I = 220/52,5 ≃ 4,2 А
Ответ: сила тока, проходящего через лампочку, приблизительно равна 4,2 А
А теперь совсем усложним! Определим материал, из которого изготовлена нить накаливания.
Задача три
Из какого материала изготовлена нить накаливания лампочки, если настольная лампа включена в сеть напряжением 220 В, длина нити равна 0,5 м, площадь ее поперечного сечения равна 0,01 мм2, а сила тока в цепи — 8,8 А
Решение:
Возьмем закон Ома для участка цепи и выразим из него сопротивление:
I = U/R
R = U/I
Подставим значения и найдем сопротивление нити:
R = 220/8,8 = 25 Ом
Теперь возьмем формулу сопротивления и выразим из нее удельное сопротивление материала:
R = ρ · l/S
ρ = RS/l
Подставим значения и получим:
ρ = 25 · 0,01/0,5 = 0,5 Ом · мм2/м
Обратимся к таблице удельных сопротивлений материалов, чтобы выяснить, из какого материала сделана эта нить накаливания.
Ответ: нить накаливания сделана из константана.
Закон Ома для полной цепи
Мы разобрались с законом Ома для участка цепи. А теперь давайте узнаем, что происходит, если цепь полная: у нее есть источник, проводники, резисторы и другие элементы.
В таком случае вводится закон Ома для полной цепи: сила тока в полной цепи равна отношению ЭДС цепи к ее полному сопротивлению.
Так, стоп. Слишком много незнакомых слов — разбираемся по порядку.
Что такое ЭДС и откуда она берется
ЭДС расшифровывается, как электродвижущая сила. Обозначается греческой буквой ε и измеряется, как и напряжение, в Вольтах.
ЭДС — это сила, которая движет заряженные частицы в цепи. Она берется из источника тока. Например, из батарейки.
Химическая реакция внутри гальванического элемента (это синоним батарейки) происходит с выделением энергии в электрическую цепь. Именно эта энергия заставляет частицы двигаться по проводнику.
Зачастую напряжение и ЭДС приравнивают и говорят, что это одно и то же. Формально, это не так, но при решении задач чаще всего и правда нет разницы, так как эти величины обе измеряются в Вольтах и определяют очень похожие по сути своей процессы.
В виде формулы Закон Ома для полной цепи будет выглядеть следующим образом:
Закон Ома для полной цепи I — сила тока [A] ε — ЭДС [В] R — сопротивление нагрузки [Ом] r — внутреннее сопротивление источника [Ом] |
Любой источник не идеален. В задачах это возможно («источник считать идеальным», вот эти вот фразочки), но в реальной жизни — точно нет. В связи с этим у источника есть внутреннее сопротивление, которое мешает протеканию тока.
Решим задачу на полную цепь.
Задачка
Найти силу тока в полной цепи, состоящей из одного резистора сопротивлением 3 Ом и источником с ЭДС равной 4 В и внутренним сопротивлением 1 Ом
Решение:
Возьмем закон Ома для полной цепи:
Подставим значения:
A
Ответ: сила тока в цепи равна 1 А.
Когда «сопротивление бесполезно»
Электрический ток — умный и хитрый парень. Если у него есть возможность обойти резистор и пойти по идеальному проводнику без сопротивления, он это сделает. При этом с резисторами просто разных номиналов это не сработает: он не пойдет просто через меньшее сопротивление, а распределится согласно закону Ома — больше тока пойдет туда, где сопротивление меньше, и наоборот.
А вот на рисунке ниже сопротивление цепи равно нулю, потому что ток через резистор не пойдет.
Ток идет по пути наименьшего сопротивления.
Теперь давайте посмотрим на закон Ома для участка цепи еще раз.
Закон Ома для участка цепи I = U/R I — сила тока [A] U — напряжение [В] R — сопротивление [Ом] |
Подставим сопротивление, равное 0. Получается, что знаменатель равен нулю, а на математике говорят, что на ноль делить нельзя. Но мы вам раскроем страшную тайну, только не говорите математикам: на ноль делить можно. Если совсем упрощать такое сложное вычисление (а именно потому что оно сложное, мы всегда говорим, что его нельзя производить), то получится бесконечность.
То есть:
I = U/0 = ∞
Такой случай называют коротким замыканием — когда величина силы тока настолько велика, что можно устремить ее к бесконечности. В таких ситуациях мы видим искру, бурю, безумие — и все ломается.
Это происходит, потому что две точки цепи имеют между собой напряжение (то есть между ними есть разница). Это как если вдоль реки неожиданно появляется водопад. Из-за этой разницы возникает искра, которую можно избежать, поставив в цепь резистор.
Именно во избежание коротких замыканий нужно дополнительное сопротивление в цепи.
Параллельное и последовательное соединение
Все это время речь шла о цепях с одним резистором. Рассмотрим, что происходит, если их больше.
Последовательное соединение | Параллельное соединение | |
Схема | Резисторы следуют друг за другом | Между резисторами есть два узла Узел — это соединение трех и более проводников |
Сила тока | Сила тока одинакова на всех резисторах I = I1 = I2 | Сила тока, входящего в узел, равна сумме сил токов, выходящих из него I = I1 + I2 |
Напряжение | Общее напряжение цепи складывается из напряжений на каждом резисторе U = U1 + U2 | Напряжение одинаково на всех резисторах U = U1 = U2 |
Сопротивление | Общее сопротивление цепи складывается из сопротивлений каждого резистора R = R1 + R2 | Общее сопротивление для бесконечного количества параллельно соединенных резисторов 1/R = 1/R1 + 1/R2 + … + 1/Rn Общее сопротивление для двух параллельно соединенных резисторов Общее сопротивление бесконечного количества параллельно соединенных одинаковых резисторов R = R1/n |
Зачем нужны эти соединения, если можно сразу взять резистор нужного номинала?
Начнем с того, что все электронные компоненты изготавливаются по ГОСТу. То есть есть определенные значения резисторов, от которых нельзя отойти при производстве. Это значит, что не всегда есть резистор нужного номинала и его нужно соорудить из других резисторов.
Параллельное соединение также используют, как «запасной аэродром»: когда на конечный результат общее сопротивление сильно не повлияет, но в случае отказа одного из резисторов, будет работать другой.
Признаемся честно: схемы, которые обычно дают в задачах (миллион параллельно соединенных резисторов, к ним еще последовательный, а к этому последовательному еще миллион параллельных) — в жизни не встречаются. Но навык расчета таких схем впоследствии упрощает подсчет схем реальных, потому что так вы невооруженным глазом отличаете последовательное соединение от параллельного.
Решим несколько задач на последовательное и параллельное соединение.
Задачка раз
Найти общее сопротивление цепи.
R1 = 1 Ом, R2 = 2 Ом, R3 = 3 Ом, R4 = 4 Ом.
Решение:
Общее сопротивление при последовательном соединении рассчитывается по формуле:
R = R1 + R2 + R3 + R4 = 1 + 2 + 3 + 4 = 10 Ом
Ответ: общее сопротивление цепи равно 10 Ом
Задачка два
Найти общее сопротивление цепи.
R1 = 4 Ом, R2 = 2 Ом
Решение:
Общее сопротивление при параллельном соединении рассчитывается по формуле:
Ом
Ответ: общее сопротивление цепи равно Ом
Задачка три
Найти общее сопротивление цепи, состоящей из резистора и двух ламп.
R1 = 1 Ом, R2 = 2 Ом, R3 = 3 Ом
Решение:
Сначала обозначим, что лампы с точки зрения элемента электрической цепи не отличаются от резисторов. То есть у них тоже есть сопротивление, и они также влияют на цепь.
В данном случае соединение является смешанным. Лампы соединены параллельно, а последовательно к ним подключен резистор.
Сначала посчитаем общее сопротивление для ламп. Общее сопротивление при параллельном соединении рассчитывается по формуле:
Ом
Общее сопротивление при последовательном соединении рассчитывается по формуле:
R = R1 + Rламп = 1 + 1,2 = 2,2 Ом
Ответ: общее сопротивление цепи равно 2,2 Ом.
Наконец-то, последняя и самая сложная задача! В ней собрали все самое серьезное из этой статьи 💪.
Задачка четыре со звездочкой
К аккумулятору с ЭДС 12 В, подключена лампочка и два параллельно соединенных резистора сопротивлением каждый по 10 Ом. Известно, что ток в цепи 0,5 А, а сопротивление лампочки R/2. Найти внутреннее сопротивление аккумулятора.
Решение:
Найдем сначала сопротивление лампы.
Rлампы = R/2 = 10/2 = 5 Ом
Теперь найдем общее сопротивление двух параллельно соединенных резисторов.
Ом
И общее сопротивление цепи равно:
R = Rлампы + Rрезисторов = 5 + 5 = 10 Ом
Выразим внутреннее сопротивление источника из закона Ома для полной цепи.
R + r = ε/I
r = ε/I − R
Подставим значения:
r = 12/0,5 − 10 = 14 Ом
Ответ: внутреннее сопротивление источника равно 14 Ом.
Попробуйте курсы подготовки к ЕГЭ по физике с опытным преподавателем в онлайн-школе Skysmart!
Карина Хачатурян
К предыдущей статье
Сила тока
К следующей статье
Удельная теплоемкость вещества
Получите индивидуальный план обучения физике на бесплатном вводном уроке
На вводном уроке с методистом
Выявим пробелы в знаниях и дадим советы по обучению
Расскажем, как проходят занятия
Подберём курс
Что такое сила тока, формула
Что такое сила тока
Представим обычный водопроводный кран. Открываем вентиль — бежит вода. Чем больше мы будем поворачивать ручку, тем сильнее станет напор и тем больше воды будет выливаться из крана за определённое время.
Похоже обстоит дело и с электрическим током. Только вместо крана — проводник, молекулы воды — заряженные частицы, напор — напряжение, а расход воды — сила тока.
Сила тока (I) — это отношение электрического заряда (
q), прошедшего через поперечное сечение проводника, ко времени его прохождения (t).Единица измерения силы тока — Ампер (A). Она названа в честь Андре-Мари Ампера — французского физика, который совершил несколько важных открытий, связанных с электричеством.
Андре-Мари Ампер (1775-1836)
Один Ампер — это сила тока, при которой за одну секунду через поперечное сечение проводника проходит заряд, равный одному Кулону, то есть заряд чуть больше, чем шести квинтиллионов (миллиард миллиардов) электронов.
Чтобы понять, Ампер — много это или мало, обратимся к фактам.
Ток силой в 0,05 Ампер вызывает неприятные ощущения, а ток в 0,1 Ампер может убить человека за несколько секунд. В светодиодных лампочках течёт ток в 0,02 Ампер, мобильный телефон при максимальной нагрузке потребляет до 0,5 Ампер, автомобильный аккумулятор способен выдавать несколько сотен Ампер, а ток в молнии достигает 200 000 Ампер.
<<Форма демодоступа>>
Сила тока и сопротивление
Как усилить поток воды из шланга? Можно добавить напор (увеличить давление), но не слишком сильно, иначе шланг разорвёт. А можно взять шланг большего диаметра.
То же справедливо и для проводника: чем больше он в сечении, тем больший поток электронов может пропустить. Но если сила тока окажется слишком большой, проводник перегреется и сгорит.
Именно так работают плавкие предохранители в электронных приборах: при резком скачке силы тока тонкий проводок перегорает, и устройство отключается от сети.
Плавкие предохранители: новый и отработанный
Чем короче и шире шланг, тем большее количество воды он способен пропустить за единицу времени. Также и с электричеством: сила тока, проходящего через проводник за секунду, зависит от сопротивления проводника. Только кроме длины и площади сечения на сопротивление влияет материал, из которого проводник сделан.
Формула сопротивления выглядит так:
l — это длина проводника, S — площадь его сечения, а ρ — удельное сопротивление, у каждого материала оно своё.
Вещества с низким удельным сопротивлением называются проводниками, они проводят электричество наиболее эффективно. Вещества с высоким удельным сопротивлением называют диэлектриками — их можно использовать в качестве изоляторов. Среднее положение занимают полупроводники — они проводят электричество, но не так хорошо, как проводники.
Сопротивление измеряется в Омах. Проводник обладает сопротивлением в 1 Ом, если на его концах возникает напряжение в 1 Вольт при силе тока в 1 Ампер.
Учите физику вместе с домашней онлайн-школой «Фоксфорда»! По промокоду PHYSICS82021 вы получите бесплатный доступ к курсу физики 8 класса, в котором изучается сила тока!
Как измерить силу постоянного тока
Существует специальный прибор для измерения силы тока — амперметр. Он подключается последовательно к проводнику, в котором нужно измерить силу тока. Для этого один из концов нужного проводника отсоединяют от электрической цепи и в получившийся разрыв включают амперметр с помощью двух клемм — со знаками «+» и «−». Клемму со знаком «+» подключают к точке разрыва, которая сохранила связь с положительным полюсом источника тока.
Поскольку сила тока на всех последовательных участках цепи одинакова (он нигде не «застаивается»), амперметр можно включать как до потребителя тока, так и после.
На схемах амперметр изображается буквой «А» в круге.
Существует много разных видов амперметров, различающихся по принципу действия. Проще всего устроен тепловой амперметр. Между двумя зажимами натянута проволока, соединённая нитью с пружиной. Нить охватывает петлёй неподвижную ось со стрелкой. Когда к зажимам подаётся ток, он проходит через проволоку и нагревает её. Нагретая проволока становится немного длиннее, из-за этого нить сильнее оттягивается пружиной. При движении нить поворачивает ось, и стрелка на ней показывает, чему равна сила тока.
Схема работы теплового амперметра
Современные электрики пользуются мультиметрами — приборами, которые позволяют измерить и силу тока, и напряжение, и сопротивление.
Цифровой мультиметрСимволы в физике — список физических величин
В физике для обозначения различных величин используются различные символы или обозначения. Обозначения упрощают представление величин. В этой статье упоминаются некоторые из самых популярных физических символов.
Интересно отметить, что некоторые физические символы очень связаны (например, «d» для расстояния), а некоторые не связаны (например, «c» для скорости света). Ниже приведен подробный список наиболее часто используемых символов в физике с их единицами СИ. Следует отметить, что конкретный символ может относиться к более чем одной величине.
Физические символы для некоторых основных величин:
Физическое количество | Символ(ы) | Имя символа | Скаляр/ вектор | Единица СИ |
---|---|---|---|---|
Масса | м | – | Скаляр | Килограмм (кг) |
Время | т | – | Скаляр | Секунды (с) |
Расстояние, длина | л, д, р | – | Скаляр | Метр (м) |
Зона | А | – | Скаляр | м 2 |
Том | В | – | Скаляр | м 3 |
Плотность | Д | – | Скаляр | кг/м 3 |
Температура | Т | – | Скаляр | Кельвин (К) |
Частота | ф, в | – | Скаляр | Герц (Гц) |
Тепло | В | – | Вектор | Джоуль (Дж) |
Удельная теплоемкость | в | – | Скаляр | Дж кг −1 К −1 |
Длина волны | λ | лямбда | Скаляр | метр (м) |
Угловое смещение | θ | тета | Скаляр | Радиан (рад) |
Скорость света и звука | в | – | Скаляр | м/с |
Угловая частота | ω | омега | Псевдовектор | Радиан в секунду (рад/с) |
Символы физики в Механике:
Физическое количество | Символ(ы) | Имя символа | Скаляр/ вектор | Единица СИ |
Скорость | против | – | Вектор | м/с |
Ускорение | и | – | Вектор | метра в секунду в квадрате (м/с 2 ) |
Угловое ускорение | α | альфа | Вектор | радиан на секунду в квадрате (рад/с 2 ) |
Импульс | р | – | Вектор | кг⋅м/с |
Период | Т | – | Скаляр | С или сек |
Сила | Ф | – | Вектор | Ньютон (Н) |
Момент затяжки | Т | тау | Вектор | Нм |
Мощность | Р | – | Скаляр | Вт (Вт) |
Механические работы | Вт | – | Скаляр | Джоуль (Дж) |
Энергия | Е | – | Скаляр | Джоуль (Дж) |
Давление | р | – | Скаляр | Паскаль (Па) |
Момент инерции | я | – | Скаляр | кг м2 |
Угловой момент | л | – | Вектор | кг⋅м 2 с -1 |
Трение | ф | – | Вектор | Ньютон (Н) |
Коэффициент трения | µ | и | Скаляр | безразмерный |
Кинетическая энергия | К | – | Скаляр | Джоуль (Дж) |
Потенциальная энергия | У | – | Скаляр | Джоуль (Дж) |
Физические символы в электричестве и магнетизме:
Физическое количество | Символ(ы) | Имя символа | Скаляр/ вектор | Единица СИ |
---|---|---|---|---|
Плата | кв, | кв– | скаляр | Кулон (К) |
Текущий | я | – | скаляр | Ампер (А) |
Сопротивление | Р | – | скаляр | Ом (Ом) |
Индуктивность | л | – | скаляр | Генри (H) |
Емкость | С | – | скаляр | Фарада (Ж) |
Разность электрических потенциалов | В | – | скаляр | Вольт (В) |
Электрическое поле | Е | – | вектор | Ньютон на кулон (NC -1 ) |
Магнитное поле | Б | – | скаляр | Тесла |
Это были несколько важных физических величин вместе с их символами. Учащимся предлагается правильно запомнить символы вместе с их единицами СИ. Посетите список единиц СИ, чтобы узнать единицы некоторых из наиболее важных единиц.
Продолжайте посещать BYJU’S, чтобы получить больше такой информации. BYJU’S также помогает студентам подготовиться к экзаменам, предоставляя образцы работ, вопросы и советы по подготовке.
16.3: Дифференциальное сечение
- Последнее обновление
- Сохранить как PDF
- Идентификатор страницы
- 29500
- Майкл Фаулер
- Университет Вирджинии
В реальном эксперименте по рассеянию информация о рассеивателе может быть получена из разных скоростей рассеяния под разными углами. Детекторы располагаются под разными углами \((\theta, \phi)\). Разумеется, физический детектор улавливает рассеянные частицы под некоторым ненулевым телесным углом. Обычное обозначение бесконечно малого телесного угла: \(d \Omega=\sin \theta d \theta d \phi\). Полный телесный угол (все возможные рассеяния) равен \(\int d \Omega=4 \pi\) площади сферы единичного радиуса. ( Примечание : Ландау использует dο для приращения телесного угла, но \(d \Omega\) стало стандартным.)
Дифференциальное сечение, обозначаемое как \(d \sigma / d \Omega\), представляет собой долю общего числа рассеянных частиц, выходящих из телесного угла \(d \Omega\), поэтому скорость рассеяния частиц в этот детектор представляет собой \(n d \sigma / d \Omega, \text {с } n\) интенсивность луча, как определено выше.
Теперь предположим, что потенциал сферически симметричен. Представьте себе линию, параллельную падающим частицам, проходящую через центр атома. Для данной влетающей частицы ее 9Параметр удара 0622 определяется как расстояние от этой центральной линии до его линии полета. Ландау называет это \(\rho\), мы последуем современному употреблению и назовем его \(b\).
Частица с прицельным параметром между \(b\) и \(b+db\) будет рассеяна под углом между \(\chi\) и \(\chi+d \chi\), где мы собирается вычислить \(\chi(b)\) путем решения уравнения движения одиночной частицы в силе обратного квадрата отталкивания.
Примечание : для этого случая мы переключились с \(\theta \text { на } \chi\) для угла рассеяния, потому что мы хотим сохранить \(\theta\) для \((r, \theta)\ ) координаты, описывающие полную траекторию или орбиту рассеянной частицы.
Итак, входящее поперечное сечение \(d \sigma=2 \pi b d b\) рассеивает частицы в выходящую сферическую область (с центром на рассеивателе) \(2 \pi R \sin \chi R d \chi\), что есть телесный угол \(d \Omega=2 \pi \sin \chi d \chi\)
Поэтому рассеяние дифференциальное сечение
\begin{equation}\frac{d \sigma}{d \Omega}=\frac{b(\chi)}{\sin \chi}\left|\frac{d b}{d \chi}\right| \end{уравнение}
(Обратите внимание, что \(d \chi / d b\) явно отрицательна — увеличение b означает увеличение расстояния от рассеивателя, поэтому меньшее \(\chi\))
Эта страница под названием 16.