Сечение фигуры: Решутест. Продвинутый тренажёр тестов

построить сечение пирамиды

Разберем, как построить сечение пирамиды, на конкретных примерах. Поскольку в пирамиде нет параллельных плоскостей, построение линии пересечения (следа) секущей плоскости с плоскостью грани чаще всего предполагает проведение прямой через две точки, лежащие в плоскости этой грани.

В простейших задачах требуется построить сечение пирамиды плоскостью, проходящей через данные точки, уже лежащие в одной грани.

Пример.

Построить сечение плоскостью (MNP)

 

Построить сечение пирамиды плоскостью, проходящей через точки M, N, P.

 

 

 

 

 

 

Треугольник MNP — сечение пирамиды

Точки M и N лежат в одной плоскости ABS, следовательно, через них можем провести прямую. След этой прямой — отрезок MN. Он видимый, значит, соединяем M и N сплошной линией.

Точки M и P лежат в одной плоскости ACS, поэтому через них проведем прямую. След — отрезок MP. Мы его не видим, поэтому отрезок MP проводим штрихом.

Аналогично строим след PN.

 

Треугольник MNP — искомое сечение.

 

Если точка, через которую требуется провести сечение, лежит не на ребре, а на грани, то она не будет концом следа-отрезка.

Пример. Построить сечение пирамиды плоскостью, проходящей через точки B, M и N, где точки M и N принадлежат, соответственно, граням ABS и BCS.

Здесь точки B и M лежат в одной грани ABS, поэтому можем через них провести прямую.

Аналогично проводим прямую через точки B и P. Получили, соответственно, следы BK и BL.

Точки K и L лежат в одной грани ACS, поэтому через них можем провести прямую. Ее след — отрезок KL.

 

 

 

Треугольник BKL — искомое сечение.

 

 

 

Однако не всегда через данные в условии точки удается провести прямую. В этом случае нужно найти точку, лежащую на прямой пересечения плоскостей, содержащих грани.

Пример. Построить сечение пирамиды плоскостью, проходящей через точки M, N, P.

Точки M и N лежат в одной плоскость ABS, поэтому через них можно провести прямую. Получаем след MN. Аналогично — NP. Оба следа видимые, поэтому соединяем их сплошной линией.

 

 

 

 

Точки M и P лежат в разных плоскостях. Поэтому соединить их прямой не можем.

Продолжим прямую NP.

Она лежит в плоскости грани BCS. NP пересекается только с прямыми, лежащими в этой же плоскости. Таких прямых у нас три: BS, CS и BC. С прямыми BS и CS уже есть точки пересечения — это как раз N и P. Значит, ищем пересечение NP с прямой BC.

Точку пересечения (назовем ее H), получаем, продолжая прямые NP и BC до пересечения.

Эта точка H принадлежит как плоскости (BCS), поскольку лежит на прямой NP, так и плоскости (ABC), поскольку лежит на прямой BC.

Таким образом мы получили еще одну точку секущей плоскости, лежащей в плоскости (ABC).

Через H и точку M, лежащую в этой же плоскости, можем провести прямую.

Получим след MT.

T — точка пересечения прямых MH и AC.

Так как T принадлежит прямой AC, то через нее и точку P можем провести прямую, так как они обе лежат в одной плоскости (ACS).

 

4-угольник MNPT — искомое сечение пирамиды плоскостью, проходящей через данные точки M,N,P.

 

 

 

Мы работали с прямой NP, продлевая ее для отыскания точки пересечения секущей плоскости с плоскостью (ABC). Если работать с прямой MN, приходим к тому же результату.

Рассуждаем так: прямая MN лежит в плоскости (ABS), поэтому пересекаться может только с прямыми, лежащими в этой же плоскости. У нас таких прямых три: AB, BS и AS. Но с прямыми AB и BS уже есть точки пересечения: M и N.

Значит, продлевая MN, ищем точку пересечения ее с  прямой AS. Назовем эту точку R.

 

Точка R лежит на прямой AS, значит, она лежит и в плоскости (ACS), которой принадлежит прямая AS.

Поскольку точка P лежит в плоскости (ACS), через R и P можем провести прямую. Получаем след PT.

Точка T лежит в плоскости (ABC), поэтому через нее и точку M можем провести прямую.

 

 

 

 

Таким образом, получили все то же сечение MNPT.

 

 

 

 

Рассмотрим еще один пример такого рода.

Построить сечение пирамиды плоскостью, проходящей через точки M, N, P.

 

Через точки M и N, лежащие в одной плоскости (BCS), проводим прямую. Получаем след MN (видимый).

Через точки N и P, лежащие в одной плоскости (ACS), проводим прямую. Получаем след PN (невидимый).

 

 

Через точки M и P прямую провести не можем.

1) Прямая MN лежит в плоскости (BCS), где есть еще три прямые: BC, SC и SB. С прямыми SB и SC уже есть точки пересечения: M и N. Поэтому ищем точку пересечения MN с BC. Продолжив эти прямые, получаем точку L.

 

 

Точка L принадлежит прямой BC, а значит, она лежит в плоскости (ABC). Поэтому через L и P, которая также лежит в плоскости (ABC) можем провести прямую. Ее след — PF.

F лежит на прямой AB, а значит, и в плоскости (ABS). Поэтому через F и точку M, которая также лежит в плоскости (ABS), проводим прямую. Ее след — FM. Четырехугольник MNPF — искомое сечение.

 

2) Другой путь — продолжить прямую PN. Она лежит в плоскости (ACS) и пересекается с прямыми AC и CS, лежащими в этой плоскости, в точках P и N.

Значит, ищем точку пересечения PN с третьей прямой этой плоскости — с AS. Продолжаем AS и PN, на пересечении получаем точку E. Поскольку точка E лежит на прямой AS, принадлежащей плоскости (ABS), то через E и точку M, которая также лежит в (ABS), можем провести прямую. Ее след — FM. Точки P и F лежат водной плоскости (ABC), проводим через них прямую и получаем след PF (невидимый).

Подготовка школьников к ЕГЭ (Справочник по математике – Стереометрия

Справочник по математикеГеометрия (Стереометрия)Призмы
Сечения призмы
Перпендикулярные сечения призмы

Сечения призмы

     Определение 1. Сечением тела некоторой плоскостью α называют фигуру, состоящую из всех точек этого тела, лежащих в плоскости  α.

      В качестве примера рассмотрим сечение куба куба   ABCDA1B1C1D1   плоскостью, проходящей через точку   D  и середины ребер   A1B1   и   B1C1 . Рассмотрим процесс построения сечения подробно.

      Обозначим буквами   E   и   F середины ребер   A1B1   и   B1C1 (рис. 1).

Рис.1

      Поскольку точки   E   и   F   лежат на ребрах одной грани куба   A1B1C1D1 , то проведем прямую   EF   до пересечения с продолжениями двух других ребер этой грани. Обозначим буквой   G   точку пересечения прямой   EF   с продолжением отрезка   D1C1   за точку   C1,   а буквой   Н   – точку пересечения прямой   EF   с продолжением отрезка   D1A1  за точку  A1 . Эти точки пересечения существуют, поскольку все указанные прямые лежат в одной плоскости   A1B1C1D1   и не параллельны параллельны попарно (рис. 2).

Рис.2

      Точки   G   и   D   принадлежат плоскости сечения, а, значит, и вся прямая   DG   лежит в плоскости сечения. С другой стороны, эти точки лежат на ребрах (или их продолжениях) одной грани куба   DD1C1C.   Значит, точка пересечения   DG   с ребром куба   C1C (точка   N ) будет принадлежать сечению. Таким образом, мы получаем еще два отрезка сечения:   FN  и   DN   (рис. 3).

Рис.3

      Теперь, действуя аналогичным образом, проводим прямую   HD,   обозначаем точку перечения этой прямой с ребром   AA1 буквой   M   и проводим линии сечения   ME   и   MD   в плоскостях граней   AA1B1B   и   AA1D1D   (рис. 4).

Рис.4

      В результате, как и показано на рисунке 4, получаем, что искомое сечение – пятиугольник   DMEFN.

      Предлагаем посетителю нашего сайта решить в качестве полезного упражнения следующую задачу.

     Задача. Найти площадь сечения   DMEFN, если ребро куба равно 6.

     Указание к решению. Треугольники   HA1E,   EB1F и   FC1G равны.

Перпендикулярные сечения призмы

      Определение 2. Перпендикулярным сечением призмы называют такое сечение, плоскость которого пересекает все боковые ребра призмы и перпендикулярна к ним.

     На рисунке 5 построено перпендикулярное сечение наклонной треугольной призмы – треугольник   KLM.   Хотим обратить Ваше внимание на то, что призма на рисунке 5 изображена лежащей на одной из своих боковых граней. Такой способ представления призмы на чертеже часто очень удобен при решении задач.

Рис.5

      Замечание 1. Все перпендикулярные сечения призмы равны между собой.

     Замечание 2. С понятием призмы и различными видами призм можно ознакомиться в разделе «Призмы».

     Замечание 3. С различными формулами для вычисления объема призмы и площадей боковой и полной поверхности призмы можно ознакомиться в разделе «Формулы для объема, площади боковой поверхности и площади полной поверхности призмы».

      На нашем сайте можно также ознакомиться нашими учебными материалами для подготовки к ЕГЭ по математике.

поплавков – Ссылка на рисунок использует номер раздела – TeX

спросил

Изменено 4 года, 1 месяц назад

Просмотрено 66 тысяч раз

Похоже, что в одном из моих разделов используется номер раздела, а не соответствующий номер рисунка для \ref, указывающего на рисунки. (Теоремы и тому подобное работают нормально.) Насколько я могу судить, нет ничего, что отличало бы проблемный раздел от других разделов, но должно быть, поскольку проблема не исчезает, когда я компилирую этот раздел сам по себе. Любые идеи?

Редактировать: пример сломанной фигуры. (Каждая цифра в разделе сломана.)

 \begin{example}
  Рисунок~\ref{fig: hasse} изображает ...
\begin{figure}[htbp]\label{fig: hasse}
\начать{центр}
\begin{tikzpicture}
    \tikzstyle{каждый узел}=[draw,circle,fill=black,minimum size=4pt,
                            внутренний интервал = 0pt]
    [куча строк для картинки]
\end{tikzpicture}
\caption{Диаграмма Хассе}
\конец{центр}
\конец{рисунок}
\конец{пример}
 

У этого конкретного экземпляра была цифра внутри примера, но это не имеет значения.

  • числа с плавающей запятой
  • перекрестные ссылки
  • нумерация

3

Переместите \label{fig: hasse} после \caption{Диаграмма Хассе}

начиная с \caption должен стоять перед \label . Это относится к рисункам и таблицам в целом. Я бы не использовал пробелы в именах меток. Также обратите внимание на комментарий Гонсалоса относительно \centering .

 \начать{пример}
  Рисунок~\ref{fig:hasse} изображает ...
\begin{рисунок}[htbp]
\центрирование
\begin{tikzpicture}
    \tikzstyle{каждый узел}=[draw,circle,fill=black,minimum size=4pt,
                            внутренний интервал = 0pt]
    [куча строк для картинки]
\end{tikzpicture}
\caption{Диаграмма Хассе}
\label{рис:хассе}
\конец{рисунок}
\конец{пример}
 

5

Зарегистрируйтесь или войдите в систему

Зарегистрируйтесь с помощью Google

Зарегистрироваться через Facebook

Зарегистрируйтесь, используя электронную почту и пароль

Опубликовать как гость

Электронная почта

Требуется, но никогда не отображается

Опубликовать как гость

Электронная почта

Требуется, но не отображается

Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания, политикой конфиденциальности и политикой использования файлов cookie

.

sectioning — Как убедиться, что рисунки отображаются в том разделе, с которым они связаны? – ТеХ

спросил

12 лет, 4 месяца назад

Изменено 4 года, 8 месяцев назад

Просмотрено 158 тысяч раз

Часто плавающие элементы могут приземляться в документе немного позже, чем точка, в которой они созданы, иногда после разрыва раздела.

Есть ли способ заставить новый раздел начинаться на новой странице после любых неразмещенных поплавков?

  • секционирование
  • плавающие элементы
  • позиционирование
  • разбивка страниц
  • разделы-абзацы

1

Используйте пакет placeins .

Как отмечено в комментариях, вы можете использовать

 \usepackage[section]{placeins}
 

, чтобы автоматически гарантировать, что поплавки не перейдут в следующий раздел.

Пакет также содержит команду \FloatBarrier , которую можно использовать для предотвращения появления плавающих элементов за пределами определенного места в документе. Используйте его как

 %... тут некоторые плавают...
\FloatBarrier
\subsection{Мой новый подраздел}
 

6

Команда \clearpage не только запустит новую страницу, но также принудительно установит все неустановленные плавающие элементы перед разрывом страницы. Для документов с левой и правой страницей \cleardoublepage делает то же самое, но также гарантирует, что следующая непустая страница будет правой страницей.

Все это не зависит от разрыва раздела, за исключением того, что если вы используете класс, который не ставит разрыв страницы перед разрывами раздела, этот метод заставит их принудительно.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *