Подушка под ленточный фундамент: толщина, ширина, выполнение работ
Содержание
- Зачем нужна подушка под фундамент
- Материалы для подушки
- Песок
- Гравий
- Щебень
- Выполнение работ
- Засыпка из песка
- Устройство щебневой подушки
- Бетонная подушка
- Параметры высоты и толщины, гидроизоляционный слой
- Рекомендации специалистов
Основа каждого строящегося объекта считается немаловажным элементом, оказывающим влияние на его эксплуатационные характеристики. Подушка под ленточный фундамент придает основанию стабильность, исполняет функции опор и минимизирует вероятную усадку. Она представляет собой песчаный, гравийный либо щебневый слой определенной толщины, равномерно распределяющий нагрузочное воздействие от массы здания, возникающее на почву. Сегодня разберемся, насколько это элемент необходим, и как его устроить своими силами.
Зачем нужна подушка под фундамент
Подушка придает фундаментному основанию устойчивость. Устройство ее помогает решать следующие вопросы:
- заменять пучинистые земли из-под опорной конструкции наиболее спокойными наполнителями. Почва с примесями глины или торфа во время сезонных изменений температур способна создавать колебания уровня, достигающие десяти сантиметров. Подобные проявления оказывают влияние на целостность фундаментной основы и стен здания. Следует выполнять заглубление ниже точки промерзания;
- подушка перераспределяет нагрузочные воздействия благодаря поверхностному контактированию с нижней опорной плоскостью. Любая неровность, особенно на каменистом грунте, засыпается мелкофракционным материалом, который в дальнейшем уплотняется и создает ровную поверхность;
- препятствует капиллярному подъему влаги к бетону фундаментной ленты.
В каждом из указанных пунктов толщина подушки под ленточный фундамент может быть разной.
Иногда состояние участка, отведенного под застройку, позволяет обходиться без песчаной подушки. В этом случае бетонная масса заполняет всю полость, компенсируя неровные участки.
В случаях, когда основание устраивается из железобетонных блоков, подушка для ленточного фундамента устраивается в обязательном порядке, чтобы придать камням устойчивость и равномерно распределять нагрузочные воздействия.
Материалы для подушки
Для устройства фундаментной подушки разрешается применять следующие материалы:
- песок крупных и средних фракций;
- мелкую щебенку;
- шлак;
- непучинистые грунты, показатель дисперсности которых менее 1.0.
Если рассматривать этот вопрос с практической точки зрения, то чаще всего пользуются песчаным, песчано-гравийным и песчано-щебневым слоями, обладающими менее пучинистыми признаками, чем родная почва на площадке, отведенной под строительство.
Чтобы безошибочно определить структуру подушки для ленточного фундамента, следует принимать во внимание физические характеристики материалов.
Применение в подобных целях глиняной подушки категорически запрещается. Глина не будет пропускать влагу от фундаментной подошвы и сыграет роль провокатора на вспучивание земли в зимний сезон.
Песок
Для песчаной подушки под ленточный фундамент лучше всего подходит гравелистый материал, допускается также применение речного чистого среднефракционного песка. Легкие и тонкие фракции для устройства фундаментной подушки для ленточного фундамента использовать не рекомендуется, потому что они имеют плохие показатели на сопротивляемость при сжатии. В этом случае возрастает вероятность существенной усадки здания.
Определяясь с толщиной подушки под ленточный фундамент, устраиваемой из песка, специалисты рекомендуют брать наибольшее соотношение толщины подушки к ширине ленточного фундамента принимать как 3 к 1. Это означает, что толщина песчаного слоя должна в три раза превышать ширину фундаментной основы. Как правило, толщина подсыпного слоя составляет минимум 0. 2 – 0.3 м из расчета защищенности от подъема воды в песке.
В соответствии с требованиями строительных норм, подушку из песка следует защитить от заиливания. С этой целью устраивается слой из геотекстильного или полимерных материалов, которые не позволяют песку смешиваться с окружающим его грунтом.
Гравий
Такое основание обладает явными преимуществами перед песчаным слоем. Оно считается более прочным и выносливым, потому что основным компонентом является гравийный материал.
На слабонесущих грунтах строители советуют применять песчано-гравийную или только гравийную подушку.
Щебень
Слой щебенки необходимо тщательно трамбовать. Про такой материал специалисты говорят, что применять его лучше всего в роли уплотнителя в составе прослойки из песка и щебня. Островатые края камней с фракциями 2 – 4 см плотно вбиваются в основной грунт под подложкой и песка, дополнительно упрочняя основу и гарантируя основанию объекта стабильность.
Индивидуальный принцип грамотного выбора устройства подушки под ленточную фундаментную основу даст возможность для значительной экономии денежных средств без ущерба по прочности и надежности сооружения.
Выполнение работ
Мы уяснили, нужна ли подушка под ленточный фундамент, какие материалы для этого использовать лучше всего. Теперь остается разобраться, как правильно устроить такое основание своими руками.
С целью выравнивания дна фундаментной траншеи либо котлована, засыпается слой песка или гравия высотой десять сантиметров. В местах, где планируется расширение стен, применяется бетонирование. Этот же вариант с бетонной подушкой используют, когда планируется строительство ленточного фундамента с армированными сваями из блоков ФБС.
Щебневая подсыпка устраивается просто, следует только не забывать, что высота насыпи не должна превышать основание, а параметры ширины будут в два раза больше аналогичного фундаментного размера. Как правило, прослойка из щебня составляет тридцать сантиметров, одна доля из которой приходится на песок.
Выровняв основание, начинаем устраивать подушку. Сначала насыпается слой песка, который проливаю водой и утрамбовывают. По аналогии поступают с гравийным слоем.
Наиболее надежный вариант – бетонная подушка. Процесс ее обустройства занимает много времени, но вполне выполним своими силами. Только следует помнить, что придется потратиться на необходимые материалы. Толщина такой опоры должна превышать параметры фундаменты на тридцать сантиметров.
Засыпка из песка
Такая фундаментная основа является наиболее легким в исполнении и экономичным вариантом, и выбирают ее застройщики, пытающиеся не только сэкономить деньги, но и ускорить процесс строительных работ.
И хоть на первый взгляд такое основание не внушает доверия по надежности, оно довольно хорошо справляется с возложенными на него задачами. Песок под фундаментной основой спасает ее от подмыва и обеспечивает допустимые нагрузочные воздействия на нижнюю ее часть. Сыпучий материал разравнивается и трамбуется виброплитой, периодически поливаясь водой.
Если почва слабонесущая, в дополнение к песку применяется гравий. Подобного рода подготовительные мероприятия практически исключают усадку фундаментного основания, и здесь очень важно правильно выполнить трамбовку.
Устройство щебневой подушки
Перед тем, как засыпать этот материал, устраивают песчаный слой высотой до пятнадцати сантиметров, который выравнивается и уплотняется. После этого насыпают щебенку, размеры камней которой составляют 2 – 2.5 см, и тоже утрамбовывают. Щебеночный слой должен составлять двадцать – двадцать пять сантиметров.
Во время работы необходимо следить чтобы камни плотно ложились друг возле друга, заполняя все пустотные участки. Чтобы выполнить этот процесс, придется задействовать виброплиту, которая гарантированно поможет создать нужную плотность.
Устройство фундаментной основы будет начинаться со щебеночного слоя, поэтому высота подушки должна достигать нулевого уровня. Такая подложка под ленточную фундаментную основу позволяет сооружать объекты из любых материалов.
Бетонная подушка
Теперь разберемся, как смонтировать площадку из бетонного раствора. Такая конструкция имеет только один негативный момент – стоит достаточно дорого по сравнению с другими вариантами, а все остальное в данном проекте – сплошные преимущества.
Для начала необходимо отметить, что основание получится выносливым, если соблюдать технологический процесс, который выглядит следующим образом:
- строительная площадка очищается от растительности и другого мусора;
- почва выравнивается;
- насыпается слой щебенки, высота которого составляет десять сантиметров;
- выполняется трамбование;
- по всему периметру подушки монтируется опалубочная конструкция;
- вся площадка перед заливкой раствора армируется стальными прутьями;
- заливается бетонная смесь, марка которой определяется с учетом массы будущего объекта;
- раствор тщательно трамбуется глубинными вибраторами;
- до полного набора прочности конструкции потребуется не менее четырех недель.
Основа под строительство объекта получается идеальной, но требует значительных денежных расходов.
Параметры высоты и толщины, гидроизоляционный слой
Итак, ленточный фундамент без подушки устраивает не рекомендуется.
Закладывая подошву под фундаментную основу, принимаем ее высоту до 0.6 м. Если грунты пучинистые, такой показатель увеличивается до восьмидесяти сантиметров. Ширина подушки должна получиться такой, чтобы с каждой стороны имелся выступ по отношению к фундаментной ленте на десять – пятнадцать сантиметров.
Такой вариант отличается определенными достоинствами и обусловлен характеристиками грунтов:
- забетонированная площадка позволяет выполнять армирование каркасной основы или сетки с отличным показателем по жесткости;
- по такой поверхности легче устанавливать опалубочные щиты и выполнять армирование.
Ленточное основание с подушкой следует защитить от воздействия грунтовых вод. Лучше всего для этого подходят рулонные материалы, наклеенные в один или два слоя. Сверху фундаментная основа тоже обрабатывается, чтобы исключить попадание воды к материалам стен из бетона.
Рекомендации специалистов
Материал под устройство фундамента выбирается с учетом следующих факторов:
- необходимо уточнить габариты будущего сооружения – количество этажей, общую площадь.
Если объект большой, рекомендуется устроить подушку из бетонного раствора;
- оказывает свое влияние на выбор подушки и строительный материал, предназначенный для возведения объекта. Пеноблочному дому будет достаточно песчаной подушки, для других материалов рассмотрите варианты из гравия и щебенки.
Экономить на устройстве основания не рекомендуется. Ведь фундамент представляет собой основу всего объекта, и защищать его должна надежная подложка.
Зачем нужна песчаная подушка под фундамент – Расчёт толщины под ленточный
Правильная закладка фундаментного основания обеспечивает прочность и устойчивость здания. Как правило, устраивается песчаная подушка под фундамент ленточного типа, при строительстве домов не выше 2 этажей из блоков или бруса. Под монолитное основание песчаный слой не нужен.
Фундамент на подушке обязательно устраивают на торфяном или глинистом грунте. Такие почвы при воздействии отрицательной температуры вспучиваются, их структура становится неоднородной. Без прослойки песка постройка может деформироваться, а стены – покрыться трещинами. Поэтому точное соблюдение СНиП и правильный расчет основания является обязательным условием при ведении строительства.
Нужна ли песчаная подушка при возведении фундамента?
Песчаное покрытие создают практически под все виды фундаментов.
Его назначение заключается в следующем:
- Выравнивание поверхности для обеспечение равномерного распределения нагрузки. Особенно важное значение это имеет при использовании монолитной плиты или при монтаже разборного бассейна.
- Предотвращение вспучивания грунта зимой.
- Защита фундаментной плиты от промерзания.
- Защищает постройку от капиллярной влаги.
- Отводит воду после дождя или таяния снега.
Песок хорошо уплотняется по сравнению с глинистой почвой, поэтому его используют при строительстве малоэтажных домов. Также песчаная прослойка используется для замены непригодного грунта или экономии тяжелого бетона.
В любом случае следует учитывать такие моменты:
- Песок используется только при строительстве каркасных, блочных домов, которые не создают большого давления.
- Грунтовые воды должны залегать достаточно глубоко, чтобы при произошло размывание.
- Для повышения несущей способности поверхность нужно тщательно утрамбовывать с обильным увлажнением.
Необходимость для ленточного фундамента
Закладка основания ленточного типа проводится в несколько этапов. Один из них – устройство подсыпки, которая защищает дом от усадки и воздействия влаги. Но, основная ее задача состоит в обеспечение прочности и устойчивости строительной конструкции.
Такой тип используется при строительстве загородных домов и хозяйственных построек. Например, под гараж достаточно подсыпки толщиной 20 см. Материал утрамбовывается вручную или с помощью электрического инструмента. Если на уплотненной поверхности не остаются следы от обуви, значит, все выполнено правильно.
Требования к подушке из песка
В зависимости от вида и характеристик почвы высота подушки должна составлять 60,0 см. С учетом особенностей российского климата и грунта строители рекомендуют использовать для расчета тройную ширину основания. При строительстве на сильно пучинистых почвах толщина может составлять 80,0 см. Ширина подсыпки должна быть больше ширины фундамента на 15,0 см с обеих сторон.
Для ее устройства используется только крупнозернистый материал. Требования к подсыпке и технология ее устройства определяются строительными правилами.
Эффективность ленточного фундамента с армированием георешеткой для различных типов грунтов в Мосуле, Ирак
1. Гвидо В. А., Чанг Д. К. и Суини М. А. Сравнение земляных плит, армированных геосеткой и геотекстилем. Канадский геотехнический журнал, 1986, 23(4): 435–440. [Google Scholar]
2. Шакти Дж. П. и Дас Б. М.
Модельные испытания ленточного фундамента на глине, армированной слоями геотекстиля. Совет по исследованиям в области транспорта, 1987 г. Получено с https://trid.trb.org/view/289.088 [Google Scholar]
3. Huang C.C. & Tatsuoka F. Несущая способность армированного горизонтального песчаного грунта. Геотекстиль и геомембраны, 1990, 9 (1): 51–82. [Google Scholar]
4. Мандал Дж. Н. и Сах Х. С. Испытания на несущую способность глины, армированной геосеткой. Геотекстиль и геомембраны, 1992, 11(3): 327–333. [Google Scholar]
5. Кхинг К. Х., Дас Б. М., Пури В. К., Кук Э. Э., Йен С. К. Несущая способность ленточного фундамента на песке, армированном геосеткой. Геотекстиль и геомембраны, 1993, 12(4): 351–361. [Google Scholar]
6. Омар М. Т., Дас Б. М., Пури В. К. и Йен С. К. Предельная несущая способность мелкозаглубленных фундаментов на песке с армированием георешеткой. Канадский геотехнический журнал, 1993, 30(3): 545–549. [Google Scholar]
7. Шин Э., Пинкус Х., Дас Б., Пури В., Йен С. К. и Кук Э.
Несущая способность ленточного фундамента на армированной геосеткой глине. Geotechnical Testing Journal, 1993, 16(4): 534. [Google Scholar]
8. Дас Б. М. и Омар М. Т. Влияние ширины фундамента на модельные испытания несущей способности песка с армированием георешеткой. Инженерно-геологическая, 1994, 12(2): 133–141. [Google Scholar]
9. Йетимоглу Т., Ву Дж. Т. Х. и Сагламер А. Несущая способность прямоугольных фундаментов на песке, армированном георешеткой. Журнал геотехнической инженерии, 1994, 120 (12): 2083–2099. [Google Scholar]
10. Дас Б.М., Шин Э.К., Сингх Г. Ленточный фундамент на армированной георешеткой глине: предварительная методика проектирования. Международное общество морских и полярных инженеров. Шестая международная морская и полярная инженерная конференция, 1996, 26–31 мая, Лос-Анджелес, Калифорния, США.
11. Адамс М. Т. и Коллин Дж. Г. Испытания большой модели фундамента на нагрузку на фундамент из геосинтетического армированного грунта. Журнал геотехнической и геоэкологической инженерии, 1997, 123 (1). [Google Scholar]
12. Зайни М. И., Каса А., Наян К. А. М.
Прочность на сдвиг на границе раздела геосинтетического глиняного покрытия (GCL) и остаточного грунта. Международный журнал по передовым наукам, технике и информационным технологиям, 2012 г.
2(2): 156–158. [Академия Google]
13. Се Л., Чжу Ю., Ли Ю. и Су Т.С. Экспериментальное исследование давления на грунт вокруг геотекстильного матраца с наклонной пластиной. PLoS ONE, 2019, 14(1): e0211312 10.1371/журн.pone.0211312 [Бесплатная статья PMC] [PubMed] [CrossRef] [Google Scholar]
14. Binquet J. & Lee K. L. Испытания на несущую способность армированных земляных плит. Журнал геотехнической и геоэкологической инженерии, 1975, 101 (Процедура ASCE № 11792). [Google Scholar]
15. Уэйн М. Х., Хан Дж. и Акинс К. Проектирование геосинтетических армированных фундаментов. геосинтетики в армировании фундаментов и системах защиты от эрозии, 1998, получено с https://cedb.asce.org/CEDBsearch/record.jsp?dockey=0113604 [Google Scholar]
16. Михаловски Р.Л.
Предельные нагрузки на армированные грунты фундамента. Журнал геотехнической и геоэкологической инженерии, 2004 г., 130 (4): 381–390. [Google Scholar]
17. Чен К. и Абу-Фарсах М. Расчет предельной несущей способности ленточных фундаментов на армированном грунтовом основании. Грунты и основания, 2015, 55 (1): 74–85. [Google Scholar]
18. Лав Дж. П., Берд Х. Дж., Миллиган Г. У. Э. и Хоулсби Г. Т. Аналитические и модельные исследования армирования слоя зернистой засыпки на мягком глиняном основании. Канадский геотехнический журнал, 1987, 24(4): 611–622. [Google Scholar]
19. Махарадж Д. К. Нелинейный анализ методом конечных элементов ленточного фундамента на армированной глине. The Electronic Journal of Geotechnical Engineering, 2003, 8. [Google Scholar]
20. El Sawwaf M.A. Поведение ленточного фундамента на песке, армированном георешеткой, на мягком глинистом откосе. Геотекстиль и геомембраны, 2007, 25(1): 50–60. [Google Scholar]
21. Ахмед А., Эль-Тохами А. М. К. и Марей Н. А.
Двумерный анализ методом конечных элементов лабораторной модели насыпи.
22. Аламшахи С. и Хатаф Н. Несущая способность ленточных фундаментов на песчаных откосах, армированных георешеткой и сеткой-анкером. Геотекстиль и геомембраны, 2009, 27(3). [Google Scholar]
23. Чен К. и Абу-Фарсах М. Численный анализ для изучения влияния масштаба мелкозаглубленного фундамента на армированные грунты Рестон, Вирджиния: Материалы ASCE конференции Geo-Frontiers 2011, март 13–16 сентября 2011 г., Даллас, Техас| д 20110000. [Google Scholar]
24. Рафтари М., Кассим К. А., Рашид А. С. А. и Моайеди Х. Осадка мелкозаглубленных фундаментов вблизи армированных откосов. Electronic Journal of Geotechnical Engineering, 2013, 18. [Google Scholar]
25. Аззам В. Р. и Наср А. М.
Несущая способность ленточного фундамента на армированном песке. Журнал перспективных исследований, 2015, 6(5). 10.1016/j. jare.2014.04.003
[Бесплатная статья PMC] [PubMed] [CrossRef] [Google Scholar]
26. Hussein M.G. & Meguid M.A. Трехмерный метод конечных элементов для моделирования двухосной георешетки с применением к грунтам, армированным георешеткой. Геотекстиль и геомембраны, 2016, 44 (3): 295–307. [Google Scholar]
27. Араб М. Г., Омар М. и Тахмаз А. Численный анализ фундаментов мелкого заложения на грунтах, армированных георешетками. MATEC Web of Conferences, 2017, 120. [Google Scholar]
28. Каса А., Чик З. и Таха М. Р. Глобальная устойчивость и осадка сегментных подпорных стен, армированных георешеткой. ТОЙСАТ, 2012, 2(4): 41–46. [Google Scholar]
29. Видаль М. Х. Развитие и будущее армированного грунта. Материалы симпозиума по армированию земли на ежегодном съезде ASCE, Питтсбург, Пенсильвания, 1978, 1–61.
30. Кернер Р. М., Карсон Д. А., Даниэль Д. Э. и Бонапарт Р.
Текущее состояние пробных площадей Cincinnati GCL. Геотекстиль и геомембраны, 1997, 15 (4–6), 313–340. [Google Scholar]
31. Бушехриан А. Х., Хатаф Н. и Гахрамани А. Моделирование циклического поведения мелкозаглубленных фундаментов, опирающихся на геосетку и песок, армированный сеткой-анкером. Геотекстиль и геомембраны, 2011, 29(3): 242–248. [Google Scholar]
32. Рен Ю. Немедленная реакция на нагрузку ленточных фундаментов, опирающихся на глину, армированную георешеткой, 2015 г., получено с https://etda.libraries.psu.edu/catalog/25223 [Google Scholar]
33. Габр М. А., Додсон Р. и Коллин Дж. Г. Исследование распределения напряжений в песке, армированном георешеткой. Геосинтетика в системах армирования фундамента и борьбы с эрозией, 1998 г., получено с https://cedb.asce.org/CEDBsearch/record.jsp?dockey=0113608 [Google Scholar]
Р. и Чжан С. Лабораторные исследования поведения фундаментов на геосинтетически армированных глинистых грунтах. Отчет о транспортных исследованиях: Журнал Совета по транспортным исследованиям, 2004 г., 2007 г., (1): 28–38. [Академия Google]
35. Алаваджи Х.А.
Испытания модельной плиты на просадочный грунт. Журнал Университета короля Сауда – Инженерные науки, 1998 г., 10 (2). [Google Scholar]
36. Аббас Дж. М., Чик З. Х. и Таха М. Р. Моделирование и расчет одиночной сваи, подверженной боковой нагрузке. Электронный журнал геотехнической инженерии, 2008 г., 13 (E): 1–15. [Google Scholar]
37. Росиди С.А., Таха М.Р., Наян К.А.М. Эмпирическая модельная оценка несущей способности осадочного остаточного грунта методом поверхностных волн. Jurnal Kejuruteraan, 2010, 22 (2010): 75–88. [Академия Google]
38. Хаджехзаде М., Таха М. Р., Эль-Шафие А. и Эслами М. Модифицированная оптимизация роя частиц для оптимальной конструкции фундамента и подпорной стенки. Журнал Чжэцзянского университета: Science A, 2011, 12 (6): 415–427. [Google Scholar]
39. Джо С. Х., Хван С. К., Хассанул Р. и Рахман Н. А.
Визуализация поперечного сечения модуля упругости железнодорожного полотна под балластом для определения потенциальной осадки. Журнал Корейского общества железных дорог, 2011 г., 14 (3): 256–261. [Академия Google]
40. Чик З., Альджанаби К. А., Каса А. и Таха М. Р. Десятикратная перекрестная проверка искусственной нейронной сети, моделирующая осадочное поведение каменной колонны под насыпью шоссе. Арабский журнал геонаук, 2013 г., 7(11): 4877–4887. [Google Scholar]
41. Li Y.P., Yang Y., Yi J.T., Ho J.H., Shi J.Y. & Goh S.H. Причины послемонтажного проникновения самоподъемных насыпных фундаментов в глины. PLoS ONE, 2018, 13(11): e0206626 10.1371/journal.pone.0206626 [Бесплатная статья PMC] [PubMed] [CrossRef] [Google Scholar]
42. Азриф М., Закиран М. Н. Ф., Сякира М. Р. Н. А., Азван С. М., Нур Р. К., Ли Э. К. и соавт.
Применение геофизических исследований к возникновению осадок — тематическое исследование на 2-м Азиатско-Тихоокеанском совещании EAGE-GSM по приповерхностным геонаукам и инженерии (EAGE-GSM 2-е Азиатско-Тихоокеанское совещание по приповерхностным геонаукам и инженерии). European Association of Geoscientists and Engineers, EAGE, 2019. [Google Scholar]
43. Zhanfang H., Xiaohong B., Chao Y. & Yanping W. Вертикальная несущая способность свайно-разжижаемого песчано-грунтового основания при горизонтальном сейсмическом воздействии. PLoS ONE, 2020, 15(3): e0229532 10.1371/journal.pone.0229532 [Бесплатная статья PMC] [PubMed] [CrossRef] [Google Scholar]
44. Lee K., Manjunath V. & Dewaikar D. Численные и модельные исследования ленточного фундамента, поддерживаемого системой армированная зернистая засыпка — мягкий грунт. Канадский геотехнический журнал, 2011, 36: 793–806. [Google Scholar]
45. Куриан Н. П., Бина К. С. и Кумар Р. К. Оседание армированного песка в фундаментах. Журнал геотехнической и геоэкологической инженерии, 1997, 123 (9): 818–827. [Академия Google]
46. Цорнберг Ю.Г. и Лещинский Д.
Сравнение международных критериев проектирования конструкций из геосинтетического армированного грунта. В: Ochiai et al. (ред.) Ориентиры в армировании земли, 2003 г. , 2: 1095–1106. [Google Scholar]
47. Лещинский Д. О глобальном равновесии при проектировании геосинтетической армированной стены. Дж. Геотех. Геосреда. англ. ASCE, 2009, 135(3): 309–315. [Google Scholar]
48. Ян К.Х. Утомо П. и Лю Т.Л. Оценка подходов проектирования, основанных на силовом равновесии и деформациях, для прогнозирования нагрузок на арматуру в конструкциях из геосинтетического армированного грунта. ж.ГеоИнж, 2013, 8(2): 41–54. [Академия Google]
49. Сиейра А.К.Ф. Поведение геотекстиля на отрыв: численный прогноз. Междунар. Дж. Инж. рез., 2016, заявл. 6(11–4): 15–18. [Google Scholar]
50. Шарма Р., Чен К., Абу-Фарсах М. и Юн С. Аналитическое моделирование грунтового основания, армированного георешеткой. Геотекстиль и геомембраны, 2009, 27(1): 63–72. [Google Scholar]
51. Лю С. Ю., Хан Дж., Чжан Д. В. и Хун З. С. Комбинированный метод DJM-PVD для улучшения мягкого грунта. Геосинтетика Интернэшнл, 2008, 15(1): 43–54. [Академия Google]
52. Роу Р. К. и Тэчакумторн К.
Комбинированное воздействие PVD и армирования насыпей на чувствительных к скорости грунтах. Геотекстиль и геотекстиль, 2008, 26 (3): 239–249. [Google Scholar]
53. Ван С., Ли С., Сюн З., Ван С., Су С. и Чжан Ю. Экспериментальное исследование влияния тампонажной арматуры на сопротивление сдвигу разрушенного горного массива. PLoS ONE, 2019, 14(8): e0220643 10.1371/журнал.pone.0220643 [Бесплатная статья PMC] [PubMed] [CrossRef] [Google Scholar]
54. Wang Y., Ge L., Chendi S., Wang H., Han J. & Guo Z. Анализ гидравлических характеристик улучшенного песчаного грунта с мягким камнем. PLoS ONE, 2020, 15(1): e0227957 10.1371/journal.pone.0227957 [Бесплатная статья PMC] [PubMed] [CrossRef] [Google Scholar]
55. Хан Дж., Покхарел С.К., Ян X., Манандхар С., Лещинский Д., Халахми И. и др.
Эффективность оснований RAP, армированных Geocell, на слабом грунтовом основании при полномасштабных нагрузках от движущихся колес. Журнал материалов в гражданском строительстве, 2011 г. , 23 (11): 1525–1534. [Google Scholar]
56. Ван Дж. К., Чжан Л. Л., Сюэ Дж. Ф. и Йи Т. Реакция на осадку неглубоких квадратных фундаментов на песке, армированном георешеткой, при циклической нагрузке. Геотекстиль и геомембраны, 2018, 46(3): 586–59.6. [Google Scholar]
57. Акинмусуру Дж. О. и Акинболаде Дж. А. Устойчивость нагруженных фундаментов на армированном грунте. Журнал геотехнической и геоэкологической инженерии, 1981, 107 (Продолжение ASCE 16320). [Google Scholar]
58. Чжоу Х. и Вэнь С. Модельные исследования песчаной подушки, армированной георешеткой или геоячейкой, на мягком грунте. Геотекстиль и геомембраны, 2008, 26(3): 231–238. [Google Scholar]
59. Brinkgreve R.B.J. & Vermeer P.A. Код конечных элементов для анализа почвы и горных пород. А. А. Балкема, Роттердам, Нидерланды, 1998. [Google Scholar]
60. Гольдшайдер М. Истинные трехосные испытания на плотном песке. Семинар по определяющим отношениям для почв, 1982, 11–54. Получено с https://ci. nii.ac.jp/naid/10007804852/ [Google Scholar]
61. Brinkgreve, RBJ, Kumarswamy, S., Swolfs, W.M., Waterman, D., Chesaru, A., Bonnier. , P.G., et al., 2014, Plaxis 2014. PLAXIS bv, Нидерланды.
62. NAUE GmbH & Co. KG, 2012. https://www.naue.com/naue-geosynthetics/geogrid-secugrid/ (веб-сайт) [10 июня 2020 г.]
63. Мейергоф Г.Г. Предельная несущая способность фундаментов. geotecniadecolombia.com 1963 г., получено с http://geotecniadecolombia.com/xtras/ Предельная несущая способность фундаментов.pdf
Solides Elastiques, Gauthier-Villars, Paris, (1883).
65. Траутманн С. Х. и Кулхави Ф. Х. Подъемная нагрузка-смещение фундаментов. Журнал геотехнической инженерии, 1988, 114(2): 168–184. [Google Scholar]
Лоскутная подушка из полосок/ниток ~ Две версии!
Существует множество мастер-классов по лоскутному лоскутному одеялу. В некоторых руководствах в качестве основы предлагается использовать белую ткань, а в других — разные типы бумаги. Я не был уверен, хочу ли я использовать ткань и иметь дополнительный слой в подушке. Поэтому я использовал кальку, которая была у меня дома, и она была слишком толстой, чтобы ее можно было снять после того, как полоски были сшиты. Я знаю, что в Интернете есть специальные бумаги, но я хотел начать делать блоки прямо сейчас. Да, я был в настроении, что я должен был начать проект в тот момент, и не мог ждать еще несколько дней, пока мой заказ прибудет к моему порогу. Я оглядела свою комнату, нашла папиросную бумагу для упаковки подарков и решила попробовать. Поскольку для этого проекта не требуется особого рисунка на бумаге и случайных кусочков, обычная папиросная бумага сделала свое дело. Отклеить его тоже было несложно.
Перед тем, как начать, прогладьте папиросную бумагу, чтобы разгладить все складки и обрезать ее до нужного размера. Я использовал режущие инструменты, чтобы сделать это, и все прошло так быстро. Кроме того, сортировка обрезков по цвету (если вы уже упорядочили их таким образом, то можете идти!), ускоряет работу, пока вы выбираете и смешиваете цвета во время сборки.
Давай начнем!
Подушка из лоскутной полоски — готовый размер 16 x 16 дюймов * ВАМ ПОТРЕБУЕТСЯ
12 штук — папиросная бумага 4 1/2 x 4 1/2 дюйма
12 штук — 1 фут x 7 дюймов (или длиннее, если хотите) полоски белой ткани
Различные полосы обрезков
1 — 18 x 18 дюймов ватин
1 — 18 x 18 дюймов подложка (я использовал муслин. Он будет спрятан внутри подушки)
2 — 11″ x 16 1/2″ ткани для спинки для создания подушки
* КАК СДЕЛАТЬ
1. Сложите оба конца подушки. Белая полоска размером 1 x 7 дюймов, разделенная пополам. Совместите линию сгиба с противоположными углами папиросной бумаги.
2. Положите распечатанную полоску поверх белой полоски. Я использовал булавки, чтобы выровнять их и совместить углы.
3. Пришейте их к бумаге швом 1/4 дюйма, раскройте шов и прогладьте утюгом.
4. Повторите процесс и сделайте то же самое с противоположной стороной.
5. Положите отрезанную ткань стороной вниз на коврик для резки. Обрежьте излишки ткани, используя папиросную бумагу в качестве направляющей.
6. Снимите папиросную бумагу.
Тада! Блок сделан. Разве это не так весело?
7. Когда вы закончите делать остальные блоки, поиграйте с ними, чтобы определиться с компоновкой и соедините блоки рядом, чтобы создать ряды.
8. Затем соедините эти ряды вместе.
9. Я вязала здесь простые ряды. Лапка Degital Dual Feed — один из моих самых любимых аксессуаров для Babylock Aria. Он подает ткань равномерно и последовательно. Я почувствовал большую разницу на готовых проектах, особенно при работе над более крупными объектами. Обрежьте лишнее вокруг стеганого квадрата.
10. Возьмите кусок 11 x 16 1/2 дюйма, сложите одну сторону 16 1/2 дюйма дважды (каждый раз по 1/2 дюйма) и прошейте. Оставьте край другого бокового ряда. Сделайте то же самое с другими 11 “x 16 1/2”. Положите их поверх стеганого квадрата лицевой стороной вниз. Центральная часть будет перекрываться на 4 дюйма. Сколите булавками и прострочите по краю. Я использовала зигзагообразные стежки для обработки краев, чтобы они не расслаивались.
11. Выверните наизнанку и прогладьте утюгом.
Время наслаждаться!
Это простой проект и отличный способ использовать полоски обрезков. Кроме того, этот быстрый проект станет отличным подарком. Я создал эту подушку за один день, пока смотрел корейские дорамы на телефоне. Мне было так весело этим заниматься, что я решила сделать для вас бонусный проект!
Бонус! Мини-подушка для Хэллоуина в полоску Scrappy Strip — готовый размер 11 x 11 дюймов
*ВАМ ПОТРЕБУЕТСЯ
4 шт.