Пенопласт или пенополистирол, что лучше
18 марта 2019 tutus Главная страница » Новости Просмотров:Давайте сразу договоримся, что в данной статье Пенопластом будем называть — Вспененный пенополистирол (пенопласт ПСБ-С), а Пенополистиролом — Экструдированный пенополистирол (пенополистирол ЭППС). Эти два материала производятся из идентичного сырья полистирола, разная технология и разная разновидность полистирола. Оба материала являются теплоизоляционными материалами на основе полистирола.
Пенопласт или пенополистирол, что лучше?
Нельзя точно ответить на данный вопрос потому, что эти материалы имеют разные характеристики и области применения.
Характеристики пенопласта:
— прочность до 0,2 МПа;
— теплопроводность 0,032 — 0,042 Вт/м К;
— водопоглащение — до 3% по объему;
— паропроницаемость — 0,05 мг/м ч Па.
Характеристики пенополистирола:
— прочность от 0,2 МПа;
— теплопроводность 0,028 — 0,035 Вт/м К;
— водополгощение до 1 % по объему;
— паропроницаемость — 0,001 мг/м ч Па.
Цена пенопласта:
— от 250 грн до 1000 грн
Цена пенополистирола:
— от 600 грн
Применение пенопласта и пенополистирола:
— для тепловой изоляции в качестве среднего слоя строительных ограждающих конструкций и промышленного оборудования при отсутствии контакта плит с внутренними помещениями.
Многие используют пенополистирол для утепления стен, ввиду того, что пенополистирол эффективнее и прочнее. Я приведу небольшой пример:
Согласно ДСТУ Б.В.2.6-36-2008 «Конструкции внешних стен с фасадной теплоизоляцией», требования для утеплителя следующие:
— теплопроводность не более 0,039 Вт/м К;
— прочность на сжатие 0,08-0,1 МПа;
— паропроницаемость — не меньше 0,05 мг/м ч Па;
— и другие не существенные в нашем примере.
Читателям на заметку: Если вам нужны кухонные ножи интернет, то все, что вам нужно вы сможете заказать на сайте samura.ru. Уверен, вы останетесь довольны соотношением цена-качество!
Как видим из требований пенополистирол уже не подходит для данного вида утепления, из-за характеристики паропроницаемости, она меньше чем требуется (Можно ли утеплять пенополистиролом ЭППС стены?). Но все же его используют. Идем дальше прочность пенополистирола в несколько раз превышает требуемую, это не страшно, но нецелесообразно, Вы платите больше. Теплопроводность тоже намного лучше. И тут многие «специалисты» говорят что пенополистирол намного эффективнее пенопласта по теплопроводности. Давайте разберемся! Есть требуемое значение термического сопротивления для стены, согласно ДБН В.2.6-31:2006 «Тепловая изоляция зданий», к примеру возьмем коэффициент — 2,8 м2К/Вт. Берем два материала пенопласт и пенополистирол и переводим их в толщину с учетом коэффициента теплопроводности для пенопласта — 0,038 и пенополистирола — 0,028, соответственно. Получаем требуемую толщину:
— пенопласт 106 мм;
— пенополистирол 78 мм.
Разница 28 мм. Считаем стоимость, цены беру минимальные, пенопласт — цена 345 грн за метр куб., пенополистирол — 600 грн за метр куб. Переводит в стоимость метра квадратного — пенопласт 36,57 грн, пенополистирол 46,80 грн. Разница 10,23 на метре квадратном. Как видим пенопласта нужно больше, но стоимость будет меньше. Кто хочет уменьшить слой утеплителя, тому подойдет пенополистирол. Кто хочет удешевить слой утеплителя, тому подойдет пенопласт. Выбор за Вами.
Из вышесказанного можно сказать, что большой разницы между данными материалами нет. Пенопласт или пенополистирол, что лучше? Можно ответить, что лучше то что лучше для Вас.
Пенопласт или минвата, что лучше?
Очень часто сегодня ведутся споры о том, какой утеплитель идеален для стен. Некоторые уверены, что пенополистирол экструдированного типа станет идеальным решением для эффективного утепления дома. Другие с этим утверждением не соглашаются. Коээфициенты теплопроводности минваты и пенопласта примерно одинаковые. Но в остальном параметры существенно отличаются.
Современные теплоизоляционные материалы. Плюсы
Если постараться выделить важные общие характеристики современных материалов для теплоизоляционных материалов, можно выделить следующие:
- Способность сохранять идеальное тепло в помещении на протяжении длительного времени.
- Экономия денежных средств. Нет необходимости покупать какие-то другие энергоносители.
- Легкий вес.
- Простой монтаж.
- Стойкость к огню.
- Экологическая чистота. Безвредность для здоровья человека.
- Отличная звукоизоляция.
Сегодня строители отдают предпочтение двум материалам для теплоизоляции: минвате и пенопласту. У каждого есть плюсы и минусы. Достаточно часто сложно понять, какой материал выбрать. Чтобы определиться, следует разобраться в особенностях и сферах применения. Но начнем по порядку.
Отличие минеральной ваты от пенопласта
При изготовлении пенопласта полистирольные гранулы специальным образом нагреваются и вспучиваются под воздействием высокой температуры. Такие плиты состоят большей частью из воздуха, поэтому материал по праву считается идеальным для качественного утепления. Пенополистирольные плиты бывают различной толщины. Весят они совсем немного, но при этом невероятно прочны.
Минвата – волокнистый материал. В процессе производства идет расплавление различных смесей, шлаков и горных пород. В итоге создается качественный утеплитель. Радует его долговечность.
Также минвата производится в домнах. Создается она из шлаков. Но данный материал не подходит для больших помещений производственного характера. Он используется только для утепления стен в квартире или в домах.
Экструдированный пенополистирол – современный материал превосходящий по своим характеристикам обычный пенопласт и минвату. Структура его ячеистая. Им можно утеплять стены, пол и крышу. Также он активно используется в качестве утеплителя для зданий и дорог.Применяется он и в промышленности.
Паропроницаемость минеральной ваты и пенопласта
Минеральная вата в 10 раз лучше полистирола пропускает пар. Это говорит о том, что она гораздо лучше пропускает испаряемую воду. Обычно применяется многослойная теплоизоляция с различной паропроницаемостью. В итоге эта величина соответствует характеристике материала с наименьшим коэффициентом. .
Пенопласт не способен пропускать пар, но он и не накапливает его. Весь проникший из помещения пар выводится через имеющиеся стыки и неровности утеплителя.

Сопротивление огню
Минеральная вата совершенно не горит. Некоторые виды из волокон базальта могут выдерживать температуру до 100о градусов.
Пенополистирол с легкостью плавится. Также он сам горюч. Многие уверены, что этот материал специально добавляют в антипирены, препятствующие горению. Это верно. Но постепенно это свойство сходит на нет, и тогда пенопласт поддерживает процесс горения.
Поговорим о стоимости
Если сравнивать минвату и пенопласт по стоимости, то они находятся примерно в одной ценовой категории. При этом важна плотность данных материалов. Именно от этого зависит цена. Также на нее влияет и бренд.
Удобство монтажа
Пенополистирол обладает высокой прочностью и упругостью. Его можно легко резать и шлифовать. Но очень трудно приклеивать данный утеплитель таким образом, чтобы на стыках не образовывались мостики холода. Данную проблему решить совсем несложно: стоит применять удобные листы пенопласта с кромкой в виде буквы Г. Минеральная вата плотная и упругая лишь в матах.
Сопротивление потере тепла
Производители традиционно указывают практически одинаковую теплопроводность минеральной ваты и пенополистирола. Но на практике было доказано, что пенополистирол является несомненным лидером. Такой же теплопроводностью обладает лишь базальтовый вид минваты. Если материал рулонный, при раскрывании он обязательно рыхлый. Этим объясняется более низкая способность сохранять тепло.
Пенополистирол выполнен из огромного количества заполненных воздухом ячеек. Такая структура просто идеальна для того, чтобы материал мог просто идеально удерживать тепло.
У минеральной ваты таких ячеек нет. Она сразу же выпускает воздух. Как известно, конвекция обуславливает движение воздуха от теплой стороны к холодной. При утеплении помещения минватой происходит его быстрое охлаждение. Если же использован пенополистирол, тепло сохраняется намного лучше.

Не стоит забывать об экологичности
Совсем недавно пенопласт изготавливался из стирола. Также использовался при производстве и фреон. Такой материал не подходил для внутреннего утепления помещений, так как из него неизбежно выделялись вредные газы. Сегодня экологичности уделяется максимум внимания. Для пенопласта фреон теперь не применяется. Данный материал незаменим для наружных работ. Но не стоит слишком им увлекаться внутри помещений.
Пенополистирол и минвата. Срок службы
Достаточно часто можно услышать утверждение о том, что пенопласт разрушается всего через 8 лет. Но это может произойти лишь при условии отсутствия защитного покрытия. Снег, дождь и палящие лучи солнца вредят материалу. Но чаще всего пенополистирол покрыт декоративным материалом. Влагоперенос обеспечивает вывод из него конденсата. В холодильниках пенопласт сохраняет все свои свойства на протяжении 30 лет. В зарубежных странах утепленные с помощью пенопласта дома стоят более 35 лет. Это свидетельствует об отличном качестве данного материала.
Базальтовая вата изготавливается из вулканических пород. Ей не страшны никакие среды агрессивного характера. Долговечность минваты действительно впечатляет.
Что стоит утеплять пенопластом
Такой материал незаменим для мест с высоким уровнем влажности. Он позволяет качественно утеплять такие помещения.
- Пенопласт не боится непосредственного контакта с влажной землей. Он просто идеален для качественного утепления фундаментов и конструкций инженерного типа, которые расположены под землей. Пройдет не одно десятилетие, а утеплитель сохранится в первозданном виде и не потеряет своих свойств.
Он часто используется для фундаментов, состоящих из нескольких слоев. Из него создается средний слой. В итоге удается создать качественную и надежную конструкцию.
- При возведении домов на фундаменте монолитного типа тоже стоит использовать именно пенополистирол. Следует предварительно подготовить ровную площадку. На нее укладывают плиты из данного материала. А сверху заливается слой бетона. Можно уложить один ряд плит или же несколько. Когда бетон полностью застынет, стоит переходить к возведению стен здания.
- Для того, чтобы предотвратить избежать нежелательного промерзания фундамента, хорошо применять в качестве оптимального утеплителя пенопласт. При этом используется он не только для вертикальной, но и для горизонтальной части. Выполняется укладка вдоль всего фундамента плит из пенополистирола. После этого их обязательно засыпают. Если необходимо, аккуратно прокладывают специальный слой гидроизоляции. С помощью этого нехитрого способа удается защитить фундамент во время морозов.
- Применяется пенопласт для качественного изолирования стен снаружи и внутри. Оптимальный вариант – стены, выполненные из кирпича или блоков. Отличную теплоизоляцию можно обеспечить при применении данного материала внутри помещений. При этом нет образования точки росы.
- Особый пенополистирол ПСБС применяется для плоских и теплых крыш вентилируемого типа. При этом обязательно укладывается сверху специальный слой для гидроизоляции. Если вентилируемые крыши холодные, теплоизоляция выполняется немного иначе. Выполняется изоляция с помощью пенопласта внутренней части крыши. При этом обязательно оставляется специальное пространство для необходимой вентиляции. В итоге конденсат не образуется.
- Хорошо использовать плиты из пенопласта для того, чтобы утеплять перекрытия между этажами, а также полы. Под них укладывается слой теплоизоляции. Сверху обязательно заливается слой бетона.
- Пенополистирол также используется в производстве всевозможной упаковки.
Также он обеспечивает термоизоляцию морозильных камер, рефрижераторов, изотермических фургонов.
Что стоит утеплять минеральной ватой
- Стены деревянных домов всегда хорошо дышат. Для их утепления использовать пенопласт ни в коем случае нельзя. В результате все полезные свойства дерева будут сведены на нет. Именно поэтому применяется минвата. Также она идеально подходит для перекрытий, полов, перегородок и потолков зданий, выполненных из других материалов. При изоляции наружных стен выполняется подвесной фасад вентилируемого типа. Важной частью конструкции становятся пароизоляционнные мембраны.
- Минвата используется для изоляции мансардных помещений, чердаков, скатных крыш и перекрытий зданий. При этом важно оставлять пространство для необходимой вентиляции.
- Применяется минвата как средний теплоизоляционный слой в малоэтажных кирпичных домах. Используется она для бетонных панелей трехслойного типа, сэндвич панелей в оболочке из металла и железобетона.
- Идеальна для тех мест, где требуется оптимальная защита от объектов, которые сильно нагреваются. Базальтовая вата с легкостью выдерживает до 1000 градусов.
- Для утепления каркасных строений необходимо применять минеральную вату. Также она идеальна для обеспечения оптимальной шумоизоляции. Материал хороших для различных поверхностей: вертикальных, горизонтальных, криволинейных.
- Вата в виде плит используется для обертывания труб газовых, тепловых и водопроводных магистралей. Также применяется она и для различного оборудования.
Подведем итоги сравнения минваты и пенопласта
И минвата, и пенопласт отличные теплоизоляторы. Но у них определенные приоритеты в плане технических свойств.
Выбирая утеплитель, нужно, прежде всего знать, для какого помещения он будет использоваться. Если необходимо выбрать более дешевый материал, стоит отдать предпочтение пенопласту.
Однозначного ответа на вопрос: «Что лучше: пенопласт или минвата ?» не существует. Каждый из этих материалов хорош по-своему и с успехом применяется в определенных случаях.
состав, свойства, структура, классификация, применение и безопасность
Согласно исследованиям экологов до 40 % электро- и теплоэнергии, которая вырабатывается в Северном полушарии, уходит на отопление производственных, жилых и других объектов. Это обусловливает тот факт, что качественная теплоизоляция зданий приносит весомую пользу в плане экономии финансов. Помимо прочего это позволяет добиться комфортности проживания. В роли одного из наиболее распространенных теплоизоляторов выступает пенопласт, он еще называется пенополистиролом, или ППС.
Паропроницаемость
Паропроницаемость пенопласта довольно низкая. На практике это значит, что на пути движения пара изнутри дома наружу будет располагаться преграда в виде пенополистирола. За пределами зданий температура часто более низкая, чем в помещениях. Поэтому пар будет превращаться в конденсат, вследствие этого в областях стыка теплоизоляции со стеновой конструкцией будет скапливаться вода. Это приводит к риску намокания материалов, которые находятся рядом.
Для того чтобы паропроницаемость пенопласта не стала минусом при использовании этого утеплителя, следует осуществить верный расчет точки росы и определить, какую толщину изоляции выбрать. Вынос точки росы при этом удастся осуществить за пределы устанавливаемого материала. Разумным решением в этом вопросе становится устройство вентилируемого фасада. Паропропускные характеристики теплоизолятора не рассматривают в отрыве от деталей конкретной конструкции. Важно учитывать, из чего возведены стены, насколько высок фундамент, а также выполнялся ли монтаж паро- и гидроизоляции.
Как сделать паропроницаемость плюсом
Паропроницаемость пенопласта составляет 0,05 мг/(м·год·Па). В связи с этим его использование может стать причиной образования плесени. Вообще эта характеристика является не только отрицательной, но и положительной особенностью. Плюсом выступает то, что при укладке теплоизоляции нет необходимости создавать паропроницаемый барьер. А вот минус может проявиться, если технология монтажа была нарушена. Под пенопластом, как было упомянуто выше, будет образовываться влага, что непременно приведет к разрушению как самого материала конструкции, так и слоя утеплителя.
Паропроницаемость пенопласта никак не отразится на микроклимате помещений, если его установку осуществлять снаружи здания. Не стоит полагать, что в продаже можно найти пенополистирол с разной паропроницаемостью. Эта характеристика остается одинаковой, независимо от плотности и вспененности. Этот показатель аналогичен древесному срубу дуба или сосны.
Структура и состав
Пенопласт – это материал белого цвета со вспененной жесткой структурой, в которой 2 % полистирола и 98 % воздуха. Для изготовления разработана технология вспенивания полистирольных гранул. Эти микроскопические частицы на следующем этапе обрабатываются горячим паром. Такая процедура повторяется несколько раз, что позволяет снизить показатель веса и плотности материала. Подготовленная масса высушивается для удаления остаточной влаги. Сырье находится на открытом воздухе в сушильных емкостях. На этой стадии структура обретает окончательную форму.
Гранулы имеют размер, который колеблется от 5 до 15 мм. Когда они оказываются высушенными, им придают соответствующую форму. Прессование осуществляется на установках или станках, которые превращают материал во что-то наподобие упаковки компактной формы. Как только пенопласт будет спрессован, его подвергают воздействию горячим паром, в результате образуются блоки с определенными параметрами. Их нарезают инструментом по размерам. Листы могут иметь нестандартные размеры. Толщина полотна варьируется от 20 до 1000 мм, тогда как размеры плит могут обладать габаритами от 1000 x 500 мм до 2000 x 1000 мм.
Основные свойства
Когда вам известно, какая паропроницаемость у пенопласта, вы можете поинтересоваться и другими характеристиками, а также особенностями. Среди прочих следует выделить:
- низкую теплопроводность;
- высокие звуко- и ветрозащитные свойства;
- низкое водопоглощение;
- долговечность;
- прочность;
- устойчивость к химическому и биологическому воздействию.
Что касается теплопроводности, она является неоспоримым преимуществом пенопласта. Это обусловлено тем, что ячейки в основе обладают формой многогранника. Их размер достигает 0,5 мм. Замкнутый цикл ячеек снижает теплообмен и ограничивает проникновение холода.
Звуко- и ветрозащитные свойства
Толщина и паропроницаемость пенопласта – это далеко не все, что следует знать при покупке материала. Важно поинтересоваться еще и звуко-, а также ветрозащитными свойствами. Если стены утеплить пенопластом, они не будут нуждаться в ветрозащите. Звукоизоляция здания повысится. Таким образом, звукоизоляционные свойства объясняются ячеистой структурой.
Для того чтобы обеспечить качественную изоляцию от наружных шумов, понадобится уложить слой материала, толщина которого составляет 3 см. Если увеличить этот показатель, то удастся добиться лучшей шумоизоляции. Паропроницаемость фасадного пенопласта была упомянута выше. Однако эта характеристика не единственная, которую вам следует знать. Необходимо поинтересоваться еще и прочностью. Плиты этого изолятора в течение длительного времени не изменяют своих физических свойств. Они готовы претерпевать высокое давление, не разрушаясь и не деформируясь. Отличным примером этому служит строительство взлетно-посадочных полос, где пенополистирол давно и широко используется. Степень прочности зависит от толщины плит и правильного монтажа.
Паропроницаемость пенопласта 25 плотности остается такой же, как было упомянуто выше. Первый показатель никак не зависит от других характеристик. Но перед приобретением этого теплоизолятора важно знать еще и об устойчивости к химическим и биологическим воздействиям. Плиты устойчивы к агрессивным средам, растворам щелочей, солей и кислот, морской воды, гипса и извести. Пенополистирол может контактировать с битумом, цементом, водорастворимыми и силиконовыми красками. На полотно могут оказывать влияние вещества лишь при длительном воздействии. Это относится к материалам, которые имеют в составе растительные и животные масла, а также дизельное топливо и бензин.
Паропроницаемость пенопласта и экструдированного пенополистирола была упомянута выше. Перед покупкой этого материала важно знать еще и то, что вы можете использовать изоляцию в качестве строительного материала, исключая контакт с агрессивными химическими составами, среди которых – насыщенные углеводороды и органические растворители.
Пожаробезопасность
Паропроницаемость и пожаробезопасность пенопласта являются одними из важных характеристик. Современные строительные материалы должны отвечать требованиям пожаробезопасности и проявлять в процессе эксплуатации устойчивость к воздействию открытого пламени. Пенополистирол не поддерживает горение и вспыхивает при температуре, которая в 2 раза выше аналогичного показателя у древесины. Энергии при горении пенопласта выделяется в 8 раз меньше, чем при горении дерева. Это говорит о том, что температура огня будет значительно ниже.
Чего стоит опасаться
Воспламениться пенополистирол может лишь во время непосредственного контакта с пламенем. При прекращении такого контакта пенопласт самозатухает в течение 4 секунд. Эти показатели характеризуют его как пожаробезопасный материал, подходящий для строительства.
Применение
Воздухопроницаемость пенопласта довольно низкая, что не позволяет использовать его внутри помещений. Но структура материала ячеистая, что делает материал универсальным звуко- и теплоизолятором в области строительства. Из пенополистирола изготавливают промышленные изделия по типу листового пенопласта, изоляции для труб и пенопластовой скорлупы. Материалом заполняют отсеки сосудов, что повышает их плавучесть. Из пенополистирола изготавливают нагрудники, спасательные жилеты и поплавки. Его используют для транспортировки донорских органов, изготавливают медицинскую тару, применяют для других нужд в медицине.
ППС нашел свое широкое применение в строительстве и отделке, его используют в роли несъемной опалубки. Теплоизолятором он служит и в приборостроении. Он может использоваться в качестве упаковки для дорогих и хрупких товаров. Он выступает подложкой для пищевых товаров и сырьем для изготовления одноразовых тарелок. Из пенопласта часто изготавливаются декоративные элементы. Это может быть наружная и внутренняя отделка зданий, а также помещений разного назначения. Из него изготавливают потолочную плитку, плинтусы, елочные игрушки, архитектурный декор, а также декор для сада.
Классификация пенопласта
Пенопласт сегодня известен во множестве разновидностей, среди них следует выделить:
- полистирол;
- полиуретан;
- экструзионный пенопласт;
- поливинилхлорид;
- экструдированный полистирол;
- полиэтиленовый пенопласт.
ППС может изготавливаться методом прессования или беспрессовым способом. Различить эти материалы несложно. Прессовая разновидность изготавливается методом прочного сцепления гранул, поэтому такие полотна сложнее сломать. Экструдированный полистирол – это почти то же, что и беспрессовой пенопласт. Материал имеет минусы, выраженные в том, что между гранулами есть полости, куда могут проникнуть водяные пары. При минусовых температурах там скапливается влага, что приводит к постепенному разрушению материала. В этом отношении несколько выигрывает экструзионный пенопласт. По виду он обладает однородной структурой. Среди плюсов этого материала следует выделить:
- длительный срок эксплуатации;
- большую прочность.
Очень эластичным является полиэтиленовый пенопласт. Он часто имеет вид полупрозрачных листов разной толщины, которые отличаются гибкостью. Самым используемым в быту является пенополиуретановый пенопласт. В народе он называется поролоном и отличается эластичностью.
Пенопласт и пеноплекс – Общий
3 часа назад, нилс сказал:
Правда что в пеноплексе есть яд опасно?
Такой же как в пенопласте
Пеноплекс и пенопласт это одно и тоже – пенополистирол (ППС).
Пеноплекс это торговая марка экструзионного пенополистирола (ЭППС).
Разница между пенопластом и эппс в процессе производства изделий.
Пенпласт по сути делается из гранул ппс по типу как попкорн – набивают форму, чета там делают, вроже нагревают, он разбухает и заполняет форму. Потом листы нарезают.
эппс делают экструзией – выдавливают в форму не гранулы, а пену, она застывает изделие готово.
Разница между пенопластом и эппс в структуре изделия. В эппс поры закрытые, в пенопласте открытые. Поэтому паропроницаемость и влагопоглощение у пенопласта выше.
4 часа назад, нилс сказал:
Хотел утеплить пол стены и потолок с внутренний стороны дома.
Утепление внутри помещения не простая задача. Утепляют обычно снаружи, так проще и эффективнее.
Паропроницаемость слоев должна увеличиватся с теплой стороны до холодной. Иначе будет сырость и плесень в стенах.
В случае утепления изнутри надо делать последним слоем пароизоляцию и в помещение хорошую вентиляцию потому что будет баня.
Утепление изнутри делает стены холоднее, соотвесвенно тепловая инертность помещения снижается, стены свое тепло отдают наружу и не внутрь.
Расчитать и прикинуть результативность утепления в разных вариантах, а так же соотвесвию нормам влагонакпления и теплосбережения можно в этом калькуляторе: https://www.smartcalc.ru/thermocalc
7 главных мифов о пенопласте, которые вы должны знать
Пенопласт определенно один из наиболее популярных и доступных утеплителей. В силу своих теплоизоляционных и прочностных характеристик, он составляет конкуренцию другим утеплителям. Европейские страны, такие как Швеция, многие годы выступают за экологичность и безопасность продуктов, предметов быта, и тем более, стройматериалов.
Фундамент с высокой степенью прочности и теплоизоляции, называемый «утепленная шведская плита» УШП, укладывается с использованием пенопласта. Это говорит в пользу экологичности этого стройматериала. В этой статье мы развенчаем этот, и другие мифы о пенопласте.
Миф №1. Недолговечность пенопласта.Вопрос о недолговечности решили еще в Германии в 1986 году. Панели, уложенные в 1955 году, были сняты специалистами «Промышленной ассоциации твердого пенопласта Германии». Исследования изъятого образца показали, что за 31 год эксплуатации, пенопласт не изменил своих свойств:
- Теплопроводность равна 0,0345 Вт/мК для панели пенопласта с плотностью 17,4 кг/м³;
- Влагостойкость 0,02% для плиты плотностью в 20 кг/м³.
Эти данные соответствовали стандарту DIN 18164. Сегодня при производстве пенопласта, образцы подвергаются воздействию температурных перепадов. Согласно этих данных, срок эксплуатации пенопласта не менее 80 лет. А если учитывать химический состав этого материала, то пенопласт разлагается вторым после стекла.
Если говорить техническим языком, речь идет о паропроницаемости пенопласта. И есть мнение, что при утеплении стен этим материалом, в стенах создается конденсат. Однако коэффициент паропроницаемости пенопласта равен 0,05 мг/(м*ч*Па). Это свойство можно проверить самостоятельно.
Для этого достаточно положить горизонтально лист пенопласта, и направить струю воды в герметично изолированный участок. Вы сможете убедиться, как вода проникает сквозь него. Если вода проходит сквозь, то и пар тоже.
Важно! Паропроницаемость не зависит от плотности или марки пенопласта.
Экструзионный пенополистирол (ЭППС) менее паропроницаем (0,018 мг/(м*ч*Па). Это не позволяет утеплять этим видом пенопласта фасады зданий, так как будет образовываться конденсат.
Наиболее эффективный способ контроля влажности в помещении, заключается в качественной вентиляции, даже если вы не используете пенопласт в качестве утеплителя.
Миф №3. У пенопласта плохие звукоизоляционные качестваВ первую очередь, следует отличать звукопоглощение и звукоизоляцию. Пенопласт действительно не поглощает звук. Но звукоизоляция из него хорошая. Согласно исследованиям по ГОСТ 27296-87, степень звукоизоляции перегородок от воздушного шума равна 41 дБ. Звукоизоляция пенопластом снижает уровень шума конструкций пола на 23 дБ.
Все это говорит о том, что проложенный в перегородках пенопласт изолирует звук шагов, ударов и вибраций. Это свойство описано в книге Воробьева В.А. «Полимерные теплоизоляционные материалы» 1972 года.
Миф №4. Пенопласт сильно впитывает влагуВодопоглощение пенопласта в 24-часовой период не превышает 3%. Пенопласт практически не обладает абсорбционными свойствами. Однако плотность влияет на водопоглощение. Чем ниже плотность, тем выше этот уровень. Пенопласт с низким уровнем плотности не подходит для утепления в условиях постоянного воздействия воды. Следует учитывать то факт, что воздействие влаги никак не влияет на теплоизоляционные свойств.
Это утверждение верно. В случае с газобетоном, паропроницаемость минваты больше сочетается с этим стройматериалом. Влага, которая выводится из стены не сможет пройти через влагостойкую плиту пенопласта.
А постоянное скапливание влаги на газоблоке, может стать причиной появления плесени и сырости. Срок эксплуатации газобетонных блоков в этом случае, снижается.
Миф №6. Пенопласт не утепляетОтвет кроется в составе пенопласта. Он на 98% состоит из воздуха. А сухой воздух является самым эффективным теплоизолятором. Рассмотрим примеры: свойства теплосбережения у пенопласта толщиной в 5 см такие же, как у стены из деревянного бруса толщиной в 34 см, и у стены из кирпича толщиной в 90 см. Низкая теплопроводность пенопласта обеспечивает высокую теплоизоляцию.
Каркасные дома из СИП-панелей, в составе которых пенопласт, экономят энергию на 40% больше, чем дома из кирпича. Для этого используют пенопласт марки ПСБ-С-25. Его свойства позволяют экономить на дополнительном утеплении.
Миф №7. Пенопласт опасен для здоровья и окружающей средыСуществует мнение, что пенопласт опасный для жизни стройматериал. Так как пенопласт состоит из воздуха и полистирола, в нем нет никаких химических веществ. Из полистирола изготавливают контейнеры для пищевых продуктов, одноразовую посуду, и т.д. А значит этот материал не может нанести вред здоровью.
Во время нарезки плит из пенопласта, нет необходимости в средствах защиты слизистых носа и глаз, так как от него нет пыли. Этот материал химически нейтрален. При разложении он не выделяет токсины, что позволяет утилизировать его на 100%.
В связи со всеми этими показателями, европейская ассоциация доказала экологичность пенопласта. По статистике, каждый 8-й дом в Европе строится с использованием пенополистирола.
Подводя итог, следует отметить, что в нормативных документах ДБН Украины о фасадной теплоизоляции, указано, что теплоизоляционный материал должен соответствовать группе низкой горючести Г1 (ДБН 8.2 2-3, ДБН 8.2.24, ДБН В.2.2-10, ДБН 3.2.2-17. ДБН В.2.2-1В. ДБН 363).
Все эти факты доказывают, что утепление пенопластом является безопасным, долговечным и экономичным. Главная причина появление мифов – использование некачественного материала и неправильный монтаж пенопласта.
С помощью пенополистирола от DAKO-GROUP вы можете утеплить здание как внутри, так и снаружи. Мы поможем подобрать пенопласт нужной марки и плотности, чтобы утепление было эффективным и долговечным.
Паропроницаемость
Паропроницаемость
Паропроницаемость – способность материала пропускать или задерживать пар в результате разности парциального давления водяного пара при одинаковом атмосферном давлении по обеим сторонам материала. Паропроницаемость характеризуется величиной коэффициента паропроницаемости или величиной коэффициента сопротивления проницаемости при воздействии водяного пара. Коэффициент паропроницаемости измеряется в мг/(м·ч·Па).
В воздухе всегда содержится какое-то количество водяного пара, причем в теплом всегда больше, чем в холодном. При температуре внутреннего воздуха 20 °С и относительной влажности 55% в воздухе содержится 8 г водяных паров на 1 кг сухого воздуха, которые создают парциальное давление 1238 Па. При температуре –10°С и относительной влажности 83% в воздухе содержится около 1 г пара на 1 кг сухого воздуха, создающего парциальное давление 216 Па. Из-за разницы парциальных давлений между внутренним и наружным воздухом через стену происходит постоянная диффузия водяных паров из теплого помещения наружу. В результате в реальных условиях эксплуатации материал в конструкциях находится в несколько увлажненном состоянии. Степень увлажнения материала зависит от температурно-влажностных условий снаружи и внутри ограждения. Изменение коэффициента теплопроводности материала в эксплуатируемых конструкциях учитывается коэффициентами теплопроводности λ(A) и λ(Б), которые зависят от зоны влажности местного климата и влажностного режима помещения.
В результате диффузии водяных паров в толще конструкции происходит движение влажного воздуха из внутренних помещений. Проходя через паропроницаемые конструкции ограждения, влага испаряется наружу. Но если у наружной поверхности стены расположен слой материала, не пропускающий или плохо пропускающий водяные пары, то влага начинает скапливаться у границы паронепроницаемого слоя, вызывая отсыревание конструкции. В результате теплозащита влажной конструкции резко понижается, и она начинает промерзать. в данном случае возникает необходимость установки пароизоляционного слоя с теплой стороны конструкции.
Вроде бы всё относительно просто, но про паропроницаемость зачастую вспоминают только в контексте “дышащести” стен. Однако, это краеугольный камень в выборе утеплителя! К нему нужно подходить очень и очень осторожно! Нередки случаи, когда домовладелец утепляет дом, исходя лишь из показателя теплосопротивления, например, деревянный дом пенопластом. В результате получает загнивающие стены, плесень по всем углам и винит в этом “неэкологичный” утеплитель. Что касается пенопласта, то из за своей малой паропроницаемости его нужно использовать с умом и очень хорошо подумать, подходит ли он вам. Именно по этому показателю зачастую ватные или любые другие пористые утеплители подходят лучше для утепления стен снаружи. Кроме того, с ватными утеплителями сложнее ошибиться. Однако, бетонные или кирпичные дома можно без опасений утеплять и пенопластом – в этом случае пенопласт “дышит” лучше, чем стена!
В таблице ниже приведены материалы из списка ТКП, показатель паропроницаемости – последний столбец μ.
Как понять, что такое паропроницаемость, и зачем она нужна. Многие слышали, а некоторые и активно употребляют термин “дышашие стены” – так вот, “дышашими” такие стены называют потому, что они способны пропускать воздух и водяной пар через себя. Некоторые материалы (например, керамзит, дерево, все ватные утеплители) хорошо пропускают пар, а некоторые очень плохо (кирпич, пенопласты, бетон). Выдыхаемый человеком, выделяемый при приготовлении пищи или принятии ванной пар, если в доме нет вытяжки, создаёт повышенную влажность. Признаком этого является появление конденсата на окнах или на трубах с холодной водой. Считается, что если стена имеет высокую паропроницаемость, то в доме легко дышится. На самом же деле, это не совсем так!
В современном доме, даже если стены сделаны из «дышащего» материала, 96% пара удаляется из помещений через вытяжку и форточку, и только 4% через стены. Если на стены наклеены виниловые или флизиленовые обои, то стены влагу не пропускают. А если стены действительно «дышащие», то есть без обоев и прочей пароизоляции, в ветренную погоду из дома выдувает тепло. Чем выше паропроницаемость конструкционного материала (пенобетон, газобетон и прочие тёплые бетоны), тем больше он может набрать влаги, и как следствие, у него более низкая морозостойкость. Пар, выходя из дома через стену, в «точке росы» превращается в воду. Теплопроводность отсыревшего газоблока увеличивается многократно, то есть в доме будет, мягко говоря, очень холодно. Но самое страшное, что при падении ночью температуры, точка росы смещается внутрь стены, а конденсат, находящийся в стене замерзает. Вода при замерзании расширяется и частично разрушает структуру материала. Несколько сотен таких циклов приводят к полному разрушению материала. Поэтому паропроницаемость строительных материалов может сослужить вам плохую службу.
Про вред повышенной паропроницаемости в интернете гуляет с сайта на сайт вот такая статья. Приводить её содержание на своём сайте я не буду в силу некоторого несогласия с авторами, однако избранные моменты хочется озвучить. Так, например, известный производитель минерального утеплителя, компания Isover, на своём англоязычном сайте изложила “золотые правила утепления” (What are the golden rules of insulation?) из 4-х пунктов:
Эффективная изоляция. Используйте материалы с высоким термическим сопротивлением (низкой теплопроводностью). Самоочевидный пункт, не требующий особых комментариев.
Герметичность.
Хорошая герметичность является необходимым условием для эффективной системы теплоизоляции! Негерметичная теплоизоляция, независимо от её коэффициента теплоизоляции, может увеличивать потребление энергии от 7 до 11% на отопление здания. Поэтому о герметичности здания следует задумываться ещё на стадии проектирования. А по окончании работ проверить здание на герметичность.
Контролируемая вентиляция. Именно на вентиляцию возлагается задача по удалению излишней влажности и пара. Вентиляция не должа и не может осуществляться за счёт нарушения герметичности ограждающих конструкций!
Качественный монтаж. Об этом пункте, я думаю, тоже нет нужды говорить.
Важно отметить, что компания Isover не выпускает какие-либо пенопластовые утеплители, они занимаются исключительно минераловатными утеплителями, т.е. продуктами, имеющими наиболее высокий показатель паропроницаемости! Это действительно заставляет задуматься: как же так, вроде бы паропроницаемость необходима для отвода влаги, а производители рекомендуют полную герметичность!
Дело тут в недопонимании этого термина. Паропроницаемость материалов не предназначена для отвода влаги из жилого помещения – паропроницаемость нужна для отвода влаги из утеплителя! Дело в том, что любой пористый утеплитель не является по сути самим утеплителем, он лишь создаёт структуру, удерживающую истинный утеплитель – воздух – в замкнутом объёме и по возможности неподвижным. Если вдруг образуется такое неблагоприятное условие, что точка росы оказывается в паропроницаемом утеплителе, то в нём будет конденсироваться влага. Эта влага в утеплителе берётся не из помещения! Воздух сам всегда содержит в себе какое-то количество влаги, и именно эта естественная влага и представляет угрозу утеплителю. Вот для отвода этой влаги наружу и нужно, чтобы после утеплителя были слои с не меньшей паропроницаемостью.
Семья из четырёх человек за сутки в среднем выделяет пар, равный 12 литрам воды! Эта влага из воздуха внутренних помещений никоим образом не должа попадать в утеплитель! Куда девать эту влагу – это вообще не должно никоим образом волновать утеплитель – его задача лишь утеплять!
Пример 1
Давайте разберём вышесказанное на примере. Возьмём две стены каркасного дома одинаковой толщины и одинакового состава (изнутри к наружному слою), отличатся буду они только видом утеплителя:
Лист гипсокартона (10мм) – OSB-3 (12мм) – Утеплитель (150мм) – ОSB-3 (12мм) – вентзазор (30мм) – ветрозащита – фасад.
Утеплитель выберем с абсолютно одинаковой теплопроводностью – 0,043 Вт/(м•°С), основное, десятикратное отличие между ними только в паропроницаемости:
Коэф. теплопроводности в климатических условиях Б (худший показатель) λ(Б)= 0.043 Вт/(м•°С).
Плотность ρ= 12 кг/м³.
Коэффициент паропроницаемости μ= 0.035 мг/(м•ч•Па)
Коэф. теплопроводности в климатических условиях Б (худший показатель) λ(Б)= 0.043 Вт/(м•°С).
Плотность ρ= 35 кг/м³.
Коэффициент паропроницаемости μ= 0.3 мг/(м•ч•Па)
Конечно, условия расчёта я тоже использую абсолютно одинаковые: температура внутри +18°С, влажность 55%, температура снаружи -10°С, влажность 84%.
Расчёт я провел в теплотехническом калькуляторе, кликнув по фото, вы перейдёте прямо на страницу расчёта:
Как видно из расчёта, теплосопротивление обоих стен совершенно одинаково (R=3. 89), и даже точка росы у них расположена почти одинаково в толще утеплителя, однако, из за высокой паропроницаемости в стене с эковатой будет конденсироваться влага, сильно увлажняя утеплитель. Как бы ни была хороша сухая эковата, сырая эковата тепло держит во много раз хуже. А если допустить, что температура на улице опустится до -25°С, то зона конденсации составит почти 2/3 утеплителя. Такая стена не удовлетворяет нормам по защите от переувлажнения! С пенополистиролом ситуация принципиально другая потому, что воздух в нём находится в замкнутых ячейках, ему просто неоткуда набрать достаточное количество влаги для выпадения росы.
Справедливости ради нужно сказать, что эковату без пароизоляционных плёнок не укладывают! И если добавить в “стеновой пирог” пароизоляционную плёнку между ОSB и эковатой с внутренней стороны помещения, то зона конденсации практически выйдет из утеплителя и конструкция полностью будет удовлетворять требованиям по увлажнению (см. картинку слева). Однако, устройство пароиозяции практически лишает смысла размышления о пользе для микроклимата помещения эффекта “дыхания стены”. Пароизоляционная мембрана имеет коэффициент паропроницаемости около 0,1 мг/(м·ч·Па), а порой пароизолируют полиэтиленовыми плёнками или утеплителями с фольгированной стороной – их коэффициент паропроницаемости стремится к нулю.
Но низкая паропроницаемость тоже далеко не всегда хороша! При утеплении достаточно хорошо паропроницаемых стен из газо- пенобетона экструдированным пенополистиролом без пароизоляции изнутри в доме непременно поселится плесень, стены будут влажными, а воздух будет совсем не свеж. И даже регулярное проветривание не сможет высушить такой дом! Давайте смоделируем ситуацию, противоположную прошлой!
Пример 2
Стена на этот раз будет состоять из следующих элементов:
Газобетон марки D500 (200мм) – Утеплитель (100мм) – вентзазор (30мм) – ветрозащита – фасад.
Утеплитель выберем точно такой же, и более того, стену сделаем с точно таким же теплосопротивлением (R=3.89).
Как видим, при совершенно равных теплотехнических характеристиках мы можем получить радикально противоположные результаты от утепления одними и теми же материалами!!! Нужно отметить, что во втором примере обе конструкции удовлетворяют нормам по защите от переувлажнения, не смотря на то, что зона конденсации попадает в газосиликат. Такой эффект связан с тем, что плоскость максимального увлажнения попадает в пенополистирол, а из за его низкой паропроницаемости в нём влага не конденсируется.
В вопросе паропроницаемости нужно разобраться досконально ещё до того, как вы решите, как и чем вы будете утеплять свой дом!
Слоёные стены
В современном доме требования к теплоизоляции стен столь высоки, что однородная стена уже не способна соответствовать им. Согласитесь, при требовании к теплосопротивлению R=3 делать однородную кирпичную стену толшиной 135 см не вариант! Современные стены – это многослойные конструкции, где есть слои, выполняющие роль теплоизоляции, конструктивные слои, слой наружной отделки, слой внутренней отделки, слои паро- гидро- ветро-изоляций. В связи с разнообразными характеристиками каждого слоя очень важно правильно их располагать! Основное правило в расположении слоёв конструкции стены таково:
Паропроницаемость внутреннего слоя должна быть ниже, чем наружного, для свободного выходы пара за стены дома. При таком решении «точка росы» перемещается к наружной стороне несущей стены и не разрушает стен здания. Для предотврощения выпадения конденсата внутри ограждающей конструкции сопротивление теплопередаче в стене должно уменьшаться, а сопротивление паропроницанию возрастать снаружи внутрь.
Думаю, нужно это проиллюстрировать для лучшего понимания.
To play, press and hold the enter key. To stop, release the enter key.
Для этих расчётов я использовал калькулятор на сайте теплорасчёт.рф и данные +23°С внутри, -10°С снаружи.
Черный график показывает падение температуры внутри ограждающей конструкции. Начиная с 23 °С и заканчивая -10 °С.
Синий график – температура точки росы. Если график точки росы соприкасается с графиком температуры, эти зоны называются зонами возможной конденсации (помечены голубым). Если во всех точках графика температура точки росы ниже температуры материала, то конденсата не будет.
На первой картинке приведён расчёт кирпичной стены толщиной 50 см.
Видно, что даже однородная стена подвержена образованию конденсата. Он будет образовываться в пустотах, порах кирпича и раствора, при замерзании постепенно разрушая эту стену. В данной зоне конденсат будет образовываться в объёме 4 г/м² в час.
Вторая картинка показывает в 3 раза более тёплую и при этом на 10 см более узкую стену, утеплённую 10 см минваты. Коэффициент паропроницаемости возрастает изнутри наружу, и точка росы не формируется в такой стене.
Конечно, минвату без штукатурки нельзя оставлять, и на 3-м рисунке мы видим, что штукатурка, обладая более низкой паропроницаемостью, чем минвата, вызывает появление конденсата в наружней части утеплителя. В данном случае это не оень страшно – объём влаги невелик (4г/м²/час) и при повышении температуры на улице до -5°С это явление практически изчезает.
Последняя картинка показывает, как совсем не нужно делать! Утеплитель здесь заложен внутри бетонного помещения. Теплопроводность стены получилась, в общем-то такая же, как и на 2-м рисунке, но результат совсем другой! На каждом квадратном метре стены и утеплителя образуется почти по стакану воды каждый час! Стена будет постоянно мокрой, в результате чего она промёрзнет насквозь! Яркий пример неправильной последовательности конструкции стены.
Итак, общее правило можно выразить следующей картинкой.
Всё, что так или иначе связано с паропроницаемостью, затрагивает понятие “Точки Росы”, чему посвящена отдельная статья.
Перевод величин паропроницаемости
К сожалению, далеко не все производители паропроницаемых и пароограничивающих материалов, мембран и плёнок придерживаются единой меры измерения паропроницаемости, из за чего становится проблематично сравнивать порой одинаковые мембраны по этому показателю, а использовать их во всяческих калькуляторах без предварительной обработки данных производителя и вовсе невозможно! Этот вопрос я выделил в отдельную статью “Конвертируем паропроницаемость”.
минеральная вата, пенополистирол (ППС) или экструдированный пенополистирол (ЭППС) / теплоизоляция / каркасный дом своими руками
Главная Библиотека Что лучше: минеральная вата, пенополистирол (ППС) или экструдированный пенополистирол (ЭППС)?
Публикация.: 25 апреля 2014 года.
До сих пор продолжаются споры, что всё-таки лучше использовать в качестве утеплителя: мин. вату, пенополистирол (ППС) или, достаточно новый материал, – экструдированный пенополистирол? Однозначный ответ дать тяжело, ведь у этих материалов разные физические свойства и есть только одно общее – эти материалы являются теплоизоляционными и имеют практически одинаковый коэффициент теплопроводности. Итак, всё по порядку.
Чем же эти материалы отличаются друг от друга?
1. Паропроницаемость. У пенополистирола ППС – 0,03, экструдированного пенополистирола ЭППС – 0,013, у мин. ваты – 0,3. Из этого следует, что мин. вата в 10 или 20 раз лучше пропускает водный пар, чем пенополистиролы. В то же время, когда эти теплоизоляторы работают в системе утепления, то общая паропроницаемость ограничивается тем слоем материала, который имеет наименьшую паропроницаемость. И при сравнении паропроницаемости утеплителей она, не существенно, но различается. Применение мин. ваты в полностью полимерных системах очень рискованно, так как полимерный базовый и отделочный слои имеют ничтожную паропроницаемость, и в случаях большого влагопереноса, влага скапливается в минераловатном слое и приводит к порче системы. Даже при незначительном увлажнении минеральной ваты, её теплоизолирующие свойства сильно снижаются. Чтобы этого не происходило, приходится делать хорошую пароизоляцию из дома наружу с увеличением паропроницаемости в сторону улицы. Пенополистирол в этом случае сам является паровой мембраной и практически не пропускает влагу, которая сможет пройти через базовый отделочный слой изнутри помещения и неплотности утепления. При этом влага в нём не накапливается, а через неплотности выводиться в сторону улицы.
2. Горючесть. В этом, однозначно, минеральная вата выигрывает. Пенополистирол является горючим материалом, плавится и поддерживает самостоятельное горение, в то время как базальтовая мин. вата – полностью негорючий материал, а некоторые её виды выдерживают температуру до 1000 град. Цельсия. Видео ролик: Сравнение теплоизоляционных материалов Пожароопасность ППС и мин. ваты. испытание, видео на Youtube.
3. Стоимость. В зависимости от плотности и производителя мин. вата и пенополистирол будут, примерно, в одной ценовой категории, ЭППС немного дороже.
4. Удобство при монтаже. ППС и экструдированный ППС более упругие и стойкие к механическим воздействиям материалы, поэтому их удобно резать, шлифовать, но тяжело состыковать без клея или монтажной пены, чтобы не было стыка (мостика холода). Мин. вата только в матах может быть упругой и сохранять механическую стойкость в стойках каркаса и на фасадах, но при стыковке листов между собой, практически, не имеет стыка. Сейчас есть в продаже ЭППС с Z пазом (ступенькой по бокам листов), чтобы исключить мостики холода.
5. Экструдированный пенополистирол. Экструдированный пенополистирол на фоне пенополистирола (пенопласта) и мин. ваты сильно отличается своими свойствами и эксклюзивными вариантами использования. Этот материал имеет равномерную ячеистую структуру. Он применяется при устройстве теплоизоляции стен в грунте, фундаментов, полов, а также при строительстве дорог и всевозможных инженерных сооружений, находя применение как в индивидуальном строительстве, так и в промышленном. Материал обладает уникальными техническими характеристиками, поскольку ему свойственны наиболее низкие показатели теплопроводности среди аналогичной продукции. Он химически стоек, очень прочен, водонепроницаем, устойчив к появлению плесени и грибков и является более экологически чистым материалом по сравнению с другими утеплителями. Основное его применение, в котором нет ему равных, – это утепление фундаментов и всевозможных инженерных сооружений с непосредственным контактом экструдированного пенополистирола с грунтом на протяжении многих десятилетий, без ухудшения его потребительских свойств.
6. Теплопроводность. Этот вопрос самый интересный, с учётом того, что производители мин. ваты и пенопласта дают почти одинаковые данные по теплопроводности.
Использовав в системах утепления домов эти два материала, мы сделали вывод, что пенопласт является лучшим материалом для утепления, чем мин. вата. Единственная мин. вата, которая показывает одинаковую теплопроводность с пенопластом, – так это вата базальтовых пород в плитах очень высокой плотности. А вата, которая поставляется в поджатом состоянии и после распаковки восстанавливает свою распушенную структуру, является недостаточно эффективным утеплителем. И вот почему. ППС и Мин. вата, вроде, имеют одно общее: они в своей структуре содержат независимые объемы воздуха, которые не дают теплому воздуху с одной стороны утеплителя смешиваться с более холодным воздухом с другой стороны. И в нашем случае не дают охлаждать или нагревать помещения. И с этим любой, даже самый дешёвый, ППС справляется лучше, так как имеет полностью закрытую структуру. В отличие от мин. ваты, которая на всю свою толщину не имеет закрытой структуры. А это ведёт к конвекции (движению воздуха) – переносу тепла в самом утеплителе от его тёплой стороны в холодную, согласно законам физики, что приводит к более быстрому выхолаживанию объекта. Не зря все производители холодильников и водонагревателей используют как утеплитель именно ЭППС или ППС, а не мин. вату. При совместном использовании этих двух материалов, накладываются некоторые ограничения на «пирог» утепления: не рекомендуется использовать в каркасном домостроении ЭППС как заключительный слой со стороны улицы.
Так как основное правило гласит: “Паропроницаемость материалов должна увеличиваться из помещения в сторону улицы”. Но при хорошей пароизоляции со стороны дома, всё-таки можно использовать ППС даже для утепления фасада каркасного дома.
7. Экологичность. Некоторые утверждают, что пенопласт “газит” (выделяет вредный газ) и разрушается через 10-15 лет. Есть ли правда в этих утверждениях?
Да, действительно, когда пенопласт делали раньше в его производстве использовали фреон, а сам пенопласт состоял из стирола. Впоследствии, находясь в системе утепления “газил”, что не рекомендовало использовать его в жилых помещениях. В связи с введением жёстких норм на экологичность сначала в Европе, а потом и в России, производители отказались от фреона, и пенопласт стал значительно экологичнее. Хотя и сейчас я не рекомендовал бы использовать его в больших количествах внутри дома без хорошей вентиляции и изоляции его. Снаружи дома – пожалуйста, в любых количествах.
Что касается разрушения пенопласта или ЭППС. Это заблуждение очень распространено. Под 10-15 годами имеется ввиду то, что пенополистирол начинает терять свои основные потребительские свойства, если он не защищён от различных воздействий, таких как солнце (ультрафиолет), вода и ветер. В системах утепления пенополистирол обычно защищён от намокания и влияния атмосферы декоративным слоем, и излишняя влага с помощью влагопереноса выводится из утеплителя. На данный момент в мире есть объекты, которые эксплуатируются длительное время. К примеру, ваш старый “бабушкин” холодильник. В нём пенопласт за 20-30лет остался таким же как и при производстве. Или, к примеру, дома в Германии уже 35 лет, а промышленные холодильники в России ещё со времён СССР, то есть более 30 лет.
Причина сбоя пены №4 – Контрпродуктивное замедлитель парообразования
Контрпродуктивный замедлитель паров
По мере повышения уровня изоляции ограждающие конструкции становятся холоднее и устойчивее к высыханию, дольше остаются влажными и создают больший риск образования плесени и повреждений конструкции. В связи с тем, что конструкция не может сушиться «запеканием / воздушной сушкой» неэффективным способом с использованием старой энергии, сушильная способность сборки – ее эластичность – становится зависимой от сушки с диффузией пара.
Слева: теплый неэффективный корпус, который «печется досуха».
Справа: холодный и хорошо изолированный корпус, зависящий от сушки диффузией пара. (Фотография предоставлена Институтом пассивного дома, Дармштадт, Германия)
Следовательно, мы хотим максимально увеличить потенциал сушки диффузией пара.
Водяной пар естественным образом диффундирует через материалы из областей с высокой концентрацией в области с низкой концентрацией, а также от более высоких температур к более низким температурам. В холодном и смешанном климате (климатические зоны 4 и выше) преобладающий поток пара направлен из теплого / влажного интерьера в холодный / сухой внешний вид.Если в сборке есть влага, она хочет выбраться наружу. И в общем, имеет смысл позволить это – имея за бортом открытые для пара материалы.
Но по дороге на форум произошла не такая уж забавная вещь. Подобно одержимости энергетической промышленностью ископаемым топливом и ядерной энергией, строительная промышленность влюбилась в пену (и паронепроницаемые деревянные обшивки).
Реклама пенопласта
Давайте кратко рассмотрим эволюцию деревянного каркаса в этом отношении.Ниже на диаграмме ( A ) мы видим деревянный каркас с паровой открытой обшивкой из сосновой доски, деревянный каркас с небольшой изоляцией или без нее и внутреннюю штукатурку: неудобно, неэффективно и безопасно от повреждения влагой. На диаграмме ( B ) мы видим введение изоляционного войлока в полость каркаса, чтобы обеспечить больший комфорт и энергоэффективность, наряду с паронепроницаемой фанерой или обшивкой OSB, заменяющей внешние доски из сосны. Изоляция делает конструкцию более холодной, перемещая точку росы в полость, в то время как внутренняя поверхность пароотталкивающей наружной оболочки становится первой поверхностью конденсации, что может привести к повреждению от влаги. На диаграмме ( C ) мы видим введение внешней непрерывной изоляции для повышения температуры пароизоляционной оболочки выше точки росы, избегая конденсации и связанных с этим повреждений. И вскоре – как будто по волшебству вводящих в заблуждение значений теплоизоляции (см. «Причина сбоя пены №3») – почти вся обертка выполняется из пенопласта, что еще больше снижает способность сборки высыхать наружу.
Поскольку мы оборачиваем наши здания пароотталкивающей оболочкой и пеной, важно учитывать их способность удерживать влагу.Паропроницаемость пенопласта варьируется от замедлителей парообразования класса 1: 0,0 проницаемости для полиизо с фольгированной облицовкой до 0,5 проницаемости для XPS толщиной 2 дюйма. Проницаемость пенополистирола варьируется, но составляет приблизительно: 1 дюйм = 3,5 проницаемости, 2 дюйма = 1,75 дюйма, 3 дюйма = 0,875 проницаемости, 4 дюйма = 0,5 дюйма и т. Д. Обшивка из OSB и фанеры в условиях сухого термометра является замедлителем парообразования класса 3 с допуском 1.
Слева: пароизолированный полиизо, облицованный фольгой. Справа: плотина Гувера
Пар хочет выйти, а оболочка и пена забивают его, повышая влажность и влажность, снижая упругость.
Чтобы проиллюстрировать это явление, мы разместили те же самые три конструкции стен в Бостон Массачусетс и проанализировали их в WUFI Pro. Графики ниже основаны на показаниях, снятых на обшивке стены. Стены обращены на север и не имеют влаги, вносимой дождем, и при этом в них нет предварительно загруженной влаги в новой конструкции.
Сборка стены A: классическая каркасная стена без теплоизоляции
Во-первых, это наша классическая каркасная стена без утеплителя, стена А . Уровень влажности повышается и понижается в зависимости от сезона, но никогда не превышает 72% относительной влажности.(Примечание: уровень влажности важен по отношению к температуре. Если влажность составляет 80% или выше в течение 30 дней, средняя температура составляет 50 градусов по Фаренгейту, может начаться рост плесени, поэтому индикаторы ОПАСНО должны погаснуть.
Сборка стены A: Историческая каркасная стена без теплоизоляции, обшивки из досок и наружной обшивки с гипсом внутри.
Уровень влажности не достигает 80%. Безопасно и неэффективно.
Стена B: каркасная стена 2×6 с обшивкой из фанеры или OSB и изоляцией из войлока
Следующая сборка, B , показанная ниже, имеет продолжительные периоды 100% влажности и конденсации, образующейся на внутренней стороне оболочки.Это не хорошо. Это плохо. Избегайте этой сборки.
B) Каркасная стена 2×6 с обшивкой из фанеры или OSB и изоляцией из войлока. Сборка под названием неисправность
Узел стены C: завернутый в изоляцию из пенопласта XPS толщиной 2 дюйма
Затем у нас есть стена C, , затем обернутая 2-дюймовым изоляционным слоем из пенополистирола XPS. Несмотря на отсутствие образования конденсата (что очень хорошо), уровень влажности повышается, а риск образования плесени увеличивается, поскольку сборка не имеет допусков. чтобы добавить влаги, на грани выхода из строя.Это не прочный и не устойчивый профиль.
Узел стены C: теперь добавьте 2 дюйма подвесного двигателя XPS, чтобы избежать конденсации, но это приведет к опасной влажности.
И если вам интересно, 1 дюйм XPS хуже, так как этого недостаточно для предотвращения конденсации. Если вы хотите остаться в этом тупике из пенопласта, единственный «ответ» – добавить еще больше Из-за этого пена является непродуктивным замедлителем образования пара и четвертой причиной выхода пены из строя.
Wall Assembly D: более прочная альтернатива без пены
Мы можем делать лучше: более устойчивые, надежные, более экологичные. Чтобы увидеть альтернативы обертыванию здания пеной, см. Наши пять файлов DWG с чертежами, которые доступны в разделе «Руководства по сборке зданий».
Чтобы увидеть сопоставимую модель WUFI сборки, которая имеет прочный и упругий паровой профиль, ниже мы показываем стену, которая представляет собой каркас стены 2×6 с изоляцией из войлока и наружной фанерной обшивкой – стена D . Но вместо того, чтобы оборачивать оболочку пеной, мы оборачиваем ее снаружи волокнистой изоляцией и обеспечиваем внутри борт интеллектуальный замедлитель парообразования. Уровень влажности остается ниже 72% и допускает непредвиденные обстоятельства. Более надежный подход.
Сборка стены D: более прочная альтернатива без пены: 2-дюймовая внешняя волокнистая изоляция, обшивка, 2×6 с войлоком и встроенный интеллектуальный замедлитель паров.
И альтернативная схематическая диаграмма ниже.
Стенка D: внутренний паровой замедлитель и наружная волокнистая изоляция делают это более безопасной и устойчивой альтернативой.
FOAM-TECH: Теория оболочек здания – Пароизоляторы
Назад к темам по теории оболочки
Замедлители парообразования
Свойства пара и влаги сложные. Следующее введение представляет собой лишь краткое обсуждение.
Что такое замедлитель образования пара?
Замедлитель образования пара – это материал, который ограничивает или уменьшает скорость и объем диффузии водяного пара через потолки, стены и полы. здание.
Строительные материалы заданной толщины испытываются и получают рейтинг проницаемости. Этот рейтинг измеряет количество водяного пара, которое может пройти через это. Чем толще строительный материал, тем выше его способность ограничивать диффузию пара. Строительные материалы с рейтингом проницаемости менее 1 считаются замедлителем образования пара.
Что делает пар замедлитель отличается от воздушного барьера?
Не следует путать антипар с воздушным барьером.Замедлитель образования пара разработан для сведения к минимуму количества проходящего водяного пара.
через это. Для сравнения, воздушный барьер предназначен для остановки движения воздуха, которое может привести к попаданию водяного пара в строительную конструкцию. Некоторые воздушные барьеры предназначены для пропускания водяного пара и
испарение и дать высохнуть строительной конструкции.
Зачем нужен пар? Замедлители?
Основной причиной замедления прохождения водяного пара через ограждающую конструкцию здания является предотвращение конденсации водяного пара обратно в жидкая форма внутри полостей строительной конструкции.
Где пар? Установлен ретардер?
Местный климат и потребности здания в отоплении / охлаждении определяют где установлен замедлитель парообразования. Место установки замедлителя пара в первую очередь зависит от местного климата и потребностей здания в отоплении и охлаждении.
Для зданий с отопительным климатом,
антипар размещается на внутренней или теплой стороне ограждающей конструкции.Причина в том, что
холодный воздух снаружи будет удерживать меньше влаги, чем теплый воздух внутри здания. Это теплый влажный воздух внутри здания, который может попасть в оболочку здания и конденсироваться при контакте с более холодной поверхностью,
обычно на тыльной стороне обшивки внешней стены. Это называется «первая поверхность уплотнения». При наличии пароизолятора внутри и паропроницаемого воздухозаборника снаружи любой водяной пар
то, что конденсируется внутри, сможет испаряться и высыхать через проницаемый воздухозаборник наружу.
В холодных климатических условиях пароизоляцию следует размещать снаружи ограждающей конструкции здания. В прохладном климате наружный воздух
теплее и потенциально может содержать больше водяного пара, чем внутренний воздух. Размещение пароизолятора снаружи уменьшит движение водяного пара снаружи от попадания внутрь ограждающей конструкции.
Любой пар, который попадает в стены или конструкцию крыши, может испаряться внутрь и, следовательно, высыхать до того, как влага может привести к появлению плесени, грибка и гниения.
Почему очень низкий проницаемость пены с закрытыми порами значительна?
Обеспечивает защиту от переноса влаги в изоляцию и связанной с этим возможности конденсации. Пар внутри (теплая сторона) не будет контактировать с холодными поверхностями, где может быть достигнута точка росы.
Дефекты воздушных барьеров менее критичны при использовании пен с закрытыми порами.
Уровень влажности в помещении легче поддерживать на нормальном уровне, если пар не может выходить в сухую зимнюю погоду.
Исследование пароизоляции и проницаемости
Альянс по производству аэрозольной полиуретановой пены (SPFA) опубликовал краткий отчет в качестве отраслевой услуги по основам передачи водяного пара и
как это влияет на оболочку здания. Отчет доступен для скачивания в формате PDF, его можно просмотреть с помощью Adobe Reader.
Demilic, крупный производитель пенопласта, обратился в Национальный исследовательский совет Канады (NRC) с просьбой провести всесторонние испытания их Heatlok. 0240 пенополиуретан. Целью испытаний было оценить паропроницаемость пенопласта при нанесении на гипс или бетонный блок.
Первым шагом в процессе тестирования было измерение проницаемости каждого продукта отдельно, а затем проверьте пенопласт и гипс или бетонный блок все вместе.Проницаемость тестировали с использованием метода ASTM E 96 (сухой стакан).
Сравнительные таблицы проницаемости
SPF на гипсе (гипсокартон)
Компонент или система | Толщина | Проницаемость |
Внешний гипс | 0. | 31,3 |
Пенополиуретан Heatlok 0240 | 1 “ | 1.91 |
Heatlok 0240 на внешнем гипсе | 1,5 “ | 1. |
Heatlok 0240 на внешнем гипсе (оценка) | 2 “ | 0.73 |
Heatlok 0240 на внешнем гипсе (оценка) | 3 “ | 0. |
Результаты теста NRC для Demilic:
«Результаты ясно показывают, что, когда системы HEATLOK 0240 наносятся непосредственно на внешнюю сторону гипсокартона, сопротивление паропроницаемости комбинированных стеновых компонентов намного выше (1,19 проницаемости), чем теоретический расчет (1.8 перм.), Полученного добавлением каждого компонента отдельно ».
СПФ на бетонный блок
Компонент или система | Толщина | Проницаемость |
Бетонный блок | 0. | 4,8 |
Пенополиуретан Heaklok 0240 | 1 “ | 2.5 |
Heatlok 0240 на бетонном блоке | 1,8 “ | 0. |
Heatlok 0240 на бетонном блоке (оценка) | 2 “ | 0.50 |
Heatlok 0240 на бетонном блоке (оценка) | 3 “ | 0. |
Результаты теста NRC для Demilic:
«Эти результаты ясно демонстрируют, что, когда HEATLOK 0240 наносится непосредственно на внешнюю часть стены из бетонных блоков, сопротивление паропроницаемости комбинированных стеновых компонентов (0,64 перм.) Намного выше, чем результаты испытаний, полученные при добавлении каждый компонент отдельно.Это интерфейсная «кожа», созданная пеной HEATLOK 0240 и стеновым компонентом, который существенно увеличивает результаты, полученные NRC ».
Связанная информация
Список литературы
Bynum, Richard, 2001. Справочник по изоляции , McGraw-Hill, New York, NY
Demilec Inc, 1999. Типовые детали для проектирования ограждающих конструкций здания : HEATLOK 0240
Лстибурек, Джозеф и Джон Кармоди, 1993. Справочник по контролю влажности , Van Nostrand Reinhold, New York, NY
Лстибурек, Джозеф, 1998. Руководство строителей: холодный климат , Building Science Corporation, Вестфорд, Массачусетс
Назад к темам по теории конвертов
Пена с открытыми и закрытыми порами: понимание проницаемости
Пористый пенопласт – это лучшая изоляция от тепла, пара, шума и других элементов.Двумя основными вариантами пористых пенопластов являются пенопласты с открытыми и закрытыми порами. Оба типа пены используются в повседневных продуктах, но из-за их структурных различий один тип пены может работать лучше, чем другой, в зависимости от желаемого применения.
Пена создается путем растворения газа под высоким давлением в полимере, когда он находится в жидком состоянии, вызывая образование тысяч крошечных пузырьков или ячеек в полимере. Каждая пена имеет различную структуру и проницаемость и действует по-разному в зависимости от области применения.Основное различие, которое заставляет производителей выбирать между материалами с открытыми и закрытыми порами, заключается в их проницаемости для различных элементов, что означает, насколько они эффективны в качестве барьеров.
Хотите визуализировать сравнение пенопласта с открытыми и закрытыми порами? Перейдите к инфографике внизу этой статьи: пена с открытыми и закрытыми ячейками.
Что такое пена с закрытыми порами?
В пенопласте с закрытыми порами ячейки похожи на крошечные воздушные карманы, собранные вместе в компактную конфигурацию, напоминающие надутые воздушные шары, плотно прижатые друг к другу.Из-за плотной упаковки ячеек пенопласт с закрытыми порами является полупроницаемым для пара, более жестким, способным выдерживать большее давление и примерно в 4 раза плотнее, чем пена с открытыми порами.
Что такое пена с открытыми ячейками?
Созданный с использованием того же процесса, что и пена с закрытыми порами, пена с открытыми порами считается полупроницаемой для пара, поскольку образование ячеек в материале прерывается, а не закрывается. Подобно отверстиям внутри губки, воздух может легче проникать в открытые ячейки, делая пену с открытыми ячейками более пористой и абсорбирующей, чем пену с закрытыми ячейками.
Пена с закрытыми порами воздухонепроницаема?
Пена с закрытыми порами является лучшим воздушным барьером, чем пена с открытыми порами, и может использоваться для регулирования воздушного потока, поскольку она менее проницаема. Например, пена с закрытыми порами может быть эффективной прокладкой или уплотнением для контроля микроклимата, не позволяя горячему наружному воздуху попадать в помещение с кондиционером. Пена с открытыми порами более эффективна для фильтрации, чем пена с закрытыми порами, потому что она позволяет воздуху проходить через нее. Например, пена с открытыми порами является подходящим воздушным фильтром для двигателя, поскольку она может улавливать пыль и загрязняющие вещества, но не ограничивать поток воздуха.
Является ли пена с закрытыми порами водонепроницаемой?
Когда дело доходит до предотвращения прохождения водяного пара, закрытые ячейки более полезны, чем пены с открытыми ячейками. Пена с закрытыми порами более непроницаема для воды, пара и воздуха. Следовательно, меньше вероятность того, что на него структурно повлияют эффекты, связанные с повреждением водой: плесень, грибок, гниль и бактерии.
Поглощает ли пена с открытыми ячейками воду?
Пена с открытыми порами имеет более высокую вероятность поглощения воды, чем пена с закрытыми порами, что может привести к ухудшению рабочих характеристик, особенно для термических применений.Хотя инженеры не всегда стремятся к идеальной паронепроницаемости, свободный поток воды может нанести вред конструкции и может задерживать воду.
Если окружающая среда влажная, лучше всего работать с пенопластом с закрытыми порами, поскольку он с меньшей вероятностью впитает воду и станет неэффективным изолятором. Например, пена с закрытыми порами лучше подходит для обертывания резервуара для воды, чем пена с открытыми порами.
Пенопласт с открытыми и закрытыми порами для теплоизоляции
Пенопласт с открытыми и закрытыми порами является эффективным теплоизоляционным материалом.Однако в зависимости от области применения и факторов окружающей среды один тип пены может работать лучше, чем другой, особенно если окружающая среда влажная. Например, пена с открытыми порами может не работать оптимально для термических применений во влажной или влажной среде: влажная губка не будет эффективно удерживать или отклонять тепло, поскольку вода является плохим изолятором по сравнению с воздухом.
Подходит ли пена с закрытыми порами для звукоизоляции?
Пенас открытыми порами лучше поглощает и снижает звук, чем пена с закрытыми порами, благодаря своей проницаемости.Открытая структура ячеек позволяет звуковым волнам взаимодействовать с остаточными мембранами, так что энергия преобразуется в тепло, поглощая часть звука.
В чем разница в стоимости между пенопластом с закрытыми и открытыми порами?
Пенопласт с открытыми порами значительно экономичнее пены с закрытыми порами. Достичь такой же теплоизоляции из пенопласта с открытыми порами дешевле, поскольку для его изготовления используется меньше пластика, а воздух внутри пенопласта с открытыми порами является эффективным изолятором.
При выборе материала стоимость часто является фактором, влияющим на решение инженеров и производителей так же, как и свойства конкретной пены.
Выбор правильного типа пены для вашего производственного применения
В широком смысле пена с закрытыми ячейками является полугерметичным, ограничивает поток воздуха и менее водопоглощает, в то время как пена с открытыми ячейками полупроницаема и позволяет воздуху и воде проходить через нее. В зависимости от вашей ситуации один может быть более эффективным препятствием, чем другой.Если у вас возникли трудности с поиском пористого пенопласта, подходящего для вашего применения, проконсультируйтесь с экспертом Polymer Technologies, который поможет вам.
Инфографика сравнения пенопласта с открытыми и закрытыми ячейками
Противопенено-пенная изоляция с открытыми ячейками и закрытыми ячейками
Открытые vs Закрытые Изоляция из пенопласта
В чем разница между пеной с открытыми и закрытыми порами
изоляция?
Пена для распыления
подразделяется на два типа: «с открытыми ячейками» и
“закрытая ячейка.Открытые ячейки – это легкий пенопласт, гибкий,
и отличный воздушный барьер. Пены с открытыми ячейками чаще всего
диапазон плотности от 0,5 фунта до 0,7 фунта. Пена с закрытыми порами выше
пена плотности, и барьер влаги. Пена с наиболее закрытыми порами
используется для диапазона изоляции от 1,7 фунта до 2 фунтов. Закрытая ячейка
пена может достигать плотности 3 фунта, что часто используется в экстерьере
крыши (например, Superdome).
Основные различия между пенопластом с открытыми и закрытыми порами:
влагопроницаемость, R-значение и гибкость. Закрытая ячейка
пена – это влаго-пароизоляция. Это означает, что это
не позволит влаге проходить сквозь пену. Открытая ячейка
пена не является барьером для паров влаги и пропускает влагу
пройти. Закрытая ячейка имеет более высокое значение R, чем открытая ячейка.R-ценность не должна быть определяющим фактором, когда дело доходит до
пена для распыления см. соотношение между значением R и значением производительности. Закрытая ячейка
пена составляет около 6,6 на дюйм по сравнению с 3,8 на дюйм в
открытая ячейка. Однако обе пены являются воздушными преградами, и это
воздушный барьер, который делает пену такой отличной изоляцией.
Пена с закрытыми порами намного дороже пены с открытыми порами.
Пена с закрытыми порами более жесткая.
Итак, какая пена лучше? Лучшая пена для использования должна быть определяется приложением. Некоторые подрядчики по производству распылительной пены рекомендуют пену с закрытыми порами для некоторых применений, поскольку их пена с открытыми порами имеет свойство впитывать влагу. Все пены не созданы равными. В некоторых случаях применения пенопласт с открытыми ячейками Пароизоляционная краска – лучшее применение.
Запрещается использовать пенопласт с закрытыми порами на деревянных настилах крыши.
Влага будет задерживаться в деревянном настиле крыши, если вы
должны были нанести пенопласт с закрытыми порами на нижнюю часть крыши
дом и крыша протекает. Это может привести к гниению
крыши до того, как течь в крыше будет обнаружена. Открыть
ячеистая пена не является пароизоляцией, поэтому пропускает воду
течет крыша, чтобы просачиваться сквозь пену в пространство внизу, чтобы
это лучший выбор для большинства жилых помещений.
В большинстве случаев энергоэффективность зданий будет
одинаково независимо от того, используете ли вы пену с открытыми или закрытыми порами.
Пена с открытыми порами более гибкая, чем пена с закрытыми порами. Когда
элементы каркаса расширяются и сжимаются в зависимости от погоды, или
под воздействием сильного ветра, пена с открытыми ячейками будет изгибаться вместе с
состав. Пена с закрытыми порами, однако, не сгибается,
микротрещины, где он был соединен со стойками и стенами
и потеряете некоторые из его преимуществ.
Пена с открытыми ячейками обычно больше подходит для жилых помещений.
применения из-за его проницаемости для влаги или
способность влаги проходить через утеплитель. (Видеть
выше) Большинство домов построено из дерева, и именно в этом
причина, влагопроницаемость, это основная причина, почему
пена с открытыми порами лучше всего подходит для вашего дома.
Пенопласт с закрытыми порами лучше всего использовать в холодильной, морской,
промышленные, кровельные или, когда мы пытаемся решить
проблема с влажностью, и проблема не может быть решена с помощью пара
антиадгезионная краска.Пенопласт с закрытыми порами обычно встречается на открытом воздухе.
Parsons Construction Group | Пеноизоляция
ПЕНА
В. В чем разница между закрытой ячейкой и открытой ячейкой?A. Пенопласт с закрытыми порами обеспечивает превосходные тепловые характеристики, а его текстура очень жесткая. Он имеет более высокое значение «R», потому что он имеет большую плотность (около 2 фунтов на кубический фут) и привлекает домовладельца, потому что он не будет мешать изоляции, которая в настоящее время находится в доме, и может существовать в вентилируемом помещении. область.Дополнительным преимуществом является то, что он не пористый, поэтому вода не может пройти через этот материал. Иначе известный как пароизоляция. Пена с закрытыми порами обычно состоит из гидрофторуглеродов (ГФУ), которые обладают высоким потенциалом влиять на глобальное потепление. Учитывая эти высокие риски, многие «зеленые» подрядчики и сознательные домовладельцы не будут использовать этот тип пенопласта. Эти расчеты были сделаны консультантом по экологическому строительству.
Открытая ячейка – это мягкий пористый материал, который разрывается, и воздух заполняет открытые пространства внутри материала.Плотность пенопласта с открытыми порами обычно составляет от 0,50 до 0,75 фунта на кубический фут. Эту пену необходимо заключить в оболочку, поскольку она проницаема для пара. Краска, замедляющая образование паров, поверх гипсокартона может быть использована для улучшения проницаемости пены. Это также воздухопроницаемый материал, поэтому он не выдерживает образования плесени и грибка. Пенопласт с открытыми порами также является гораздо более доступным вариантом, чем с закрытыми порами, но не рекомендуется в таких местах, как нижний слой, поскольку пористость материала может намокнуть и свести на нет его тепловые характеристики.Пена с открытыми порами хорошо подходит для усиления звукоизоляции внутренних стен.
** Parsons может обеспечить нанесение пены с закрытыми и открытыми порами. Наша пена с открытыми порами содержит ингибитор плесени и борную кислоту, которая является инсектицидом. Он имеет класс 1 и может применяться как внутри, так и снаружи дома или здания. У нас также есть впрыскиваемая пена с открытыми ячейками, которая предварительно расширяется на выходе из пистолета для нанесения, поэтому ее можно безопасно установить, не опасаясь повреждения какой-либо части конструкции в доме.В зависимости от проблемных областей наши технические специалисты точно знают, какие продукты использовать. Это бесплатная услуга, которая включает в себя тепловизионное сканирование всего дома, включая подвал, для определения участков с недостаточной изоляцией или других проблем, требующих решения. **
В. Какие значения «R» имеют закрытые ячейки а открытую камеру подарить?
A. Чем больше плотность пены, тем большее значение R на дюйм она несет. Следовательно, пена с закрытыми порами имеет большее значение «R» на дюйм.(1/2 фунта на куб. Фут против примерно 2 фунтов на куб. Фут). При чуть большем количестве продукта можно применить пенопласт с открытыми порами, чтобы иметь такое же значение ‘R’, как и пена с закрытыми порами с гораздо менее дорогая цена. В узких помещениях следует использовать пенопласт с закрытыми порами, чтобы получить лучшее значение «R», поскольку можно использовать меньше продукта.
В. Могу ли я использовать пенопласт для потолка?
A. В зависимости от того, какие преимущества вы ищете, вы можете нанести пену на потолок, однако это может стать довольно дорогим.Убедитесь, что вы провели исследование, чтобы найти опытную и уважаемую компанию. Наниматели должны понимать конструкцию здания и убедиться, что они применяют пену во ВСЕХ местах утечки воздуха. Недостатком использования пенопласта с закрытыми порами в потолке является то, что он расширяется при выходе из пистолета-распылителя, поэтому он может оказывать разрушающее воздействие на здание, например, структурное движение крыши. Преимущество состоит в том, что из-за своей плотности пенопласт с закрытыми порами придает зданию структурную целостность и прочность.
** Альтернативный метод, который значительно дешевле, не требует смешивания химических соединений и не требует удаления какой-либо существующей изоляции, представляет собой запатентованный изоляционный продукт, называемый «Отражающая оптимизирующая изоляция».Он сделан специально для чердака и на 99% состоит из меди. Установка выполняется быстро и проводится поверх существующей изоляции, не опасаясь повреждения частей здания. **
В. Есть ли что-нибудь вредное в пенопласте?
А . Практически все пены имеют химическую основу – аэрозольная полиуретановая пена (SPF), жесткий полиуретан, аэрозольный и жесткий полиизоцианурат (полиизо), экструдированный полистирол (XPS) и пенополистирол (EPS)… Но пока соблюдается правильный протокол для конкретного типа пенопласта, домовладелец не должен подвергаться воздействию этих химикатов, пока они находятся в процессе отверждения.
Если после процесса установки проблема больше связана с качеством воздуха в помещении, проблема должна быть решена с помощью системы отопления и охлаждения в доме. Во многих системах используется высокоэффективный «воздухообмен (r)», предназначенный для кондиционирования входящего наружного воздуха и выходящего отработанного воздуха. Таким образом, вы можете построить чрезвычайно энергоэффективную внешнюю оболочку, используя высокоэффективную изоляцию из распыляемой пены, при этом обеспечивая контролируемую и энергоэффективную вентиляцию.
Будьте осторожны при упоминании продуктов на основе сои или клещевины.Процент экологически чистого материала, который требуется по закону для того, чтобы компании заявляли об этом, пугающе низок. По данным Министерства сельского хозяйства США, распыляемая пена должна состоять всего на 7% из возобновляемых ресурсов (например, касторового масла или сои), чтобы их можно было назвать пеной на биологической основе.
Чтобы избежать этого и других «заявлений», ознакомьтесь с информацией в паспорте безопасности материалов (паспорт безопасности материала и данных), чтобы увидеть, из чего он состоит, а также другие факты, такие как данные об опасности и реактивности.
** Мы можем применить любой тип изоляции. Одна из используемых нами систем – это система впрыска полимерного аминопласта из пеноматериала, обладающего одним из самых низких уровней содержания формальдегида, доступных для пенопласта. Чтобы увидеть информацию о паспорте безопасности этой пены, щелкните здесь. Опасные компоненты не существуют выше уровня 0,1%, поэтому аппликаторы обычно не носят защитные маски и защитные костюмы, как большинство аппликаторов пены. У нас также есть пена с закрытыми порами. **
В. Может ли пенная изоляция повредить стены в моем доме?
А. Пенопласт с закрытыми порами может повредить стены в вашем доме, но если его применяет опытный профессионал, не о чем беспокоиться. Из-за расширения пены после того, как она выходит из пистолета-аппликатора, необходимо принять точные меры, чтобы не повредить структуру. Распыляемая пена с открытыми ячейками на выходе уже расширяется, поэтому смещение не вызывает беспокойства, но может не подходить для определенных климатических зон или структур.
В. Может ли со временем образоваться плесень, если установлена пенная изоляция?
A. Если пенопласт установлен правильно с герметичным уплотнением, проблем с ростом плесени возникнуть не должно. Поскольку закрытые ячейки непроницаемы для влаги, даже при погружении в воду плесень не способна расти. Паропроницаемость пены с открытыми порами увеличивает ее способность высыхать при контакте с водой. А из-за своей пористости он не будет удерживать влагу, позволяя ей течь через себя.Некоторые пеноматериалы с открытыми порами также снабжены ингибитором плесени для дополнительной защиты от этого случая.
** Наша система впрыска пены с открытыми ячейками оснащена ингибиторами плесени, а также содержит пену с закрытыми порами. **
В. Где лучше всего установить пену в моем доме?
A. В зависимости от области, в которую будет закачиваться пена, оценщик определяет наиболее эффективный и выгодный способ укладки пены. Мы прилагаем дополнительные усилия, чтобы обеспечить ваше удовлетворение, например, заменяя обшивку дома, когда заявка будет завершена.Или смешайте почти точно подобранную смесь кирпичного раствора в тавровые швы, сделав их бесшовными и непритязательными, если просверлить отверстия в подложке, где была установлена пена.
В. Можно ли провести проводку через стену после установки пенопласта?
A. Прокладка электропроводки перед изоляцией вашего дома – это идея, но да, это можно сделать с помощью пенопласта с открытыми порами. Открытая ячейка менее жесткая, поэтому ее легче разрезать горячим ножом. Пенопласт с закрытыми порами не так прост, он намного плотнее и жестче.Другой способ – установить вертикально в стены электрический кабелепровод и закрыть его концы, прежде чем заполнять их пеной. Таким образом, при необходимости можно легко получить доступ к проводам с одного уровня на другой.
В. Сколько стоит пеноизоляция и монтаж?
A. Существует много факторов, влияющих на цену проекта по изоляции пеной:
- Это новое строительство или модернизация? (Новое строительство обычно дешевле из-за того, что применение и объем работ, как правило, проще, если точки доступа еще не закрыты.)
- Площадь проекта (как правило, при больших коммерческих заказах цена ниже, потому что заказ больше, поэтому мы получаем более низкую ставку при покупке продукта).
- Тип изоляции. (Пена с закрытыми порами дороже пены с открытыми порами)
** К счастью, Parsons предоставит вам бесплатное, без обязательств, ценовое предложение, действительное в течение 30 дней после его получения. Предложение включает БЕСПЛАТНЫЙ энергоаудит, при котором оценщик начинается с нижней части дома вплоть до чердака с тепловизионной камерой, чтобы показать вам, где не хватает эффективности, а где теряется энергия.Звоните 513.278.2000. Жителям Флориды звоните по телефону 407-543-6000. Изоляция
– Стоит ли в этой ситуации добавлять пароизоляцию?
Это универсальная строительная спецификация: внешние стены над землей, покрытые водным барьером Тайвек, бетонные фундаменты под землей, покрытые асфальтом, основной дренаж по периметру вокруг фундамента дома, затем сайдинг, обшивка дома, подкладка или OSB, затем шпильки, ЗАТЕМ установка летучих мышей или вдува в утеплитель и ЗАТЕМ пароизоляцию Сверху летучих мышей.Нужна вентиляция, заложенная в их фундамент и стены. Многие вещи на самом деле допускают некоторый воздушный поток, но вы должны понимать, когда и где это работает, что разрешено в зданиях города или округа и спецификациях кодов.
Для цокольного этажа требуется надлежащая дренажная система по периметру или фундаменту, перфорированная труба, расположенная прямо у основания стен, а не на основании. Ландшафтная ткань, покрывающая дренажную трубу по всему периметру, а затем дренажная каменная насыпь. Вода не должна стекать НА Фундамент дома!
Вентиляция между подвальным помещением и подвалом имеет решающее значение.Вентиляторы чердака, вытяжные вентиляторы прогоняют воздух через стены, чтобы остановить плесень, грибок и сухую гниль. Вентиляторы не нужны, если понимаешь, что тепло поднимается и холодный воздух поступает снизу. Вентиляция – это так важно!
Дренаж, правильно спроектированный и выполненный для вашего фундамента, – это самое главное, что вам нужно сделать. В противном случае все остальное либо помогает, либо является пластырем.
На рисунке показано, что вы готовы установить биты изоляции или напыляемую изоляцию, а затем установить пластик в качестве пароизоляции.
Меня больше всего беспокоит дренаж за пределами этого подвала. Если есть какие-либо признаки влажности на этих 2X6 или бетонном полу, вам нужно сначала решить эту проблему. У вас есть низкое место в подвальном этаже, где есть СЛИВ?
Внимательно осмотрите периметр своего дома. ВСЕ склоны должны иметь уклон от фундамента. Убедитесь, что подрядчик действительно установил надлежащую дренажную систему фундамента. Убедитесь, что подрядчик нанес асфальт на бетон фундамента между внешней стороной фундамента и между грунтом или камнем.
Почему вы удалили старую изоляцию? Было ли мокро? Большой красный флаг!
Примечание: Я очень люблю вентиляцию! Но вся причина пароизоляции – это конденсация. Пластиковый барьер будет отводить конденсат ВНЕЗАПНО от вашего сайдинга или внутренней обшивки. Конденсация будет происходить независимо от того, что происходит между двумя поверхностями с разной температурой. Пароизоляция защищает вашу стеновую панель, собирая конденсат, в отличие от стеновой панели, собирающей конденсат.Уплотнение, вероятно, было препятствием для воздушного потока.
DuPont ™ Tyvek® Мифы и факты
Герметичность, изоляция и управление водными ресурсами – приоритеты для профессионалов строительства. Но мифы обо всех трех могут помешать созданию жилых домов и коммерческих структур, которые будут более прочными, более энергоэффективными и менее дорогостоящими в эксплуатации.
В этой статье эксперты DuPont Building Science раскрывают три распространенных мифа и предоставляют информацию о строительных оболочках подрядчикам, строителям, консультантам по габаритам и спецификаторам.
Миф 1: погодный барьер может сделать дом «слишком тесным»
Современные энергетические кодексы и стандарты по-прежнему подчеркивают важность энергоэффективности. Имея это в виду, остается неизменным эмпирическое правило: «стройте плотно, вентилируйте правильно». Проще говоря, механическая вентиляция является более важным фактором для сегодняшних домов, построенных с использованием сложных энергосберегающих функций. Основной способ установить оптимальную степень герметичности – через ограждающую конструкцию здания.
Факт: Тайвек
® дает строителям контрольDuPont ™ погодные барьеры Tyvek ® и системы гидроизоляции DuPont ™ помогают строителям контролировать воздушный поток, обеспечивая как энергоэффективность, так и комфорт. Фактически, испытания дверных вентиляторов в домах, обернутых DuPont ™ Tyvek ® WRB, показали естественную скорость воздухообмена в час, которая находится в пределах допустимых норм в соответствии со стандартом ASHRAE Standard 62.
Миф 2: Пароизоляция – лучшая водонепроницаемая
Помимо воздухонепроницаемости, предотвращение проникновения воды – еще одна ключевая функция ограждающей конструкции здания.Специалисты в области строительства часто сосредотачиваются на управлении влагой с помощью пароизоляции, но в некоторых случаях барьеры действительно могут создавать проблемы с влажностью.
Во-первых, пароизоляция регулирует диффузию водяного пара, наименьшего источника влаги в зданиях. Во-вторых, обычно требуется пароизоляция внутри оболочки, а дождь (основной источник влаги для стен над уровнем земли) идет снаружи. Наконец, если влага попадает внутрь стеновой системы через утечку, разрыв трубы или обнажение во время строительства, пароизоляция (особенно если она расположена не на той стороне стены) предотвратит высыхание.Это может создать идеальные условия для плесени, гниения и коррозии.
Факт: Тайвек® помогает стенам быстрее сохнуть
Уникальное материаловедение Тайвек ® позволяет ему быть как водонепроницаемым, так и паропроницаемым. Это воздухопроницаемый неперфорированный продукт с микроскопическими порами, через которые проходят пары влаги.
Таким образом, хотя он очень эффективен в предотвращении проникновения воды в больших объемах, он также является проницаемым или воздухопроницаемым, позволяя любой воде, попавшей в стенную систему, снова выйти обратно в виде водяного пара.Эта способность выводить нежелательную влагу может позволить стенам высыхать быстрее, чтобы защитить их от повреждения водой изнутри. Это важный дополнительный слой защиты, который не может обеспечить пароизоляция.
Миф 3: Изоляция устраняет необходимость в погодных барьерах
Максимизация R-ценности изоляции начинается с четкого понимания динамики ее характеристик. Установленное значение R теплоизоляции достигается только тогда, когда воздух, находящийся внутри полости стены, остается сухим и не движется.Это означает, что даже относительно легкий ветер со скоростью 5 миль в час может снизить до 40% первоначально установленной R-ценности изоляции, если она проникает в трещины, щели и небольшие отверстия в конструкции.
Влага также может лишить изоляцию R-значения. Независимо от толщины влажная изоляция сохраняет менее 40% своего эффективного R-значения **. Помогая защитить стены как от проникновения воды, так и от влаги, переносимой воздухом, Tyvek® также помогает защитить изоляцию внутри стен.
Факт: Тайвек
® может помочь защитить R-значение Атмосферные барьерыTyvek ® предназначены для предотвращения проникновения воздуха и воды в стенную систему.Сохраняя изоляцию стены сухой и без сквозняков, она позволяет изоляции работать с ее полным установленным значением R. Защита от воздуха и влаги помогает сохранить тепло и комфорт внутри, где бы они ни были, а также помогает обеспечить, чтобы изоляция действительно обеспечивала R-ценность и повышенную энергоэффективность, за которую вы заплатили.