Глубина промерзания грунта, промерзания грунта нормативная, реальная, фактическая, расчётная, грунт под фундамент дома, нормативные глубины СНиП, типов грунтов, нормативы, неравномерность, уменьшить глубину сезонного промерзания, рассчитать, расчёт глубин, почва, земля, в разных регионах, областях, городах.
На грунт значительно влияет уровень подземных вод. Глубина промерзания должна быть меньше глубины залегания грунтовых вод, но когда показатель глубины промерзания превышает показатель глубины залегания грунтовых, происходит их промерзание из за чего и происходит вспучивание грунта
Говоря простым языком, каждую зиму вода в грунте замерзает, превращается в лёд и расширяется, а значит увеличивает первоначальный объём грунта, что может негативно сказаться на фундаменте и на возведённом на нём доме это и называется пучение грунта.
Увеличенный в объёме грунт может воздействовать на фундамент с большой силой, порой в десятки тонн.
То есть промерзания грунта вызывает его пучение и тем самым негативно влияет на фундамент дома,а значит и на эксплуатацию дома для того чтобы этого избежать нужно его закладывать на глубину ниже
Глубина промерзания грунта зависит от двух главных факторов:
1.от типа грунта
2.от климатических условий, а именно от среднегодовых температур ( чем ниже температура, тем больше глубина промерзания грунта)
Нормативные глубины промерзания СНиП (таблица) в см. разных городов и типов грунта
Город | [глина,суглинки] | [пески,супеси] |
Архангельск | 160 | 176 |
Астрахань | 80 | 88 |
Брянск | 100 | 110 |
Волгоград | 100 | 110 |
Вологда | 140 | 154 |
Воркута | 240 | 264 |
Воронеж | 120 | 132 |
Екатеринбург | 180 | 198 |
Ижевск | 160 | 176 |
Казань | 160 | 176 |
Кемерово | 200 | 220 |
Киров | 160 | 176 |
Котлас | 160 | 176 |
Курск | 100 | 110 |
Липецк | 120 | 132 |
Магнитогорск | 180 | 198 |
Москва | 120 | 132 |
Набережные Челны | 160 | 176 |
Нальчик | 60 | 66 |
Нарьян Мар | 240 | 264 |
Нижневартовск | 240 | 264 |
Нижний Новгород | 140 | 154 |
Новокузнецк | 200 | |
Новосибирск | 220 | 242 |
Омск | 200 | 220 |
Орел | 100 | 110 |
Оренбург | 160 | 176 |
Орск | 180 | 198 |
Пенза | 140 | 154 |
Пермь | 180 | 198 |
Псков | 80 | 88 |
Ростов-на-Дону | 80 | 88 |
Рязань | 140 | 154 |
Салехард | 240 | 264 |
Самара | 160 | 176 |
Санкт-Петербург | 120 | 132 |
Саранск | 140 | 154 |
Саратов | 140 | 154 |
Серов | 200 | 220 |
Смоленск | 100 | 110 |
Ставрополь | 60 | 66 |
Сургут | 240 | 264 |
Сыктывкар | 180 | 198 |
Тверь | 120 | 132 |
Тобольск | 200 | 220 |
Томск | 220 | 242 |
Тюмень | 180 | 198 |
Уфа | 180 | 198 |
Ухта | 200 | 220 |
Челябинск | 180 | 198 |
Элиста | 80 | 88 |
Ярославль | 140 | 154 |
Нормативная глубина промерзания грунта наглядно представлена на карте(рисунке)
Нормативная глубина промерзания грунта, представленная в этой таблице и карте – это максимальная глубина
Фактические или реальная глубина промерзания грунта может отличатся от нормативных, так нормативы составлены для самых худших вариантов, то есть без снежного покрова
Снег и лед – хорошие теплоизоляторы, то есть снежного покрова уменьшает глубину промерзания.

Глубина промерзания грунта в различных регионах
Глубина промерзания грунта является одной из основных характеристик, учитываемых при выборе конструктива фундамента строящегося дома. Но к сожалению среди частных застройщиков не редко случаются ошибки при попытках учесть значение этой характеристики. А именно: например, человек услышал, что ленточный фундамент нужно делать не выше глубины промерзания для его климатической зоны. Он заходит в интернет, вводит в поисковик фразу «какая глубина промерзания, к примеру, в Московской области» находит какую-то цифру (около 1,3-1,4 метра) и начинает копать траншею на эту глубину. При этом он не догадывается, что найденное им значение — это нормативная глубина промерзания.
Но ведь при определении геометрических характеристик фундамента нужно учитывать не нормативное значение, а расчётное, которое определяется с учётом различных коэффициентов, характеризующих такие параметры, как конструкция цокольного перекрытия в доме и средняя температура в помещении в холодное время года. Ведь сам по себе отапливаемый дом прогревает грунт вокруг себя, и промерзание по его периметру порой значительно меньше нормативной величины. И это можно будет увидеть ниже.
Чтобы узнать нормативные и расчётные значения глубины промерзания грунта в различных условиях, выберите ниже Ваши страну, регион и город и нажмите на кнопку «Определить глубину промерзания». Результаты будут представлены в виде двух таблиц. Если интересующего Вас населенного пункта в списке нет, выбирайте ближайший и желательно находящийся севернее от Вас.
Выберите странуРоссияАзербайджанАрменияБелоруссияГрузияКазахстанКыргызстанМолдоваТаджикистанУзбекистанУкраина
Выберите регион
Выберите город
Таблица 1 заполняется на основании формулы из СП 22.13330.2011 (актуализированная версия СНиП 2.02.01-83*):
dfn = d0∗√Mt ,
где dfn — нормативная глубина промерзания,м;
d0 — величина, учитывающая тип грунта и равная для глин и суглинков — 0,23 м; для супесей и мелких и пылеватых песков — 0,28 м; для песков средней крупности, крупных и гравелистых — 0,30 м; для крупнообломочных грунтов — 0,34 м;
Mt — безразмерный коэффициент, который определяется по СП 131.13330.2012 (актуализированная версия СНиП 23-01-99*) как сумма абсолютных значений среднемесячных отрицательных температур за зимний период в конкретном регионе.
Примечание: СНиП допускает использование данной формулы при глубинах промерзания до 2,5 метров. При большем промерзании, а также в высокогорных районах с резкими перепадами рельефа и нестабильными климатическими условиями значение dfn должно уточняться специальным теплотехническим расчётом. В рамках данного калькулятора мы на нём не останавливаемся.
Таблица 2 расчётных глубин промерзания (df) заполняется на основании формулы из того же СП 22.13330.2011 (актуализированная версия СНиП 2.02.01-83*):
df = kh∗dfn ,
где kh — коэффициент, который учитывает тепловой режим в помещении в холодное время года. Значения его для отапливаемых помещений показаны в следующей табличке:
Для неотапливаемых помещений коэффициент
Если калькулятор оказался для Вас полезным, пожалуйста нажмите на одну или несколько социальных кнопочек. Это очень поможет дальнейшему развитию нашего сайта. Огромное спасибо!!!
Глубина промерзания грунта в Новосибирске. Как промерзает грунт
Как происходит промерзание грунта?
Каждую зиму грунт промерзает на некоторую глубину, при этом содержащаяся в грунте вода замерзает, превращается в лед и расширяется, тем самым, увеличивая объем грунта. Этот процесс называется пучение грунта. Увеличиваясь в объеме, грунт действует на фундамент дома, сила этого воздействия может быть очень велика и составлять десятки тонн на квадратный метр поверхности фундамента. Воздействие такой силы может двигать фундамент, нарушая нормальное положение всего здания. Таким образом, промерзание грунта оказывает негативное влияние. Для того, чтобы силы пучения не действовали на основание фундамента, нужно его закладывать на глубину ниже глубины промерзания.
От чего зависит глубина промерзания грунта?
Глубина промерзания грунта в Новосибириске: 2,20м — 2,42м
Глубина промерзания грунта
зависит, во-первых, от типа грунта: глинистые грунты промерзают чуть меньше песчаных, потому что обладают большей пористостью. Пористость глины колеблется от 0,5 до 0,7, в то время как пористость песка — от 0,3 до 0,5.Во-вторых, глубина промерзания зависит от климатических условий, а именно от среднегодовой температуры: чем она ниже, тем больше глубина промерзания.
Нормативные глубины промерзания (по данным СНиП) в сантиметрах для разных городов и типов грунта представлены ниже в таблице.
Глубина промерзания грунта в Новосибирке составляет:
для глинистых грунтов (глина, суглинок) — 2,20 м
для песчаных грунтов (песок, супесь) — 2,42 м
Фактические глубины промерзания на самом деле будут отличаться от нормативных, приведенных в СНиП, потому что нормативные данные приведены для самого плохого случая — отсутствие снежного покрова. Нормативная глубина промерзания грунта
Как уменьшить влияние промерзания грунта?
Промерзание грунта можно уменьшить: для этого грунт вокруг дома утепляют. Лента хорошего утеплителя шириной 1-2 метра, уложенная вокруг дома, способна обеспечить минимальную глубину промерзания грунта, окружающего фундамент дома. Благодаря такому приему возможно заложение мелкозаглубленных фундаментов, которые закладываются на глубину выше глубины промерзания, но благодаря утеплению грунта остаются устойчивыми.
Глубина промерзания грунта – СибПоселки
Любое строительство априори начинается с земельных работ и устройства фундамента. Причем на выбор последнего и величину его заглубления влияет множество природных факторов, к которым относится и глубина промерзания грунта.
Процесс промерзания грунта
Вполне естественно, что в зимний, холодный период грунт оказывается промерзшим и зависит глубина промерзания от типа грунта и географического расположения, обуславливающего определенные климатические условия. Немаловажна так же и степень влажности грунта.
Опасность для фундамента, а значит и всего строения в целом, таится в превращении при минусовых температурах воды в лед, находящейся на глубине промерзания. Процесс этот характерен тем, что преобразуясь в лед, вода существенно изменяется в объеме (увеличивается порядка на 10%), изменяя тем самым объем грунта.
Это приводит к такому неприятному явлению как пучение грунта. То есть, грунт начинает вытеснять фундамент. Это происходит зимой, а весной, с наступлением тепла и таянием льда, происходит обратный процесс – затягивание основы строения. И тем больше пучение, чем больше воды находится в грунте. Такое опасное явление зачастую служит причиной деформации/разрушения фундамента. Силы вспучивания могут оказывать колоссальное давление на основу, причем все это происходит неравномерно. Нивелируют силы пучения заглублением фундамента на расстояние превышающие глубину промерзания грунта.
Что влияет на глубину промерзания грунта?
Поскольку на показатели глубины промерзания оказывают влияние климатические условия и тип грунта, то совершенно справедливо, что для каждого района она разная. Например, глубина промерзания грунта в Новосибирске будет существенно отличаться от глубины в других районах. В самой же Новосибирской области распространены следующие грунты:
- песчаный
- глинистый
- суглинки и супеси
- крупнообломочный грунт (осколки и обломки скальных пород)
- скалистый грунт
Если два последних ни вызывают нареканий при строительстве и являются вполне надежными (не впитывают влагу, не изменяются в объеме и т.д.), то для остальных, в обязательном порядке, следует знать глубину промерзания.
Нормативные показатели промерзания грунта:
Значения глубины промерзания грунта для Новосибирска, взятые из СНиП составляют:
- Суглинки и глины – 1.83 м
- Песок мелкий, супесь – 2.23 м
- Песок крупный, гравелистый – 2.39 м
Определены значения из учета:
– полного отсутствия снежного покрова на грунте
– минимально возможная температура для Новосибирска
– максимальная влажность грунта.
В реальности фактическая глубина несколько разнится от указанной СНиП. Это объясняется наличием снега на грунте, выступающего в роли отличного теплоизоляционного природного материала. Также сказывается, что под фундаментом отапливаемого в холодный период дома грунт, как правило, промерзает гораздо меньше. Все это позволяет вносить коррективы при устройстве основы дома и предполагать, что реальная глубина промерзания может существенно отличаться от официальной (на 20-40%).
Для чего нужно учитывать глубину промерзания грунта
В холодное время года земля промерзает на определенную глубину. Один и тот же природный процесс протекает по-разному в различных регионах РФ. Показатель промерзания зависит в первую очередь от климата и типа грунта.
Таблица: Глубина промерзания грунта по географическому положению и типу грунта
Географическое положение | Средний уровень промерзания земли | Уровень промерзания по типу грунта | ||
суглинки, глины | мелкий песок, супесь | крупный и гравелистый песок | ||
в Самарской области | 1,6 м | 1,54 м | 1,88 м | 2,01 м |
в Ростовской области (в Ростове на Дону) | 1,0 м | 0,66 м | 0,80 м | 0,86 м |
в Пермском крае | 1,9 м | 1,59 м | 1,93 м | 2,07 м |
в Башкортостане | 1,8 м | 1,70 м | 2,00 м | 2,30 м |
в Тульской области | 1,4 м | 1,34 м | 1,63 м | 1,75 м |
в Татарстане | 1,7 м | 1,59 м | ||
в Саратовской области | 1,5 м | 1,19 м | 1,44 м | 1,55 м |
в Ярославской области | 1,4 м | 1,48 м | 1,80 м | 1,93 м |
в Рязанской области | 1,36 м | 1,65 м | 1,77 м | |
в Кирове | 1,7 м | 1,60 м | 1,76 м | |
в Кемеровской области | 2,00 м | 1,90 м | 2,30 м | 2,40 м |
в Ставропольском крае (Ставрополь) | 0,68 м | 0,57 м | 0,70 м | 0,74 м |
Зачем нужны данные по глубине промерзания
Информация по глубине промерзания грунта необходима для расчета заглубления фундамента. Учитываются особенности местности и вид почвы, уровень подземных вод, морозное пучение. Почва являет собой естественное самостоятельное органически-минеральное тело, которое находится в поверхностном слое земной литосферы. А понятие грунта включает в себя не только почву, но и горные породы, и техногенные образования, и осадки.
Фундамент, как несущая строительная конструкция, принимает на себя нагрузки от конструкций, расположенных сверху. Нагрузки распределяются по основанию строения, то есть по грунтовым массивам определенного объема. Фундаменты чаще всего делают из камня, стали или бетона и закладывают ниже глубины промерзания. Такой подход позволяет предотвратить выпучивание (деформацию с расширением объема в результате замерзания воды) и избыточное давление на несущую конструкцию.
В зависимости от региона, типа грунта и соответствующей глубины заложения, строителям целесообразно использовать следующие виды фундаментов:
- по конструктивным особенностям — столбчатый, ленточный, свайный, плитный, континуальный;
- по выбранному материалу — каменный, железо- или ячеистобетонный.
Способы определения глубины промерзания
Что показывает глубина промерзания грунта? Число обозначает максимальное расстояние от поверхности до нулевой температурной отметки внутри почвы в сезон минимальных температур. Данные определяются инструментальным методом в течение десятилетия, заносятся в специальные таблицы. Вся вода, которая есть в почве, расширяется при преобразовании в лед. Вспученный таким образом грунт будет давить на фундамент. Чтобы избежать этих рисков, нужно делать закладку ниже уровня промерзания.
Наиболее точно глубину сезонного промерзания (и проникания в грунт нулевой температуры) определяют с помощью мерзлотомера (см. ГОСТ 24847-81 — Методы определения глубины сезонного промерзания). Указанная методика распространяется на песчаные, глинистые и крупнообломочные грунты – кроме скальных грунтов и вечной мерзлоты.
Специалисты по строительству, действующие согласно нормативов РФ, перед закладкой фундамента всегда учитывают глубину промерзания грунта. Этот усредненный показатель можно посмотреть на карте в строительных нормах и правилах (СНиП 2.01.01-82) или высчитать по формулам из СНиП 2.02.01-83, пункт 2.27. Таким образом, если вы будете углубляться в вопрос и искать информацию, вам пригодится официальная документация: строительные нормативы “Строительная климатология и геофизика”, а также “Основания зданий и сооружений”.
Определяем глубину промерзания грунта по формуле
В случаях, когда глубина промерзания грунта в вашем географическом регионе не превышает 2,5 метров, можно определить норматив сезонного промерзания по формуле.
dfn=dО ·√ Mt,
где
- dfn – сезонное промерзание грунта в метрах;
- dО – средневзвешенная величина в пределах глубины промерзания для неоднородных грунтов или цифра из таблицы, в метрах;
- Mt – коэффициент, выражающий суммарное значение абсолютных показателей среднемесячных зимних минусовых температур в определенном регионе (данные берут из СНИПа по климатологии и геофизике либо используют информацию гидрометеорологов).
Есть формула расчетного значения сезонной глубины промерзания грунта:
df = kh · dfn,
в которой kh является коэффициентом с учетом влияния теплового режима здания или сооружения. Значение kh в зданиях без отопления принимается за 1,1 (актуально для наружных и внутренних фундаментов только для районов с положительной среднегодовой температурой), а для внешних фундаментов отапливаемых зданий берется из таблицы. Если вас интересует расчет df для региона с отрицательной среднегодовой температурой, воспользуйтесь СП 25.13330: Основания и фундаменты на вечномерзлых грунтах.
Разница между нормативной и фактической глубиной промерзания
Представленные в таблицах данные по глубине промерзания грунта немного отличаются от реальных. Если провести эксперимент и замерить температуру грунта в холодное время года на произвольно выбранном участке, глубина промерзания может быть на 30% меньше, чем в нормативных таблицах. Особенно на этот показатель влияет фактор отопления здания в холодное время года. Глубина расположения нулевой температуры может находиться выше, если участок или дом имеют теплоизоляцию (тепло на участке сохраняет даже слой снега или льда, посаженные по периметру дома кустарники, специальные ленточные утеплители).
Сильное влияние на глубину промерзания оказывает уровень залегания грунтовых вод в данной местности. Чем выше расположен этот уровень, тем более значительное разрушающее воздействие может оказать замерзшая вода. Большое количество подземных вод делает грунт склонным к вспучиванию. Чтобы снизить нагрузку на фундамент, обеспечить снижение водяной подпитки и степень пучинистости почвы, применяют гидротехнические методы, в частности, обустраивают дренажные системы и глиняные экраны.
Закладка Постоянная ссылка.
Глубина промерзания грунта в Челябинске и Челябинской области
Промерзание почвы – распространение в почве в холодный период года нулевой и отрицательной температур.
Глубина промерзания зависит от типа почвы, от теплоемкости, теплопроводности и влажности почвы, от обработки почвы, от толщины снежного покрова и наличия растительности, предохраняющих почву от сильного выхолаживания. Глубина промерзания является одним из самых важных параметров при определении глубины заложения фундамента, а значит нахождение этого коэффициента обязательно при любом строительстве.
Максимальная глубина промерзания грунта в Челябинске = 2.4 метра
Под “максимальной” подразумевается глубина промерзания при наихудших условиях – влажный скальный грунт не покрытый снегом на открытой местности. Для глинистого грунта максимальное значение уменьшается в 1.47 раза, для песков – в 1,2, для гравия – в 1,1:- Суглинки и глины – 1,63 м
- Мелкий песок, супесь – 1,98 м.
- Крупный песок, гравий – 2,12 м.
Глубина промерзания зависит от суммы среднемесячных отрицательных температур, и рассчитывается по формуле:
H = √M*k, где М — сумма среднемесячных отрицательных температур за год, k — коэффициент по каждому из типов грунтов.
Значения нормативной глубины промерзания в Челябинске
Таблица нормативной глубины промерзания грунта по СП 131.13330.2018 (актуализация СНиП 23-01-99* «Строительная климатология»)
Суглинки и глины | Песок мелкий, супесь | Песок крупный, гравелистый | Крупно обломочные грунты |
1.63 м | 1.98 м | 2.12 м | 2.4 м |
Внимание. До недавнего времени для расчета глубины промерзания грунта использовался Свод правил СП 131.13330.2012 (СНиП 23-01-99*) утративший силу с 2020 года в связи признанием Приказа Минстроя России от 28.11.2018 N 763/пр, утвердившего новый Свод правил СП 131.13330.2018.
Таблица нормативной глубины промерзания грунта по СНиП 23-01-99 (устаревший)
Суглинки и глины | Песок мелкий, супесь | Песок крупный, гравелистый | Крупно обломочные грунты |
1.69 м | 2.06 м | 2.2 м | 2.5 м |
Значения расчетной глубины промерзания в Челябинске при различных типах строения
Постройки значительно снижают глубину промерзания. Так, при постоянном проживании в доме с полами по грунту, глубина промерзания грунта снижается почти в два раза.Тип грунта | Расчетная глубина промерзания грунта (м) при среднесуточной температуре воздуха внутри помещения до | ||||
0º С | 5º С | 10º С | 15º С | 20º С и более | |
Строения без подвалов с полами по грунту | |||||
– глина и суглинок | 1.56 | 1.38 | 1.21 | 1.04 | 0.87 |
– супесь, мелкий песок | 1.9 | 1.69 | 1.47 | 1.26 | 1.05 |
– Крупный песок, гравелистый | 2.03 | 1.81 | 1.58 | 1.35 | 1.13 |
– крупнообломочные грунты | 2.3 | 2.05 | 1.79 | 1.53 | 1.28 |
Строения без подвалов с полами по деревянным лагам | |||||
– глина и суглинок | 1.73 | 1.56 | 1.38 | 1.21 | 1.04 |
– супесь, мелкий песок | 2.11 | 1.9 | 1.69 | 1.47 | 1.26 |
– Крупный песок, гравелистый | 2.26 | 2.03 | 1.81 | 1.58 | 1.35 |
– крупнообломочные грунты | 2.56 | 2.3 | 2.05 | 1.79 | 1.53 |
Строения без подвалов с полами по утепленному цокольному перекрытию | |||||
– глина и суглинок | 1.73 | 1.73 | 1.56 | 1.38 | 1.21 |
– супесь, мелкий песок | 2.11 | 2.11 | 1.9 | 1.69 | 1.47 |
– Крупный песок, гравелистый | 2.26 | 2.26 | 2.03 | 1.81 | 1.58 |
– крупнообломочные грунты | 2.56 | 2.56 | 2.3 | 2.05 | 1.79 |
Строения с подвалами или с техническими подпольями | |||||
– глина и суглинок | 1.38 | 1.21 | 1.04 | 0.87 | 0.69 |
– супесь, мелкий песок | 1.69 | 1.47 | 1.26 | 1.05 | 0.84 |
– Крупный песок, гравелистый | 1.81 | 1.58 | 1.35 | 1.13 | 0.9 |
– крупнообломочные грунты | 2.05 | 1.79 | 1.53 | 1.28 | 1.02 |
Строения с неотапливаемыми помещениями | |||||
– глина и суглинок | 1.9 | ||||
– супесь, мелкий песок | 2.32 | ||||
– Крупный песок, гравелистый | 2.48 | ||||
– крупнообломочные грунты | 2.81 |
Под опорой, загруженной весом дома, грунт уплотняется и становится слабопучинистым. Если возведение фундамента и дома выполняется в один сезон, то глубину заложения фундамента на пучинистых грунтах можно уменьшить на 30-40 см. относительно расчетной глубины промерзания. Этот прием используют в регионах с глубиной промерзания более 2х метров. Для дополнительного уменьшения глубины бурения, вокруг дома выполняют грунтовую подсыпку.
Температура грунта в Челябинске по месяцам
Для лучшего понимания как происходит промерзание и оттаивание грунтов можно ознакомиться с данными приведенными в книге «Справочник работника газовой промышленности» 1989 года. В таблице переведены средние значения температуры грунта по месяцам по данным вытяжных термометров на глубине 0,4 0,8 метра.Таблица температур грунта в Челябинске по месяцам | ||
Месяц | 40 сантиметров | 80 сантиметров |
Средняя | 4,9 °С | 4,9 °С |
Январь | -2,2 °С | -0,1 °С |
Февраль | -2,5 °С | -0,9 °С |
Март | -1,6 °С | -0,7 °С |
Апрель | 0,7 °С | 0,3 °С |
Май | 5,7 °С | 3,8 °С |
Июнь | 10,4 °С | 7,9 °С |
Июль | 13,7 °С | 11,2 °С |
Август | 14,4 °С | 12,6 °С |
Сентябрь | 11,5 °С | 11,2 °С |
Октябрь | 6,8 °С | 7,9 °С |
Ноябрь | 2,2 °С | 4,3 °С |
Декабрь | -0,8 °С | 1,5 °С |
Средняя температура почвы в Челябинской области в зависимости от глубины
Средняя многолетняя температура почвы на глубинах (по вытяжным термометрам) по СП 20.13330.2016 (Приложение Г, таблица Г.1).Средняя температура почвы в Челябинской области в зависимости от глубины | |||||
t, °C на глубине 0,8 м | t, °C на глубине 1,6 м | t, °C на глубине 3,2 м | |||
tmax | tmin | tmax | tmin | tmax | tmin |
15,2 | -1,4 | 12,5 | 0,6 | 9,6 | 2,9 |
Глубина промерзания грунта – Stroim-svoi-dom.ru
Это один из важнейших параметров, которые необходимо учитывать при заложение фундамента. С учетом этого параметра, принимается решение о конкретной конструкции фундамента – ленточного, столбчатого, плитного, винтового и т.д.
Глубина промерзания грунта — это наибольшая величина, при которой температура почвы будет равна 0 градусам в период наиболее низких температур без снегового покрова по истории многолетних наблюдений.
Почему же так важно знать глубину промерзания
Ответ на этот вопрос следует из школьного курса физики. Всем известно, что вода при замерзании увеличивается в объеме, при этом находясь в толще грунта, она оказывает большое давление на подошву фундамента и пытается вытолкнуть его вверх.
На глубине промерзания температура земли не опускается ниже нуля градусов, следовательно вода не замерзает и не расширяется. По этой причине ленточные и столбчатые фундаменты закладывают на глубину промерзания грунта.
Как определить глубину промерзания грунта
Эту величину можно просчитать по формулам, которые представлены в СНиП 2.02.01-83* — «Основания зданий и сооружений» в пункте 2.27. Расчет по этим формулам сложен и подходит больше для лаборатории исследующих почвы.
Для частного застройщика, проще использовать старый СНиП 2.01.01-82 «Строительная климатология и геофизика», где в приложении можно посмотреть карту глубин промерзания грунта. Часть этой карты представлена у нас на сайте чуть ниже.
Земля под фундаментами регулярно отапливаемых зданий промерзает меньше, поэтому нормативную глубину можно уменьшить на 20%. Например, расчетный уровень промерзания грунта в Екатеринбурге составляет 190 см. При условии что вы постоянно будете проживать в своем доме фундамент можно закладывать на глубину ~ 150 см.
Такой параметр как промерзания грунта особенно важен на глинах, суглинках, супесях, т.к. они наиболее подвержены силам морозного пучения.
Глубина промерзания грунта в различных городах России, см.
Ханты-Мансийск | 240 |
Новосибирск, Омск | 220 |
Ухта, Тобольск, Петропавловск | 210 |
Орск, Курган | 200 |
Магнитогорск, Челябинск, Екатеринбург, Пермь | 190 |
Оренбург, Уфа, Сыктывкар | 180 |
Казань, Киров, Ижевск | 170 |
Самара, Ульяновск | 160 |
Саратов, Пенза, Нижний Новгород, Кострома, Вологда | 150 |
Тверь, Москва, Рязань | 140 |
Санкт-Петербург, Воронеж, Волгоград | 120 |
Курск, Смоленск, Псков | 110 |
Астрахань, Белгород | 100 |
Ростов-на-Дону | 90 |
Ставрополь | 80 |
Калининград | 70 |
Если вы не нашли свой город или населенный пункт в таблице, то можно воспользоваться картой, на которой изображены примерные глубины промерзания почв.
Холодные, неопровержимые факты о спуске под землю
С наступлением весны многие из нас приступают к проектам, требующим закладывания бетонных оснований в землю. Независимо от того, строите ли вы пристройку к своему дому, добавляя крыльцо, крыльцо или террасу, вам нужно будет знать об их правильном дизайне и размещении.
Опоры, по сути, представляют собой большие блоки из монолитного бетона, установленные под землей, которые соединяют конструкцию здания с землей внизу. Перед тем, как что-либо залить, необходимо учитывать линию промерзания.Определенная местными строительными нормами, это глубина ниже поверхности земли, на которую исторически не проникает иней.
Линия промерзания отличается от статистических данных о средней глубине проникновения мороза Министерства торговли США тем, что это не средний, а консервативный предел того, где возможно проникновение мороза.
Если средняя глубина промерзания для нашего региона составляет от 15 до 20 дюймов, то установленная линия глубины промерзания колеблется от 36 до 48 дюймов.Таким образом, линия промерзания – это «безопасное» расстояние под поверхностью земли, где почва и все, что на ней лежит, не будут подвергаться воздействию отрицательных температур.
РАЗЛИЧНЫЕ ГЛУБИНЫ
Глубина линии замерзания варьируется от региона к региону и теоретически может меняться со временем из-за климатических региональных сдвигов средней температуры. Промерзание на всей территории наших южных штатов незначительно, иногда достигая глубины в один дюйм, в то время как в Мэне и по всей Канаде средние промерзания достигают значительно ниже шести футов.В полярных регионах Канады и Аляски существует состояние, известное как «вечная мерзлота», когда иней простирается примерно на 2000 футов ниже поверхности.
Почему важно строить с учетом последствий мороза в качестве нашего ориентира? Лед – одна из самых мощных сил во Вселенной. Как известно большинству школьников, изучающих науку о Земле, лед действительно сдвинулся и создал горы. Фактически, лед под основанием здания может легко сдвинуть его, вызывая состояние, которое мы называем в строительстве тепловым пучением – движение конструкции из-за замерзания.
ОПЫТ ПЕРЕМЕЩЕНИЯ
Постоянное ежегодное движение такой конструкции, как фундамент, является нежелательным по многим причинам. Со временем пучение от мороза и последующее его оттепель могут привести к появлению трещин и неравномерной осадке конструкции. Поскольку мы, как правило, не проектируем дома, небольшие здания и сооружения с допусками на такое чрезмерное движение, компоненты здания – например, бетон, дерево, штукатурка и гипс – подвергаются этим нагрузкам, в конечном итоге, трескаются и / или выходят из строя.
Специалисты часто спорят, что лучше всего разместить под линией промерзания целиком или только его основанием. Хотя окончательный судья того, где его следует разместить, – это ваши муниципальные строительные нормы и правила, в частности, ваш строительный инспектор, – я всегда находил аргумент в пользу размещения всего фундамента ниже линии замерзания, поскольку мы можем разумно предположить вся каркасная конструкция не подвержена воздействию мороза.
НЕ ИСПОЛЬЗУЙТЕ ШАНС
И наоборот, если часть расположена сверху, а часть ниже, и лед в конечном итоге давит на нее, можно с уверенностью предположить, что, будучи монолитным, вся основа будет толкаться лед.Причина подсказывает, что безопаснее всего разместить всю опору ниже линии промерзания. Зачем рисковать?
Здесь необходимо отметить, что другие детерминанты также влияют на воздействие инея на подконструкции; Состав почвы и фактическая геологическая местность и ориентация также влияют на то, на какой глубине ставить опоры.
На самом деле, всегда лучше всего проконсультироваться с зарегистрированным архитектором или инженером, прежде чем начинать проект, требующий опор. Не забудьте также, что перед тем, как начать копать, необходимо связаться с соответствующими коммунальными предприятиями, чтобы определить, есть ли на вашей территории заглубленные трубы и / или линии электропередач.
Проверяйте линию замерзания по почтовому индексу, прежде чем копать опоры
Если вы собираетесь построить свою собственную колоду, одно из первых соображений после того, как вы выложите свои стойки, – это то, насколько глубоко должны быть установлены ваши опоры.
Это определяется линией мороза в вашем районе, и карта ниже должна дать вам общее представление о том, насколько глубоко вам нужно пройти.
Что такое линия замерзания
Линия замерзания – это глубина, на которой земля замерзает. При строительстве важно знать глубину линии промерзания.Водопроводные трубы всегда следует прокладывать ниже линии замерзания, чтобы зимой они не замерзли.
Также важно, чтобы опоры здания или террасы находились значительно ниже линии замерзания, чтобы стойки не сдвигались при замерзании и оттаивании земли. Обратитесь к местным строительным нормам и правилам, чтобы определить надлежащую глубину ниже линии промерзания, на которой должна находиться опора.
Когда строить
Если вы находитесь в холодной зоне и не торопитесь строить, лучше подождать до весны, чтобы начать копать.К этому времени земля будет оттаивать, что облегчит копание на нужную глубину.
Отметьте палку на нужной глубине и держите ее в пределах досягаемости во время вашего строительного проекта, чтобы вы могли регулярно проводить измерения.
Карта линии замерзания
Эта карта линии замерзания дает общее представление о том, где проходит линия замерзания в вашем районе. Если вы живете на границе, лучше следовать рекомендациям более холодной стороны, чтобы избежать каких-либо проблем.
Эта карта взята из Национального центра данных по снегу и льду и показывает карту линий замерзания по всей территории Соединенных Штатов.Обратите внимание, как он опускается с глубины 72 дюйма на глубину 6 дюймов.
Максимальная глубина линии замерзания составляет 100 дюймов у оконечности Миннесоты, Северной Дакоты и Аляски, вплоть до нуля дюймов во Флориде, южной Аризоне и южной Калифорнии.
Frost Line по почтовому индексу
Если карта недостаточно точна для вас. Проверьте свою линию мороза по почтовому индексу или адресу, используя карту Национальной службы погоды.
Как мы упоминали ранее, не забудьте свериться с местными строительными нормами, прежде чем начинать копать.
Советы по копанию
Каждый раз, когда вы копаете, лучше всего знать линию замерзания, так как вы будете знать, насколько глубоки водопроводные трубы, чтобы избежать их.
Здесь, в Лос-Анджелесе, где земля не замерзает, оросительные и дождевальные трубы не очень глубоко заглублены, поэтому вам нужно быть особенно осторожными при копании вокруг них.
Лопата и землеройная яма – это все, что нужно, чтобы выкопать глубокую яму, но если в вашем районе есть большие камни или твердый грунт, вам также пригодится длинная монтировка.
Шнек – это самый быстрый способ копать ямы, он может сэкономить вам много времени и денег даже с учетом затрат на аренду. Ручной шнек обычно является лучшим вариантом, поскольку он дешевле в аренде, с ним проще работать и маневрировать. Для длинной линии ограждения шнек на конце трактора рыси или ВОМ – отличное вложение, поскольку он будет копать ямы быстро и точно.
Тимоти Даль
Тимоти – основатель и редактор Charles & Hudson и бывший редактор Popular Mechanics, This Old House и Lifehacker.Его работы были опубликованы в Wired, Bob Vila, DIY Network и The Family Handyman. Он также является основателем номинированного на Webby проекта Built by Kids и ведущим популярного подкаста Tool Crave.
Защищенные от мороза опоры фундамента мелкого заложения – бетонная сеть
Что такое защищенные от мороза мелкие опоры и почему они используются?
Большинство строительных норм и правил в холодном климате требуют, чтобы фундаментные опоры располагались ниже линии замерзания, глубина которой может составлять около 4 футов в северных Соединенных Штатах.Цель – защитить фундамент от морозного пучения.
Из этого стандарта есть исключение: многие нормы разрешают фундаменту лежать выше линии замерзания, если он «защищен от мороза». Однако одобрение зависит от местных должностных лиц и может потребовать специальной инженерии. Издание Совета американских строительных чиновников (CABO) 1995 года Кодекс жилищного строительства для одной и двух семей включает упрощенные инструкции по строительству монолитных домов с неглубоким фундаментом, защищенным от мороза изоляцией из жесткого пенопласта.
Защищенный от мороза неглубокий фундамент (FPSF) представляет собой практическую альтернативу более глубоким и более дорогостоящим фундаментам в холодных регионах с сезонным промерзанием грунта и возможностью образования морозного пучения.
Найдите подрядчиков по изготовлению плит и фундаментов рядом со мной
На Рисунке 1 показаны FPSF и традиционный фундамент. FPSF включает в себя стратегически размещенную изоляцию для увеличения глубины промерзания вокруг здания, тем самым обеспечивая глубину фундамента до 16 дюймов даже в самых суровых климатических условиях.Наибольшее распространение получили страны Северной Европы, где за последние 40 лет было успешно построено более миллиона домов FPSF. FPSF считается стандартной практикой для жилых домов в Скандинавии.
Ресурсы FPSF
История создания морозостойких фундаментов неглубокого заложения
Результаты исследования HUD FPSF
Преимущества FPSF
Строительные нормы и правила и нормы FPSF
Frost Action and Foundations (мельчайшие подробности о том, как работает морозное пучение)
Типы изоляции, разрешенные для FPSF
Типы FPSF
Приложения и ограничения FPSF
FPSF в отапливаемых зданиях
FPSF в неотапливаемых зданиях
Рекомендуемые методы строительства и детали
Упрощенный метод проектирования
Детальный метод для отапливаемых зданий
Как работает FPSF
Технология неглубокого фундамента с защитой от замерзания учитывает тепловое взаимодействие фундамента здания с грунтом.Подвод тепла к земле от зданий эффективно увеличивает глубину промерзания по периметру фундамента. Этот эффект и другие условия, регулирующие промерзание грунта, показаны на рисунке 2.
Важно отметить, что линия промерзания у фундамента поднимается, если здание отапливается. Этот эффект усиливается, когда изоляция стратегически размещается вокруг фундамента. FPSF также работает с неотапливаемым зданием, сохраняя геотермальное тепло под зданием.Таким образом могут быть построены неотапливаемые участки домов, например, гаражи.
На рисунке 3 показан процесс теплообмена в FPSF, который приводит к большей глубине промерзания вокруг здания. Изоляция по периметру фундамента сохраняет и перенаправляет потери тепла через плиту в почву под фундаментом. Геотермальное тепло от подстилающего грунта также способствует увеличению глубины промерзания вокруг здания.
FPSFнаиболее подходят для домов с перекрытием на уровне земли на площадках с уклоном от умеренного до низкого.Однако этот метод можно эффективно использовать в подвальных помещениях, утепляющих фундамент на спусковой стороне дома, что устраняет необходимость в ступенчатой опоре. FPSF также полезны для реконструкции проектов отчасти потому, что они минимизируют нарушение рабочего места. Помимо жилых, коммерческих и сельскохозяйственных зданий, технология применялась на автомагистралях, плотинах, подземных коммуникациях, железных дорогах и земляных насыпях.
Другие общие вопросы и ответы
№ вопроса1: Как изоляция предотвращает образование морозного пучения?
Морозное пучение может произойти только при наличии всех следующих трех условий: 1) почва восприимчива к заморозкам (большая фракция ила), 2) имеется достаточная влажность (насыщенность почвы выше примерно 80 процентов) и 3) суб- отрицательные температуры проникают в почву. Устранение одного из этих факторов сведет на нет возможность повреждения от мороза. Изоляция, требуемая в этом руководстве по проектированию, предотвратит промерзание подстилающего грунта (дюйм полистирольной изоляции, R4.5, имеет эквивалентное R-значение в среднем около 4 футов почвы). Использование утеплителя особенно эффективно на фундаменте здания по нескольким причинам. Во-первых, потери тепла сводятся к минимуму при накоплении и передаче тепла в грунт фундамента, а не через вертикальную поверхность стены фундамента. Во-вторых, горизонтальная изоляция, выступающая наружу, отводит влагу от фундамента, что еще больше снижает риск повреждения от мороза. Наконец, из-за изоляции линия замерзания будет подниматься по мере приближения к фундаменту.Поскольку силы пучения при морозе действуют перпендикулярно линии наледи, силы пучения, если они есть, будут действовать в горизонтальном направлении, а не вверх.
Вопрос № 2: Влияет ли тип почвы или почвенный покров (например, снег) на количество необходимой изоляции?
По своей конструкции предлагаемые требования к изоляции основаны на наихудших условиях грунта, когда на ней отсутствует снег или органический покров. Точно так же рекомендуемый утеплитель эффективно предотвратит промерзание всех чувствительных к морозам почв.Из-за поглощенного тепла (скрытое тепло) во время замерзания воды (фазовый переход) повышенное количество почвенной воды будет иметь тенденцию сдерживать промерзание или изменение температуры водно-грунтовой массы. Поскольку почвенная вода увеличивает теплоемкость почвы, она дополнительно увеличивает сопротивление замерзанию за счет увеличения «тепловой массы» почвы и добавления значительного скрытого теплового эффекта. Таким образом, предлагаемые требования к изоляции основаны на наихудшем состоянии илистой почвы с достаточной влажностью, чтобы допустить морозное пучение, но не настолько, чтобы сама почва сильно сопротивлялась проникновению линии промерзания.Фактически, крупнозернистая почва (не чувствительная к заморозкам) с низким содержанием влаги будет промерзать быстрее и глубже, но без риска повреждения от мороза. Таким образом, предлагаемые рекомендации по изоляции эффективно смягчают морозное пучение для всех типов почв при различной влажности и условиях поверхности.
Вопрос № 3: Как долго изоляция будет защищать фундамент?
Этот вопрос очень важен при защите домов или других построек с длительным сроком службы.Способность изоляции работать в подземных условиях зависит от типа, марки и влагостойкости продукта. В Европе изоляция из полистирола используется для защиты фундамента почти 40 лет без опыта морозного пучения. Таким образом, при правильной настройке значений R для условий эксплуатации под землей, как экструдированный полистирол (XPS), так и пенополистирол (EPS) можно использовать с гарантией рабочих характеристик. В Соединенных Штатах XPS изучается для проектов строительства автомагистралей и трубопроводов на Аляске, и было обнаружено, что после 20 лет эксплуатации и не менее 5 лет погружения в воду XPS сохранил свой коэффициент R (см.Макфадден и Беннетт, Строительство в холодных регионах: Руководство для проектировщиков, инженеров, подрядчиков и менеджеров, J. Wiley & Sons, Inc., 1991. pp. 328-329). В целях обеспечения качества XPS и EPS можно легко идентифицировать по маркировке, соответствующей действующим стандартам ASTM.
Вопрос № 4: Что произойдет, если система отопления отключится на время зимой?
Для всех типов строительства потери тепла через пол здания способствуют накоплению геотермального тепла под зданием, которое зимой выделяется по периметру фундамента.Использование изолированных опор позволит эффективно регулировать сохраняемые тепловые потери и замедлить проникновение линии замерзания в период отказа или спада отопительной системы. Обычные фундаменты, обычно с меньшей изоляцией, не обеспечивают такого уровня защиты, и мороз может быстрее проникнуть через фундаментную стену во внутренние области под плитой перекрытия. При обморожении (замороженная связь между водой в почве и стеной фундамента) мороз не должен проникать ниже фундамента, чтобы быть опасным для легких конструкций.В этом смысле защищенные от мороза опоры более эффективны для предотвращения повреждений от мороза. Предлагаемые требования к изоляции основаны на высокоточной климатической информации, подтвержденной 86-летними записями о зимних морозах для более 3000 метеостанций по всей территории Соединенных Штатов. Изоляция рассчитана на предотвращение промерзания грунта фундамента в течение 100-летнего периода зимнего промерзания при особо строгих условиях отсутствия снега или почвенного покрова. Даже в этом случае маловероятно, что во время такого события не будет снежного покрова, будет достаточно высокая влажность почвы и продолжительная потеря тепла зданием.
Вопрос № 5: Почему требуется больше изоляции на углах фундамента?
Потери тепла происходят наружу от стен фундамента и, следовательно, усиливаются вблизи внешнего угла из-за комбинированных потерь тепла от двух смежных поверхностей стен. Следовательно, чтобы защитить углы фундамента от повреждений морозом, требуется большее количество изоляции в угловых областях. Таким образом, конструкция с изолированной опорой обеспечит дополнительную защиту в углах, где риск повреждения морозом выше.
Вопрос № 6: Какой опыт использования этой технологии в США?
Защищенные от мороза изолированные опоры использовались еще в 1930-х годах Фрэнком Ллойдом Райтом в районе Чикаго. Но с тех пор европейцы лидируют в применении этой концепции в течение последних 40 лет. В настоящее время в Норвегии, Швеции и Финляндии насчитывается более 1 миллиона домов с изолированными неглубокими фундаментами, которые признаны строительными нормами и правилами как стандартная практика. В Соединенных Штатах изоляция использовалась для предотвращения морозного пучения во многих специальных инженерных проектах (т.е., автомагистрали, плотины, трубопроводы и инженерные сооружения). Его использование на фундаменте домов было принято местными правилами на Аляске, и оно было разбросано в незакодированных областях других штатов. Вероятно, что в Соединенных Штатах (включая Аляску) существует несколько тысяч домов с вариантами защищенных от мороза теплоизоляционных оснований.
Для проверки технологии в Соединенных Штатах было построено пять тестовых домов в Вермонте, Айове, Северной Дакоте и на Аляске. Дома были оснащены автоматизированными системами сбора данных для мониторинга температуры земли, фундамента, плиты, внутренней и наружной температуры в различных местах вокруг фундамента.Наблюдаемые характеристики соответствовали европейскому опыту в том, что изолированные опоры предохраняли грунт фундамента от замерзания и пучения даже в суровых климатических и почвенных условиях (см. Департамент жилищного строительства и городского развития США, «Защищенные от замерзания мелкие фундаменты для жилищного строительства». , Вашингтон, округ Колумбия, 1993).
Вопрос № 7: Насколько энергоэффективны и удобны плиточные фундаменты с морозостойкими опорами?
Требования к изоляции для опор, защищенных от замерзания, являются минимальными требованиями для предотвращения повреждений от мороза.Требования обеспечат удовлетворительный уровень энергоэффективности, комфорта и защиты от конденсации влаги. Поскольку эти требования минимальны, может применяться дополнительная изоляция для удовлетворения особых требований к комфорту или более строгих норм энергопотребления.
Проблемы строительства FPSF
Эти вопросы относятся к построению любого FPSF:
Мосты холода . Мосты холода образуются, когда строительные материалы с высокой теплопроводностью, такие как бетон, подвергаются прямому воздействию внешних температур.Изоляцию фундамента следует размещать таким образом, чтобы сохранялась непрерывность с изоляцией оболочки дома. Мосты холода могут увеличить вероятность морозного пучения или, по крайней мере, создать локальные более низкие температуры или конденсацию на поверхности плиты. Во время строительства необходимо соблюдать осторожность, чтобы обеспечить надлежащую установку изоляции.
Дренаж . Хороший дренаж важен для любого фундамента, и FPSF не исключение. Изоляция лучше работает в более сухих почвенных условиях.Убедитесь, что изоляция грунта надлежащим образом защищена от чрезмерной влажности с помощью звуковых методов дренажа, таких как уклон уклона от здания.
Изоляция всегда должна располагаться выше уровня грунтовых вод . Слой гравия, песка или аналогичного материала рекомендуется для улучшения дренажа, а также для обеспечения гладкой поверхности для размещения любой изоляции горизонтального крыла. Минимальный 6-дюймовый дренажный слой требуется для конструкций FPSF без обогрева.Помимо минимальной глубины фундамента в 12 дюймов, требуемой строительными нормами, дополнительная глубина фундамента, требуемая при проектировании FPSF, может состоять из уплотненного, не подверженного замерзанию материала заполнения, такого как гравий, песок или щебень.
Температура поверхности плиты (влажность, комфорт и энергоэффективность). Минимальные уровни изоляции, предписанные в этой методике проектирования, защищают грунт фундамента от мороза. Они также обеспечивают удовлетворительную температуру поверхности плиты, чтобы предотвратить конденсацию влаги и обеспечить минимальную степень теплового комфорта.Поскольку процедура проектирования предусматривает минимальные требования к изоляции, изоляция фундамента может быть увеличена для удовлетворения особых потребностей, касающихся этих вопросов и энергоэффективности. Успешное ограничение образования мостиков холода имеет решающее значение – использование техники стенок ствола и плиты, по сути, добавляет второй тепловой разрыв между плитой и стенкой ствола. Увеличение толщины вертикальной изоляции стены сверх минимальных требований для защиты от замерзания также повысит энергоэффективность и тепловой комфорт.Выбор материала отделки пола, такого как ковровое покрытие, уменьшает поверхностный контакт между человеком и плитой, создавая ощущение тепла.
Плиты с подогревом и энергоэффективность . Методика расчета FPSF может применяться ко всем методам «плита на грунте», в том числе с внутренним нагревом плиты, обеспечивающим превосходный тепловой комфорт. Если используется внутриплитная система обогрева, рекомендуется дополнительная изоляция под плитой и по периметру для повышения энергоэффективности.
Защита изоляции . Поскольку вертикальная изоляция стены вокруг фундамента выступает выше уровня земли и подвержена ультрафиолетовому излучению и физическому насилию, эта часть должна быть защищена покрытием или покрытием, которое одновременно является жестким и долговечным. Некоторые методы, которые следует учитывать, – это система отделки штукатуркой или аналогичные покрытия, наносимые кистью, предварительно покрытые изоляционные материалы, оклады и фанера, обработанная под давлением. Строитель всегда должен проверять совместимость таких материалов с изоляционной панелью.Защитное покрытие следует наносить перед засыпкой, так как оно должно выступать как минимум на четыре дюйма ниже уровня земли. Кроме того, изоляция из полистирола легко разрушается углеводородными растворителями, такими как бензин, бензол, дизельное топливо и гудрон. Следует проявлять осторожность, чтобы не повредить изоляцию при транспортировке, хранении и засыпке. Кроме того, если термиты вызывают беспокойство, рекомендуется использовать стандартные профилактические меры, такие как обработка почвы, использование термитных щитов и т. Д.
Характеристики изоляции . Поскольку некоторые изоляционные материалы менее эффективно сопротивляются водопоглощению, чем другие, что, в свою очередь, снижает их термическое сопротивление (R-значения), изоляционный материал следует выбирать с осторожностью. Для определения толщины изоляции, необходимой для этого применения, необходимо использовать следующие эффективные значения R: пенополистирол типа II – 2,4 R на дюйм; Экструдированный пенополистирол типов IV, V, VI, VII – 4,5 р / дюйм; Пенополистирол типа IX – 3,2 р / дюйм. Особые области применения, такие как несение структурных нагрузок от опор, могут потребовать полистирола более высокой плотности для обеспечения требуемой прочности на сжатие.Производитель обращается к производителям за информацией по конкретному продукту.
Дверные проемы и пороги . В дверных проемах, где порог выступает над вертикальной изоляцией стены, изоляция должна быть вырезана по мере необходимости, чтобы обеспечить прочную блокировку для надлежащей опоры и крепления порога. Размер вырезов должен быть минимальным.
Благоустройство и утепление крыла. В ситуациях, когда требуется изоляция широкого горизонтального крыла (например,g., шириной более 3–4 футов), это может помешать расположению больших насаждений рядом с домом. В некоторых из этих случаев использование более толстой изоляции крыла или увеличение глубины фундамента уменьшит требуемую ширину изоляции крыла.
Высота фундамента . Учитывая, что большинство изоляционных плит из полистирола обычно доступны шириной 24 и 48 дюймов, высота 24 дюйма становится практической высотой для многих фундаментов. Это обеспечивает 16 дюймов фундамента ниже уровня земли и 8 дюймов над уровнем земли.
Земляные работы . Как правило, легкое оборудование подходит для FPSF, потому что не требуется земляных работ. Как и в случае с любым фундаментом, органические слои почвы (верхний слой почвы) должны быть удалены, чтобы фундамент мог опираться на твердую почву или уплотненные насыпи.
Планирование строительства. Фундамент должен быть завершен, а здание ограждено и отапливаться до наступления морозов, как это делается при обычном строительстве.
(PDF) Сравнение глубины промерзания почвы и ее продолжительности, определенной по трубке промерзания почвы и интерполяцией температуры почвы
Стредова Х. и др .: Сравнение глубины промерзания почвы. . . (255–268)
Fis´ak J., 1994: Инструкции для наблюдателей на метеорологических станциях. Методика «типография»
ˇ
CHM ´
U, 11, CHMI, 3
-е Издание переработанное, 115 стр. (на чешском языке).
Хейхо Х. Н., Балчин Д., 1986: Электрическое определение заморозков почвы, Канадское сельское хозяйство.
Культурная инженерия, 28, 77–80.
Хрбек Ю., Крунек С., 1957: Промерзание почвы зимой 1955–1956 гг. Meteorologick´e
zpr´avy, 10, 1, 16–23 (на чешском языке).
Ледницкий В., 1979: Глубина промерзания почвы в Брно. Meteorologick´ezpr´avy, 32, 1, 12–15
(на чешском языке).
Лундеквам Х., Ромстад Э., Ойгарден Л., 2003: Сельскохозяйственная политика в Норвегии и
воздействия на эрозию почвы. Наука об окружающей среде и политика, 6, 57–67.
Самец Д. Х., Грей Д. М., 1981: Удаление снежного покрова и рутность ff.В: Грей Д. М., Мале Д.
Х. (ред.): Справочник по снегу. Pergamon Press, Торонто, 360–436.
МакКул Д. К., Уильямс Дж. Д., 2005: Эффекты замораживания / оттаивания и эрозия оврагов на севере –
западная пшеница и область ареала. Международный журнал исследований отложений, 20,
3, 2002–2010.
Øygarden L. 2003: Развитие мель и оврагов во время экстремального зимнего стока в
на юго-востоке Норвегии. Катена, 50, 2-4, 217–242.
Пхукан А., 1985: Техника мерзлого грунта. Prentice Hall Inc., Энглвуд Клис, 336 стр.
Репелевска-Пекалова Ю., Пекала К., 2003: Пространственные и временные изменения в активном слое
толщины, Калипсостранда, Шпицберген. В 8-м межд. Конференция по вечной мерзлоте,
Цюрих, июль 2003 г .; Ред. Swets & Zeitlinger, Lisse, NL, 941–945.
Розновский Ю., 1990: Характеристики динамики температуры почвы. Acta Univ. Agric.,
Факс. Agron., Brno, 38, 3-4, 97–104 (на чешском языке).
Шаррат Б.С., Радке Дж.К., Хинзман Л.Д. и др., 1997: Физика, химия и экология
мерзлых почв в управляемых экосистемах: Введение Труды Международного симпозиума
по физике, химии и экологии Сезонные промерзшие почвы. CRREL
Специальный отчет.
Шаррат Б. С., МакКул Д. К., 2005: Глубина мороза. В: Хатфилд Дж. Л., Бейкер Дж. М., Вини
М. К. (ред.), Микрометеорология в сельскохозяйственных системах: мониторинг агрономии, 47,
115–177.
Сляба Н., 1972: Инструкция для наблюдателей метеостанций ЧССР. Hand-
уставная книга. Гидрометеорологический институт, 7, 224 с. (на чешском языке).
Степпун Х., 1981: Снег и сельское хозяйство. В: Грей Д. М., Мале Д. Х. (ред.): Справочник
по снегу, Пергамон Пресс, Торонто, 60–125.
268
Без аутентификации | 37.48.37.0
Дата загрузки | 15.06.14 17:34
Что такое линия мороза в Мэриленде?
Палуба и патио округа Энн Арундел: Аннаполис (21401, 21403, 21409), Арнольд (21012), Крофтон (21114), Краунсвилл (21032), Гэмбриллс (21054), Глен Берни (21060, 21061), Ганновер (21076) ), Джессап (20794), Пасадена (21122), Северн (21144), Северна Парк (21146).
Палуба и патио округа Балтимор: Арбутус (21227), Катонсвилль (21228, 21250), Кокисвилл (21030, 21031, 21065), Дандолк (21222), Эджмир (21219), Эссекс (21221), Гарнизон (21055), Лансдаун (21227), Лочерн (21207), Лютервилль (21093), Мидл-Ривер (21220), Милфорд-Милл (21244), Оверли (21236), Оуингс-Миллс (21117), Парквилл (21234), Парк-Хайтс (21215), Пайксвилл (21208), Randallstown (21133), Reisterstown (21136), Rosedale (21237), Timonium (21093), Towson (21204), White Marsh (21162), Woodlawn (21207) и другие.
Палуба и патио округа Калверт: Дюнкерк (20754), Чесапик-Бич (20732), Норт-Бич (20714), Принц Фредерик (20678), Оуингс (20736), Соломоновы острова (20688).
Палуба и патио округа Чарльз: Ла-Плата (20646), Порт Тобакко (20677), Рок-Пойнт (20682), Уолдорф (20601, 20602, 20603)
Палуба и патио округа Ховард: Кларксвилл (21029), Колумбия (21044), Куксвилл (21723), Дорси (21075), Элкридж (21075), Элликотт-Сити (21043), Фултон (20759), Гленелг (21737), Гленвуд (21738), Гранит (21163), Ганновер (21076), Хайленд (20777), Джессап (20794), Лиссабон (21765), Марриоттсвилл (21104), Норт-Лорел (20723), Западная дружба (21794), Вудбайн (21797) ), Woodstock (21163) и др.
Палуба и патио округа Монтгомери: Олни (20832), Дамаск (20872), Лейтонсвилль (20882), Силвер-Спринг (20910), Кларксбург (20871), Гейтерсбург (20878), Джермантаун (20876), Бетесда (20816), Chevy Chase (20815) и другие.
Палуба и патио графства Принс-Джордж: Боуи (20715, 20716, 20720, 20721), Белтсвилл (20705), Адельфи (20783), Колледж-Парк (20740,20742), Гринбелт (25689), Хяттсвилл (20781, 20782, 20783, 20784), Лэндовер (20785), Лорел (20707, 20723), Спрингдейл (20774), Аппер-Мальборо (20772, 20774), Вудлон (21207).
Палуба и патио округа Сент-Мэрис: Леонардтаун (20650), Механиксвилль (20659), Лексингтон-Парк (20653), Пайни-Пойнт (20674), Талл Тимберс (20690)
Междесятилетние изменения глубины промерзания и периода промерзания грунта в районе трехречного источника в Китае с 1960 по 2014 г.
На основе данных о глубине промерзания почвы, полученных 14 метеорологическими станциями в районе трехречного источника (TRSR) в Китае в период с 1960 по 2014 год были проанализированы тенденции глубины промерзания, первой даты, последней даты и продолжительности замерзания почвы, а также других метеорологических переменных, таких как температура воздуха, высота снежного покрова и количество осадков, наблюдаемых в тех же местах.Результаты показали следующее. (1) В периоды 1985–2014 и 2000–2014 гг. В TRSR возникла непрерывная, ускоренная тенденция к уменьшению глубины промерзания по сравнению с периодом 1960–2014 гг. (2) Первая дата замораживания была отложена, а последняя дата замораживания значительно продвинута. Продвинутые тенденции в отношении замораживания последней даты были более значительными, чем отложенные тенденции в отношении замораживания первой даты. Продолжительность замораживания также ускорилась. (3) На глубину и период промерзания сильно влияли температура воздуха, индекс таяния и влажность почвы (осадки), но не снег.Глубина замораживания, первая дата замораживания, последняя дата замораживания и продолжительность также влияли друг на друга. (4) Ожидается, что эти тенденции к уменьшению глубины и продолжительности замерзания продолжатся, учитывая тенденции к повышению температуры воздуха и осадков в этом регионе.
1. Введение
Мерзлая почва – чувствительный индикатор изменения климата. Это сильно коррелирует с температурой воздуха [1–3]. Как наблюдения, так и моделирование показывают, что условия мерзлых почв в настоящее время быстро меняются в ответ на глобальное потепление.Температура почвы продолжала повышаться в течение последних нескольких десятилетий [1, 4, 5]; уменьшились площади вечной мерзлоты и сезонной мерзлоты [6–8]; активный слой стал намного толще [9–12]; изменились ландшафты [13–15]. Это ухудшение мерзлого грунта окажет глубокое влияние на энергетические и гидрологические циклы за счет ускорения разложения органического углерода в почве и увеличения выброса CO 2 из почвы в атмосферу, изменяя наземные экосистемы и тем самым создавая петлю положительной обратной связи. ведущие к дальнейшему изменению климата [16–21].
Глубина и период замерзания (включая дату начала замерзания, дату последнего замерзания и продолжительность) мерзлого грунта, на которые сильно влияют температура воздуха, снег, влажность почвы и растительность [22–26], являются важными показателями замерзания. почвенные условия. Их междесятилетние изменения, а также вариации климатических переменных в местном и региональном масштабах все еще относительно плохо изучены. Основным препятствием для понимания реакции мерзлого грунта на изменение климата, а также взаимодействия между почвой и атмосферой является отсутствие долгосрочных наблюдений.По этой причине другие климатические показатели, такие как температура почвы и минимальная температура воздуха, данные дистанционного зондирования и численное моделирование, используются для характеристики глубины промерзания и периода промерзания грунта. Frauenfeld et al. [27] применили метод линейной интерполяции для определения глубины изотермы 0 ° C на основе данных о температуре почвы, измеренных на глубине от 0,2 до 3,2 м, с использованием данных о среднемесячной температуре почвы, собранных между 1930 и 1990 годами с 242 станций, расположенных по всей России.Они обнаружили, что активный слой вечной мерзлоты увеличился на 20 см, а глубина сезонного мерзлого грунта уменьшилась на 34 см в период с 1956 по 1990 год. Anandhi et al. [28] и Wang et al. [25] рассчитали дату первого замораживания, дату последнего замораживания и продолжительность периода заморозков почвы на основе минимальных суточных температур воздуха в Канзасе, США и Китае. Все их результаты показали, что первая дата замораживания была отложена, а последняя дата была перенесена на период их исследования. Используя данные специального микроволнового датчика / тепловизора (SSMI) на Тибетском плато (TP), Li et al.[29] обнаружили тенденцию к более позднему началу замерзания почвы примерно на 10 дней и к более ранней дате начала таяния почвы примерно на 14 дней за период 1988–2007 гг. В последнее время численное моделирование использовалось для исследования изменений в цикле замораживания-оттаивания приповерхностных слоев почвы в ответ на потепление на ТП с 1981 по 2010 гг. [24]. Подобные результаты были найдены и в другом месте. Однако следует отметить, что хотя изотерма 0 ° C и минимальная температура воздуха могут использоваться как оценка глубины промерзания и периода промерзания почвы; они не совпадают с «истинным» значением.В то время как данные дистанционного зондирования и численное моделирование могут анализировать пространственные вариации, долгосрочные трещины между десятилетними вариациями не могут быть показаны из-за нехватки данных.
Район истока трех рек (TRSR) расположен там, где берут начало две самые длинные реки Китая, Янцзы и Желтая, и транснациональная река Меконг (называемая в Китае Ланканг). Он расположен на северо-востоке ТП, который представляет собой мозаичную переходную зону сезонной мерзлоты и прерывистой и сплошной вечной мерзлоты [30, 31].Этот регион особенно чувствителен к воздействиям изменения климата [4, 32–36]. Одно надежное наблюдение состоит в том, что температура воздуха в этом регионе повышалась в среднем на 0,32–0,36 ° C за десятилетие –1 за последние полвека (с 1960 по 2010 гг.) [33, 35], в то время как средняя скорость составила было определено, что оно будет даже больше, если измерять его за последние 35 лет (десятилетие 0,46 ° C −1 между 1980 и 2014 годами) [4]. Это потепление происходит быстрее, чем средние значения, наблюдавшиеся за тот же период времени на ТП и Китае [37–41].В этом исследовании мы использовали наблюдаемые данные о глубине промерзания почвы, полученные с метеорологических станций, для исследования междесятилетних изменений глубины и периода промерзания в TRSR с 1960 по 2014 гг. Используя данные 14 станций, мы проанализировали тенденции глубины промерзания и период замораживания (включая первую дату, последнюю дату и продолжительность) мерзлого грунта и изучил их взаимосвязь с температурой воздуха, индексом таяния, высотой снежного покрова и осадками, а также друг с другом.
2. Данные и методы
Основные данные, использованные в этом исследовании, включают наблюдаемую глубину промерзания почвы, температуру воздуха, высоту снежного покрова и количество осадков.Данные были доступны для 14 метеорологических станций, расположенных на всей территории TRSR (Рисунок 1). В том числе 11 метеостанций на 55 лет (с 1960 по 2014 г.) и три метеостанции на 30 лет (с 1980 по 2014 г.). Все данные собирались ежедневно на этих станциях, которые расположены в зоне сезонного мерзлого грунта. Список станций представлен в Таблице 1, а расположение станций показано на Рисунке 1. Глубина промерзания почвы измерялась один раз в день (08:00 по пекинскому времени) с использованием прибора для измерения мерзлого грунта, когда земля температура поверхности была ниже 0 ° C [42].Как правило, установка мерзлого грунта размещалась в естественном растительном покрове в поле наблюдения [42]. Покров наблюдательного поля на этих метеостанциях представлял собой типичный альпийский луг с высотой полога не более 0,20 м летом и не более 0,05 м зимой (рис. 2). Аппарат для мерзлого грунта состоял из двух основных труб: внешней и внутренней. Внутренняя трубка представляла собой резиновую трубку с чистой водой. Глубина промерзания грунта определялась глубиной промерзания воды во внутренней трубе [42].Максимальная глубина замерзания была выбрана из всех ежедневных данных о глубине замерзания для каждого года, чтобы представить годовую глубину замерзания. Данные были представлены, когда глубина промерзания превышала максимальный диапазон устройства для мерзлого грунта в исходных данных. Глубина замерзания в этом году не была включена в это исследование. Высота снежного покрова измерялась один раз в день (08:00 по пекинскому времени) с использованием снежной шкалы при снежном покрове более 0,5. Данные основаны на среднем значении трех измерений [42]. Чтобы охватить весь период возможных событий замораживания, годовые значения первой даты замораживания, последней даты замораживания и продолжительности замораживания были рассчитаны для каждого года, начинающегося 1 сентября предыдущего года и заканчивающегося 31 августа текущего года. , когда глубина застывания не равнялась нулю.
|
3. Результаты
3.1. Изменения глубины промерзания грунта
В таблице 2 и на рисунке 3 показаны тенденции изменения глубины промерзания на TRSR в период 1960–2014 гг. Глубина промерзания показала статистически значимое уменьшение (at) в течение 1960–2014, 1985–2014 и 2000–2014 годов на TRSR. Глубина промерзания почвы уменьшилась на 10 станциях, тогда как на одной станции (Юйшу) она увеличилась лишь незначительно, со средним значением –3,98 см за декаду –1 за последние 55 лет. За последние 30 лет тенденция к снижению наблюдалась на 13 станциях, в то время как на одной станции (Руоергай) рост был незначительным со средним значением −8.Декада 93 см −1 . Этот результат был аналогичен, но немного ниже, чем в нашем предыдущем исследовании, где -10,61 см декада -1 было зарегистрировано с помощью модифицированного теста тренда Манна-Кендалла и оценки наклона Сена по данным наблюдений девяти метеорологических станций за последние 35 лет (1980 г. –2014) [4]. Тенденции к снижению также наблюдались на 13 станциях за последние 15 лет со средней скоростью -13,98 см за декаду -1 . Было зарегистрировано только два значительных увеличения (at). Они происходили на станции Юшу в период 1960–2014 гг. И в течение 2000–2014 гг., Их количество составляло 2.85 и 12,79 см декада −1 соответственно. Общие тенденции к снижению указывают на то, что в районах с сезонной мерзлотой почва с каждым годом промерзает на все меньшую глубину. Кроме того, в периоды 1985–2014 и 2000–2014 годов в TRSR появилась тенденция к непрерывному ускорению снижения по сравнению с периодом 1960–2014 годов. Чистое изменение составило уменьшение глубины промерзания на 21,89 см в 2014 году по сравнению с 1955 годом и еще большее уменьшение на 26,79 см с 1985 по 2014 год, при уменьшении на 20.97 см зафиксировано за последние 15 лет.
4.2. Связь с вынуждающими переменнымиВзаимосвязи между вынуждающими переменными с глубиной замораживания, первой датой, последней датой и продолжительностью для трех разных периодов времени на TRSR представлены в таблице 5. Усредненные временные ряды, которые были связаны с вынуждающими переменными показаны на рисунках 5, 6, 7 и 8.
|