Несущая способность сваи по грунту калькулятор: Расчет несущей способности сваи по грунту

Содержание

Несущая способность сваи по грунту в Excel V1.05 (все автоматизировано)

Volodya , 16 декабря 2012 в 16:16

#1

Интересная программа! Вопрос есть: не могу переключить с забивных на буровые сваи.

CEP}I{ , 16 декабря 2012 в 20:38

#2

чем от ЭСПРИ Лира-Софт отличается? картинки и принцип вроде смотрю оттуда вытащены! )

sangut , 16 декабря 2012 в 21:59

#3

CEP}I{_ЭСПРИ не позволяет сохранять исходные данные для расчета, не строит графики увеличения несущей способности сваи по глубине,требует для каждого слоя грунта задавать значение коэффициента условий работы сваи по боковой поверхности, сравнивать значение допускаемой нагрузки и продольного усилия в свае . В данной программе эти недостатки исключены.
Volodya_Нажали ли Вы кнопку “Включить содержимое” строки “Предупреждение системы безопасности?

valery2005 , 16 декабря 2012 в 22:45

#4

То же самое – как переключать радиокнопки? С забивных свай на буронабивные, как отметить способы устройства свай?

valery2005 , 16 декабря 2012 в 22:47

#5

Сорри, разобрался уже!

aeffim , 17 декабря 2012 в 05:46

#6

Как всё таки переключить их?!

nemo186 , 17 декабря 2012 в 09:37

#7

Если и по совместному действию силы и момента прогу напишите будет вообще великолепно!

CRISTOFF , 17 декабря 2012 в 12:19

#8

Спасибо. Расчёт не выполняется… появляется окно VBA и, если я правильно понял, ругается на ячейку N52 (Can’t find project or library).

CRISTOFF , 17 декабря 2012 в 12:23

#9

На другом компе считает. Только не пойму, для чего кнопка расчёт?

Dant , 17 декабря 2012 в 16:30

#10

Не считает. То же, что и в CRISTOFF. Ошибка в коде к CommadButtom1,
строка: Range(“N52”) = Time
Что такое Time – нет описания.

правила определения, размещение свай и калькулятор

Сваи широко применяют в строительстве. Они позволяют устраивать фундамент на неустойчивых почвах, ограждать котлованы, возводить подпорные стенки и укреплять грунт.

Это экономичный, устойчивый вариант установки фундамента, применяемый практически в любых условиях.

В статье мы расскажем о видах свай, порядке и различных методах расчета фундамента.

Виды

Расчет свай начинается с выбора их типа.

По способу заглубления в грунт различают:

  • Забивные сваи. Самый популярный вид. Погружаются в грунт путем забивки пневматическим молотом на рассчитанную глубину;
  • Буронабивные сваи устанавливаются в самые короткие сроки. Сначала методом шнекового бурения разрабатывают скважину и уплотняют грунт вокруг нее. Потом одновременно с извлечением бура под давлением закачивают в скважину бетонную смесь. Сразу после этого в ней устанавливают армирующий каркас. Его изготавливают из металлических стержней на заводе или строительной площадке;
  • Вибропогружаемые опускаются в толщу пород под действием собственного веса. Специальная установка передает вибрацию через сваю на грунт, за счет этого уменьшается сила трения между конструкцией и частицами почвы и свая постепенно погружаются в породу. Метод применяется на площадках с песчаным или насыщенным влагой грунтом;
  • Винтовые конструкции имеют лопасти на концах, благодаря им конструкция погружается в землю. Хорошо работают на неустойчивых грунтах и плывунах при наличии недалеко от поверхности прочной породы. При монтаже не издают шума, не повреждают почву, могут устанавливаться на площадках с плотной застройкой. Монтаж осуществляется вручную или с применением легкой техники;
  • Вдавливаемые устанавливаются без сильных толчков и вибраций, создают минимальную нагрузку на почву и фундаменты расположенных вблизи сооружений. Подходят для строительства крупных объектов в местах с плотной застройкой и вблизи зданий с неустойчивыми или старыми фундаментами.

По виду материала:

  • Железобетон. Самый популярный материал для возведения крупных объектов. Металл, составляющий каркас обеспечивает стойкость к изгибающим нагрузкам, а бетон защищает металлоконструкцию от воздействия окружающей среды, обеспечивает стойкость к вертикальным нагрузкам и увеличивает силу трения с грунтом;
  • Дерево. Применяется в индивидуальном строительстве на сухих почвах. Дешевый и доступный материал, но требует дополнительной гидроизоляции;
  • Металл. Из этого материала выполняют винтовые сваи. После изготовления их покрывают специальным составом, защищающим их от коррозии.

Сваи отличаются по виду конструкции и форме. Это могут быть квадратные, прямоугольные, многоугольные и круглые сечения. Последний вид приобрел наибольшую популярность благодаря простоте изготовления и расчета нагрузки на такую конструкцию.

По характеру работы:

  • Сваи-стойки работают за счет установки их нижней части на прочную породу. Они передают нагрузку на устойчивое основание, миную другие, менее надежные слои;
  • Висячие сваи работают за счет силы трения между ними и сжатыми грунтами вокруг.

На выбор типа конструкции влияют условия работы, особенности грунтов, конструкция и вес здания. Для правильного расчета необходимо обратиться к специалистам, способным провести все необходимые измерения и изыскания.

Проектирование свайного фундамента

При проектировании свайного фундамента необходимо участь ряд факторов, влияющих на его устойчивость:

  • Глубина залегания толщина и надежность пород;
  • Масса здания;
  • Условия строительства и эксплуатации;
  • Конструктивные особенности здания.

При проектировании инженеры опираются на данные геологических изысканий и на их основе определяют возможность строительства, рассчитывают количество свай, выбирают их вид, форму и материал.

Второй важный фактор — это нагрузка от здания.

Она складывается из нескольких видов нагрузки:

  • Постоянная. Включает в себя вес самого здания;
  • Долгосрочная временная — это вес станков, оборудования и других тяжелых конструкций;
  • Краткосрочная временная складывается из веса мебели и людей в здании;
  • Снеговая и ветровая нагрузки рассчитываются отдельно для каждого здания на основании климатических данных региона согласно СП 131. 13330.2012 «Строительная климатология».
Карта снеговых районов России

Вид сваи зависит от технико-экономических показателей строительства. Подбирается самый дешевый вариант, удовлетворяющий все требования и обеспечивающий надежность конструкции.

На этапе проектирования инженеры предусматривают запас прочности, обеспечивающий длительный срок эксплуатации фундамента даже при больших нагрузках.

Расчет ростверка

Важный показатель для строительства — количество свай в ростверке. Этот показатель напрямую влияет на способность конструкции правильно передавать нагрузку на основание и обеспечивать прочность фундамента.

Ростверк — это балка, соединяющая верхние части свай и равномерно распределяющая между ними нагрузку.

Крепление ростверка к разным видам свай

Количество свай в ростверке находят по формуле:

где:

  • dp — заглубление ростверка;
  • N0I — максимальное значение суммы нагрузок от веса здания;
  • Yk — коэффициент надежности;
  • F — максимальная нагрузка на одну сваю;
  • A — площадь ростверка;
  • Ymt — усредненный вес ростверков и грунта на его обрезах.

Полученное в результате вычислений число округляется всегда в большую сторону до целого значения.

Сваи распределяют согласно правилам:

  • В шахматном порядке, в два ряда или в одну линию с равными промежутками;
  • Расстояние между соседними сваями не менее трех их диаметров;
  • Минимальное расстояние от края ростверка до ближайшей сваи равно одному ее диаметру;
  • При возникновении только вертикальных нагрузок сваи заглубляют в ростверк всего на 5–10 см, в иных случаях соединение делают более надежным и дополнительно рассчитывают.

При расчетах ростверков инженеры работают, основываясь на СП 63.13330.2012 «Бетонные и железобетонные конструкции».

Алгоритм расчета свайного фундамента

Процесс расчета начинается с определения общего веса здания.

Он состоит из суммы массы всех конструкций:

  • Кровля;
  • Стены;
  • Перекрытия;
  • Железобетонный каркас.

При расчете толщина каждого слоя конструкции умножается на ее высоту и на плотность. В результате рассчитывается нагрузка на 1 м2 конструкции.

Кратковременные равномерно распределенные нагрузки (вес людей и мебели) берутся с расчетом 150 кг/м2. Сумма нагрузок вычисляется путем умножения значения на общую площадь здания. После этого определяется нагрузка от веса снега. Она будет зависеть от климатического района и форму крыши.

Чем больше угол наклона крыши, тем меньше будет снеговая нагрузка.

После этого определяется несущая способность каждой сваи и их количество в ростверках. Полученные значения дополнительно проверяют и только после этого приступают к дальнейшему проектированию и строительству здания.

Расчет несущей способности по грунту

Несущая способность — это значение, необходимое для выполнения правильных расчетов. Выполнить расчет можно с помощью нескольких методов.

Предварительный теоретический расчет по формуле Fd = Yc * (Ycr * R * A + U * ∑ Ycri * fi * li), где:

  • А — площадь опирания на грунт нижней части единицы конструкции;
  • Yc, Ycr, Ycri — коэффициенты, учитывающие условия работы фундамента, основания, сил трения;
  • U — периметр разреза сваи;
  • fi — сила трения на боковых стенках;
  • R — величина несущей способности грунта в месте опирания;
  • li — длина боковых частей.

Метод статических нагрузок — это комплекс полевых работ, связанных с практическим нахождением несущей способности.

Это наиболее точный метод:
  • На площадке устанавливают пробную сваю;
  • Дают конструкции набраться прочности в течение положенного срока;
  • Установленный на сваю ступенчатый домкрат передает на нее нагрузку;
  • Специальный прибор замеряет усадку сваи;
  • На основе полученных данных проводятся расчеты.

Метод динамической нагрузки -на уже установленный свайный фундамент передают ударную нагрузку и после каждого удара определяют усадку и проводят необходимые расчеты.

Метод зондирования — пробную сваю оснащают датчиками, погружают на расчетную глубину и определяют сопротивление грунтов.

После выполнения теоретического расчета необходимо дополнительно выполнить одно или несколько полевых испытаний и дополнительных расчетов на их основании. Это поможет проверить правильность расчетов и изысканий на практике.

Для упрощения расчетов инженерами был создан калькулятор несущей способности грунта с использованием макросов в Excel.

Он способен:

  • Построить график изменения несущей способности;
  • Разбить толщу пород на слои, основываясь на введенных данных;
  • Найти коэффициент работы всей поверхности сваи;
  • Учесть коэффициенты, уменьшающие несущую способность.

Расчет сваи-стойки, опирающейся на несжимаемое основание

Данные для расчета берут в СП 24.13330.2011 «Свайные фундаменты».

В таблице указаны значения расчетных сопротивлений свай:

Табличные значения сопротивлений для разных типов грунта

Формула для расчета сваи-стойки:

Fd=gcRA, где:

  • gc — коэффициент, учитывающий работу грунта;
  • R — взятое из таблицы сопротивление грунта;
  • А — площадь разреза сваи.

Результат расчета используется для дальнейшего нахождения количества свай в ростверке.

Заключение

Расчет несущей способности сваи по грунту — это непростой процесс, требующий опыта и внимания со стороны инженеров. Расчет выполняется в несколько этапов, теоретически полученные значения проверяют в ходе полевых испытаний, полностью исключая возможность ошибки.

Расчет свайного фундамента могут выполнять только профессионалы с инженерным образованием и разрешением на подобную деятельность.

Расчет свайного фундамента. Калькулятор онлайн

Расчёт свайного фундамента — это очень важный этап создания проекта будущего дома. Если допустить хотя бы малейшую ошибку срок эксплуатации строения уменьшится на двадцать лет в лучшем случае. При наименее благоприятных обстоятельствах катастрофа может произойти ещё при строительстве.

Если на территории застройки присутствуют неустойчивые грунты, на которых присутствует повышенная влажность, или же какие-либо сложные рельефы, то в таком случае единственно оптимальным выходом будет грамотный расчет свайного фундамента. Основным преимуществом данной конструкции является предельно высокая надежность закрепления даже в относительно слабых грунтах благодаря тому, что опоры погружаются на достаточно большую глубину. Такие конструкции отличаются гораздо большей надежностью и долговечностью, а для их реализации требуется не такое большое количество бетона, но при этом вы должны понимать, что процесс их расчета и возведения является достаточно трудоемким.

Причин для проведения расчёта свайного фундамента можно найти более чем достаточно. Во-первых, правильно смоделированная конструкция обладает большой устойчивостью. Во-вторых, вбивание свай обходится значительно дешевле, нежели, возведение ленточной или плиточной конструкции. В-третьих, при малой несущей способности грунта — свайный фундамент единственно возможный вариант.

Если участок обладает малой несущей способностью, то сделав правильный расчёт, свайного фундамента вам не придётся рыть глубоких траншей, чтобы сделать надёжное основание. Для этого используются винтовые сваи. Но формулы расчёта при использовании таких материалов значительно усложняются.

Виды фундаментов с ростверком

Ростверк представляет собой верхнюю часть фундамента, с помощью которой объединяются в одно целое оголовки свай, и именно ростверк представляет собой опору для будущего здания. Объединение ростверка и свай осуществляется при помощи специализированной сварки или же путем стандартной заливки бетоном.

По способу монтажа ростверки могут подразделяться на несколько категорий:

  • Ленточные – объединяются только соседние сваи;
  • Плиточные – связывается каждый отдельный оголовок.

По типу материалов:

  • Из бетона с арматурой. Под несущие стены осуществляется монтаж свай, а на глубину и ширину ростверка прорываются траншеи небольшой глубины;
  • Подвесной бетонный. Является аналогичным предыдущему варианту, однако особенностью такого фундамента является то, что бетонная лента не соприкасается с грунтом, а устройство компенсационного зазора при этом предоставляет возможность предотвратить разрыв опор при возникновении значительного колебания грунта;
  • Железобетонные. Изготовление такого фундамента предусматривает использование двутавра или же широкого металлического швеллера, при этом под несущие стены монтируется швеллер 30, в то время как остальные опоры связываются при помощи швеллера 15-20;
  • Из дерева. Крайне редкий вариант, который в последнее время практически не используется;
  • Комбинированный. Здесь используются не только металлические несущие элементы, но и бетон.

Что собой представляют винтовые сваи

Чтобы провести правильный расчёт свайного фундамента необходимо как можно больше узнать об основном материале. Это позволит максимально точно составить проект, основываясь на характеристиках свайных конструктов, а также их свойствах.

Все сваи сверху объединяются ростверком. Его можно сделать как из деревянных, так и из металлических балок. Также можно взять сплошную железобетонную плиту. Но это сильно прибавит веса основной конструкции.

Свайные конструкты для расчёта фундамента можно изготовить как самостоятельно, так и заказать на заводе. При изготовлении непосредственно на месте строительства их основание лучше всего делать плоским.

Чтобы сделать правильный расчёт свайного фундамента знать только площадь конструкции недостаточно. Необходимо учитывать силу трения, что возникает между боковой поверхностью стержня и землёй.

Раньше винтовые сваи часто применяли военные инженеры при постройке фортификационных сооружений. Это было связано с тем, что они позволяют конструкции выдерживать повышенные нагрузки в экстремальных условиях.

Внимание! Свайные конструкты до сих пор незаменимы при создании мостов и переправ.

Основная часть сваи — это ствол. Его диаметр от 80 до 130 мм. Конец в форме острого конуса. На него приваривается лопасть. Это позволяет максимально быстро и эффективно вворачивать свайные конструкты в грунт.

Некоторые сваи идут без оголовка. В таком случае в конце ствола есть отверстие. В него заводится рычаг, который позволяет вращать сваю с нужной скоростью. Эта особенность даёт возможность при необходимости удлинить ствол. Данная опция крайне необходима, когда работы проводятся на нестабильных грунтах.

К преимуществам свайных конструктов можно причислить:

  1. Безопасную технологию установки, которая позволяет в кратчайшие сроки возвести фундамент дома.
  2. Возможность использования на любых грунтах. Единственным исключением являются скальные породы.
  3. Когда сваи вворачиваются, не образуется ударная нагрузка. Благодаря этой особенности свайные фундаменты можно строить даже в местах плотной застройки, не опасаясь за сохранность ближайших домов.
  4. Как только будут установлены винтовые элементы, сразу же можно монтировать ростверки. Конечно же, эта особенность учитывается в расчётах.
  5. Расчёт свайного фундамента можно делать как для холмистой местности, так и для неровных участков.
  6. Монтаж осуществляется практически в любых погодных условиях. Неважно сколько градусов за окном. Это никак не повлияет на качество фундамента.
  7. Возможность перепланировки. Ни один другой вид фундамента не даёт столько простора для изменений конструкции, как свайный. При необходимости стальной болт можно выкрутить и ввинтить в другое место.

Зная преимущества и особенности свайного фундамента можно провести максимально точные расчёты, усчитав все особенности конструкции.

Рассчитываем расстояние между сваями и глубину их установки

Расчет свайно-винтового фундамента с ростверком включает в себя большое количество моментов, но в первую очередь определяется глубина заложения свай, которая зависит от вида и сложности грунта. В первую очередь, нужно определить нормативную глубину промерзания грунта в вашем регионе проживания, после чего отмерить ниже 20-25 см – это и будет глубина заложения свай.

После того как будут проведены изыскательские работы, нужно будет определить уровень расположения грунтовых вод, а также возможность его колебания в разные сезоны и качественную характеристику грунта на участке. Лучше всего, если проектированием свайного фундамента, а также его обустройством будет заниматься квалифицированный специалист.

Осуществляя расчет количества винтовых свай для фундамента в каждом отдельном случае, следует брать в расчет следующие характеристики:

  • Насколько прочный используется материал и ростверк;
  • Какая присутствует несущая способность у грунта, учитывая также уплотнение в процессе установки опоры;
  • Если присутствуют значительные перепады рельефа, то в таком случае определяется и учитывается также несущая способность основания опоры;
  • Насколько будут усаживаться сваи под воздействием вертикальной нагрузки;
  • Какой вес имеет строение с внутренним содержанием;
  • Какие присутствуют сезонные, динамические и ветровые нагрузки.

Помимо этого, в обязательном порядке нужно учитывать осадку свайного фундамента. Свайный фундамент должен делаться в соответствии с рабочим планом, поэтому лучше всего, если его созданием будет заниматься профессиональный архитектор.

Важно! Расчет, а также последующее проектирование свайного фундамента осуществляется только после того, как будут закончены все изыскательские работы на территории, которые проводит квалифицированный специалист.

Данные для вычислительных формул в данном случае будут выбираться в зависимости от качества почвы и ее типа. Стоит отметить, что расчет свайного фундамента по усадке и деформации обуславливает необходимость в максимально возможной точности выходных показателей.

Как закладывать фундамент на основе расчётов

Чтобы построить правильные расчёты необходимо на месте строительства провести геодезические изыскания. В первую очередь нужно под слабыми грунтами определить глубину залегания слоя, который сможет выдержать вес постройки.

Важно! Необходимо делать расчёт таким образом, чтобы свайные конструкты углублялись в несущий слой не менее чем на половину метра.

Чтобы узнать на какую глубину нужно вкручивать сваи, проводится предварительное бурение. Это позволяет определить, где залегают грунтовые воды. Также нужно учитывать, насколько земля промерзает в зимний период.

Весь процесс строительства условно делится на такие этапы:

  1. Вначале делается разметка и выравнивание. Определяются места, где будут установлены основные сваи. После этого можно монтировать второстепенные элементы. Расстояние между ними должно быть в диапазоне от двух до трёх метров. Стальные болты должны быть под всеми стенами дома.
  2. Завинчивание начинается с угловых свай. В верхнее отверстие стального болта пропускается лом. Чтобы удлинить рычаг на лом надеваются металлические трубы. При вкручивании отклонение от вертикали не может превысить два градуса. Угол наклона в процессе работы контролируется посредством магнитного уровня.
  3. Расчёт свайного фундамента на угловых сваях делается с помощью шлангового уровня. Потом наносятся метки. Они определяют горизонтальную плоскость и нижнюю кромку ростверка.
  4. Вворачиваются оставшиеся сваи.
  5. Глубина вворачивания должна быть такой, чтобы от верха до земли было 20 см.
  6. Ненесущая поверхность обрезается по обозначенным уровням.
  7. Замешивается цементный раствор. Одна часть цемента к четырём частям песка. Им заполняются сваи.

Правильно проведённые расчёты на уровне планирования свайного фундамента позволяют сделать прочное и надёжное строение.

Примеры расчётов

Расчёт прочности одного элемента позволяет определить, сколько, в общем, понадобится свай для фундамента. В качестве константы возьмём расстояние между столбами в два метра. Мало того, согласно современным архитектурным веяниям опоры должны иметь общий ростверк.

Пример один

Диаметр одного металлического болта 30 сантиметров. Расчётная масса здания сто тонн. В формуле расчёта свайного фундамента особую роль играет несущая способность грунта. Возьмём чаще всего встречающийся показатель в четыре килограмма на сантиметр квадратный.

Важно! Нагрузка не должна превышать несущую способность грунта.

Показатель силы, которая будет действовать на каждую сваю в фундаменте обозначается как Fсв. Расчёт параметра проходит по следующей формуле:

(πd2/4)*R

Уточним значения всех переменных:

  • π — неизменная величина, бесконечное число, которое для простоты математических исчислений принято обозначать как 3,14.
  • d — диаметр металлического болта (30 см).
  • R — радиус

Сведём всё в одну формулу:

Fсв=(πd2/4)·R =707,7·4=2826 кг.

Именно такой вес, в данном грунте сможет выдержать одна свая фундамента. Исходя из этих данных — продолжим расчёт.

Общий вес здания ровно 100 тонн. Эта цифра была взята для простоты исчислений. Перед тем как провести дальнейший расчёт свайного фундамента необходимо привести показатели к одной метрической системе. Переведём тонны в килограммы и получим значение N (количество опор).

N= 100000/2826=35,4.

Конечно же, тридцать пять с половиной опор никто монтировать не будет. Поэтому округляем в большую сторону. Выходит, для того чтобы построить дом массой в сто тонн на грунтах с несущей способностью в 4 кг/м2 нужно не менее 36 опор.

Пример два

Чтобы понять алгоритм расчёта свайного фундамента закрепим материал и немного изменим базовые показатели. Расширим основание до 50 сантиметров. Это позволит увеличить практичность всей конструкции. Остальные показатели оставим без изменений.

Fсв=1962,5·4=7850 кг

Проведём расчёт свайного фундамента и получим 13 опор. Как видите, расширение основания позволяет значительно сэкономить на количестве свай, добившись хороших показателей устойчивости конструкции.

Пример три

Расчет свайного фундамента, пример которого вы увидите далее, может использоваться как для легких дачных домов, таки для массивных коттеджей, просто в первом случае используются стандартные винтовые сваи, в то время как при постройке коттеджей нужно будет использовать массивные буронабивные сваи, которые могут выдерживать достаточно серьезные нагрузки.

Для упрощения в примере расчет свайного фундамента осуществляется по винтовым опорам. Стоит отметить, что для таких свай небольшого размера в процессе проведения расчетов не берется в учет бокового трения, которое определяется при возведении тяжелых зданий, которые оказывают на сваи значительное воздействие.

В данном случае будет рассматриваться детальный расчет общего количества свай, а также шага их установки для одноэтажного дома, размер которого составляет 7х7 м:

  • Изначально определяется общая масса расходных материалов. Предположим, что общий вес крыши, бруса и облицовки будет составлять 27526 кг с учетом снеговой нагрузки;
  • Размер полезной нагрузки составляет 7х7х150=7350;
  • Величина снеговой нагрузки составляет 7х7х180=8820;
  • Таким образом, приблизительная масса нагрузки на фундамент будет составлять 27526+7350+8820=43696 кг;
  • Теперь полученный вес нужно будет умножить на коэффициент надежности 43696х1.1=48065.6 кг;
  • Допустим, предусматривается установка винтовых опор, размер которых составляет 86х250х2500. Для того чтобы рассчитать их количество, нужно будет полученную сумму общей нагрузки распределить на ту нагрузку, которая прилагается на каждую сваю. 48065.6/2000=24.03, округляем полученное количество до 24, и получаем точное число нужного нам количества свай;
  • Для того чтобы установить 24 опоры, нужно будет использовать шаг установки 1.2 метра. Для формирования половых лаг нужно будет использовать еще две дополнительные сваи, которые уже будут располагаться непосредственно внутри дома.

Таким образом, по вышеприведенной технологи вы сможете рассчитать нужное вам количество свай для любого дома вне зависимости от его особенностей.

На видео ниже вы сможете посмотреть, как осуществляется расчет свайного фундамента специалистами:

Итоги

Свайный фундамент — это экономичный и быстрый способ создания базы для постройки. Он позволяет работать при любых погодных условиях, а также даёт возможность возводить строения даже на самых проблемных грунтах.

Расчёт свайного фундамента позволяет заранее определить, сколько необходимо свай для дома определённой массы. При помощи формул, описанных в статье, расчёты можно проводить быстро и точно.

Калькулятор расчета несущей способности буронабивных свай — MOREREMONTA

Информация по назначению калькулятора

Онлайн калькулятор монолитного буронабивного свайного и столбчатого ростверкого фундамента предназначен для расчетов размеров, опалубки, количества и диаметра арматуры и объема бетона, необходимого для обустройства данного типа фундамента. Для определения подходящего типа, обязательно обратитесь к специалистам.

С вайный либо столбчатый фундамент – тип фундамента, в котором сваи либо столбы находятся непосредственно в самом грунте, на необходимой глубине, а их вершины связаны между собой монолитной железобетонной лентой (ростверком), находящейся на определенном расстоянии от земли. Главным отличием между столбчатым и свайным фундаментом является разная глубина установки опор.

О сновными условиями для выбора такого фундамента является наличие слабых, растительных и пучинистых грунтов, а так же большая глубина промерзания. В последнем случаем и при возможности забивания свай при любых погодных условиях, такой вид очень актуален в районах с суровым климатом. Так же к основным преимуществам можно отнести высокую скорость постройки и минимальное количество земляных работ, так как достаточно пробурить необходимое количество отверстий, либо вбить уже готовые сваи с использованием специальной техники.

С уществует различное множество вариаций данного типа фундамента, таких как геометрическая форма свай, материалы для их изготовления, механизм действия на грунт, методы установки и виды ростверка. В каждом индивидуальном случае необходимо выбирать свой вариант с учетом характеристик грунта, расчетных нагрузок, климатических и других условий. Для этого необходимо обращаться к специалистам, которые смогут произвести все необходимые замеры и расчеты. Попытки экономии и самостроя могут привести к разрушению постройки.

Д алее представлен полный список выполняемых расчетов с кратким описанием каждого пункта. Вы так же можете задать свой вопрос, воспользовавшись формой справа.

Фундамент выполняет важную и ответственную функцию, не допускающую никаких сомнений в возможностях или надежности основания.

В этом отношении свайные опорные конструкции позволяют получить полноценный вариант решения проблемы без опасности просадок или деформаций, которые возможны у традиционных видов фундамента.

Особенно ярко эта способность проявляется в сложных условиях, на слабонесущих или обводненных грунтах, торфяниках.

Если традиционные основания базируются на верхних, неустойчивых слоях грунта, то сваи опираются на плотные горизонты, расположенные на значительном расстоянии от поверхности.

Единственной задачей, встающей перед проектировщиком, является грамотный и корректный расчет опорной конструкции.

Какие параметры нужно рассчитать для правильного выбора свайного фундамента

Параметры, необходимые для обоснованного выбора свайного фундамента, можно разделить на две группы:

К измеряемым могут быть причислены все свойства грунта на данном участке:

  • Состав слоев.
  • Уровень залегания грунтовых вод.
  • Особенности гидрогеологии, возможность сезонного подтопления, подъемы и понижения водоносных горизонтов.
  • Глубина залегания и состав плотных слоев.

К расчетным параметрам относятся:

  • Величина нагрузки на основание.
  • Несущая способность опоры.
  • Схема расположения стволов.
  • Параметры свай и ростверка.

Указаны только самые общие параметры, в ходе создания проекта нередко приходится рассчитывать большое количество дополнительных позиций.

Расчет с помощью онлайн-калькулятора

Тип грунта определяется по результатам бурения пробной скважины. Она имеет глубину до появления контакта с плотными слоями, или до момента погружения на достаточную глубину для установки висячих свай.

Некоторую информацию можно получить в местном геологоразведочном управлении, но она будет усредненной и не сможет дать максимально полные данные о качестве и параметрах грунта на данном участке.

Участок способен иметь специфические инженерно-геологические условия, не свойственные данному региону в целом, поэтому всегда следует производить специализированный геологический анализ.

Глубина промерзания грунта — табличное значение, которое находят в приложениях СНиП.

Существует специальная карта, на которой все регионы России разделены на специальные зоны, обладающие соответствующей глубиной промерзания.

Тем не менее, в действующем ныне СП 22.13330.2011 «Основания зданий и сооружений» имеется методика специализированного расчета глубины промерзания, производимого по теплотехническим показателям грунта и самого здания.

Как найти нагрузку на основание

Нагрузка на фундамент определяется как суммарный вес постройки и всех дополнительных элементов:

  • Стены дома.
  • Перекрытия.
  • Стропильная система и кровля.
  • Наружная обшивка, утеплитель.
  • Эксплуатационная нагрузка (вес мебели, бытовой техники, прочего имущества).
  • Вес людей и животных.
  • Снеговая и ветровая нагрузка.

Производится последовательный подсчет всех слагаемых, после чего вычисляется общая сумма. Затем необходимо увеличить ее на величину коэффициента прочности.

Необходимо решить, возможны ли какие-либо дополнительные пристройки или дополнения, увеличивающие вес дома и изменяющие величину нагрузки на основание. Если подобные изменения входят в планы, лучше сразу заложить их в несущую способность фундамента, чтобы упростить себе задачу в будущем.

От каких факторов зависит шаг?

Минимальным расстоянием между двумя соседними винтовыми сваями является двойной диаметр лопасти.

Максимум ограничивается несущей способностью опор и жесткостью ростверка, испытывающего нагрузку от веса дома.

Каждый пролет между опорами можно рассматривать как балку, жестко закрепленную с двух концов.

Тогда величину нагрузки необходимо рассчитать таким образом, чтобы балка не была деформирована или разрушена, а прогиб в центральной точке не превышал допустимых значений.

На практике обычно поступают проще — на основании многочисленных расчетов и эксплуатационных наблюдений выведено максимальное расстояние между соседними сваями, равное 3 (иногда — 3,5) м.

Эту величину считают критической, если по несущей способности опор получаются пролеты больше 3 м, то добавляют 1 или несколько свай для уменьшения шага.

Пример вычисления необходимого количества опор

Для простоты примем общий вес дома со всеми нагрузками равным 30 т. Это приблизительно соответствует весу одноэтажного брусового дома 6 : 4 м, расположенного в средней полосе со снеговой нагрузкой до 180 кг/м2.

Определяется несущая способность одной сваи. Площадь опоры (лопасти) при диаметре 0,3 м составит 0,7 м2. (700 см2). Несущая способность грунта обычно принимается равной среднему арифметическому от значений всех слоев, встречающихся на участке. Допустим, она выражается в 3-4 кг/см2. Тогда каждая свая сможет нести 2,1-2,8 т.

Получается, что для дома в 30 т надо использовать 11-15 свай. Помня о необходимости иметь запас прочности, принимаем максимальное значение. Схему размещения можно принять как свайное поле из 3 рядов по 5 свай в каждом.

Глубину погружения и, соответственно, длину свай принимаем равной глубине залегания плотных грунтовых слоев.

Она определяется практически, методом пробного погружения сваи или бурением скважины.

Пример расчета буронабивной основы

Прежде всего следует вычислить несущую способность одной сваи. Для примера возьмем наиболее распространенный вариант — диаметр скважины 30 см, несущая способность грунта составляет 4 кг/см2. По таблицам СНиП определяем, что несущая способность на песках средней плотности составит около 2,5 т.

Затем производится подсчет общего веса дома. Он делается по обычной методике, но к нему понадобится прибавить вес ростверка, для чего следует вычислить объем ленты и умножить его на удельный вес бетона.

После этого нагрузку на сваи делят на несущую способность единицы и округляют до большего целого значения. Это — количество буронабивных свай, необходимое для дома заданного веса, выстроенного в заданных условиях.

Даже состав грунта редко соответствует лабораторным показателям из-за различных примесей, включений или прочих напластований, изменяющих все параметры.

Поэтому в любом случае надо делать запас прочности, превышающий обычные коэффициенты, заложенные в формулы. Рекомендуется увеличивать его на 10-15%.

Основные схемы размещения

Существует несколько разновидностей схем расположения свай:

  • Свайное поле.
  • Свайный куст.
  • Свайная полоса.

Свайное поле представляет собой участок с равномерно распределенными по всей площади опорами.

Используется для жилых или вспомогательных построек, обладающих подходящим весом, этажностью и материалом для использования винтовых свай. Свайные кусты применяются для создания опорной конструкции под точечные объекты — вышки электропередач или мобильной связи, колонны, трубы котельных и т.п.

Свайные полосы служат фундаментом для линейных сооружений — ограждений, заборов, набережных и т.п.

При проектировании схемы расстановки опор учитывается конфигурация, геометрические и функциональные особенности всех элементов сооружения. Нередко используются смешанные, или комбинированные схемы расположения свай, когда совместно со свайным полем наблюдаются участки с кустами и полосами.

Необходимо учитывать, что минимальное расстояние между соседними сваями не должно превышать 2 диаметра, а между соседними рядами — 3 диаметра режущих лопастей. Это важно, так как при погружении грунт теряет свою плотность, на восстановление которой уходит большое количество времени.

Как правильно рассчитать шаг

Расчет шага производится в зависимости от схемы размещения свай и от конфигурации постройки.

Если известно общее количество, опоры расставляются по выбранной схеме — сначала по углам, затем заполняются наиболее нагруженные линии, расположенные под несущими стенами, после чего расставляют оставшиеся сваи по площади комнат для поддержки лаг перекрытий.

Задаче проектировщика является обеспечение максимальной жесткости ростверка, установка опор в точках максимальных нагрузок и равномерное распределение веса дома между остальными стволами.

Для построек обычного типа распределение свай проблемы не вызывает, намного сложнее расстановка опор на сооружениях сложной конфигурации с неравномерным распределением массы элементов.

В таких ситуациях сначала размещают кусты свай под наиболее нагруженными точками, после чего размещают остальные опоры.

Оптимальное расстояние

Оптимальное расстояние между сваями — это абстрактное понятие, не имеющее реального числового выражения.

Некоторые источники приводят вполне конкретные значения, но они вызывают больше сомнений, чем полезной информации.

Прежде всего, необходимо учесть нагрузку на каждую опору, которая должна быть меньше предельно допустимых величин.

Кроме этого, необходимо обеспечить такую длину пролетов между сваями, чтобы балки ростверка сохраняли неподвижность и не прогибались.

В этом отношении оптимальное расстояние определяется материалом и размерами ростверка, величиной нагрузки и прочими факторами воздействия.

Поэтому общего оптимального значения расстояния между сваями нет и не может быть. Это величина расчетная, зависит от многих факторов и в каждом конкретном случае имеет собственное значение.

Пример нахождения размеров ростверка

Рассмотрим порядок расчета железобетонного ростверка. Ширина ленты должна быть равна толщине стен.

Если стены дома в 1,5 кирпича, то ширина стен составит 38 см. Такой же будет и ширина ростверка.

Высота ленты при такой ширине должна составить 50 см — это обеспечит необходимую жесткость на прогиб.

Арматурный каркас Будет состоять из двух горизонтальных решеток по 2 стержня 12 мм.

Общий объем бетона, необходимого для отливки, составит 0,5 · 0,38 · 30 м (общая длина ростверка) = 5,7 м3.

Учитывая возможность непроизводительных потерь, лучше заказывать 6 м3 готового бетона марки М200 и выше, или изготовить его самостоятельно прямо на площадке.

Полезное видео

В данном разделе вы сможете ознакомиться с пособием по расчету свайно-ростверкового, плитно-свайного, а также свайно-ленточного фундамента:

Заключение

Большинство пользователей не производит расчет фундамента, так как это слишком сложная и ответственная задача.

Чаще всего для этого привлекают опытных специалистов.

Как минимум, используются онлайн-калькуляторы, позволяющие получить нужные данные быстро и совершенно бесплатно.

Кроме того, такие ресурсы позволяют найти необходимое количество всех материалов и нередко даже рассчитывают их стоимость для монтажа.

Следует учитывать, что всецело полагаться на качество подсчета при помощи неизвестного алгоритма опасно, надо хотя бы продублировать расчет на другом, подобном ресурсе.

В целом, самостоятельный расчет можно производить только для вспомогательных или хозяйственных построек, чтобы не слишком рисковать своим имуществом, здоровьем и жизнью людей.

Калькулятор Столбы-Онлайн v.1.0

Калькулятор по расчету столбчатого фундамента из буронабивных столбов (свай). Расчет количества столбов, ростверка, расчет бетона и арматуры, состава бетона и кол-ва замесов в бетономешалке. За основу взяты: СП 22.13330.2011, СП 52-101-2003, книга В.П. Сизова: Руководство для подбора составов тяжелого бетона.

Пример расчета

Вес дома: 150 тонн

Вес дома необходимо указать без учета массы фундамента с учетом снеговой и эксплуатационной нагрузки на перекрытия и с коэф. запаса. Для примера взят одноэтажный каркасный дом.

Грунт: Суглинок. Коэффициент пористости [e]: 0.5. Показатель текучести грунта [IL]: 1

Тип столбов: с уширением пяты (ТИСЭ)

Высота ствола столба [h2]: 2.5м

Диаметр ствола столба [d1]: 0.25м

Высота уширения столба [h3]: 0.3м

Диаметр уширения столба [d2]: 0.6м

Глубина погружения столба в грунт: 1.5м

Конструктивная схема здания: пятистенок (с одной внутренней несущей стеной по длинной стороне дома)

Размеры дома: 10х12м

Высота ростверка: 0.4м

Ширина ростверка: 0.4м

Условия расчета

Для расчета количества столбов нам необходимо знать расчетное сопротивление грунта, нагрузки на фундамент (вес дома со снеговой и эксплуат. нагрузкой) и массу фундамента.

В связи с тем, что масса фундамента нам не известна расчет будем производить в два приема. Изначально находим кол-во столбов без учета массы фундамента (столб + ростверк либо только столбы), а затем, когда масса фундамента становится известной, находим кол-во столбов с учетом его массы.

Расчет столбчатого фундамента будем производить по второй группе предельных состояний (по деформациям основания). За основу взят СП 22.13330.2011 Основания зданий и сооружений.

Отступление: Стоит заметить, что многие застройщики называют данный тип свайно-ростверковым фундаментом. Если идти по строгой терминологии то это не верно и для расчета свайного фундамента используется СП 24.13330.2011. По нему будет составлен отдельный калькулятор.

Расчет сопротивление грунта основания

Если характеристики грунтов известны, то для расчета можно воспользоваться формулой из пункта 5.6.7 СП 22.13330.2011.

Определяем ширину подошвы фундамента. В нашем случае это столб, который имеет геометрию подошвы в виде круга. Поэтому в первую очередь находим площадь подошвы столба, которая будет опираться на грунт. Затем вычисляем ширину фундамента.

Площадь подошвы столба = Пи * Диаметр подошвы столба * Диаметр подошвы столба / 4 = 3.14 * 0.6 * 0.6 / 4 = 0.2826 м2 = 2826 см2

Ширина фундамента = квадратный корень (Площадь подошвы столба) = квадратный корень (2826см2) = 0.53 м

При неизвестной ширине фундамента можно найти расчетное сопротивление грунта по формулам через приложения В СП 22.13330.2011. Ширина фундамента в нашем случае задана конструктивно, но за основу можно взять данный расчет за счет минимальных требований к прочностным характеристикам грунта.

Формула при глубине заложения фундамента [d] 19.05.2016 05:51:49 Максим Гвоздев

Несущая способность | Программа Устой | GEO5

В рамке «Несущая способность» отображены результаты расчёта несущей способности грунта основания. Напряжение в подошве (принято постоянным) рассчитано на основе всех анализов выполненных в рамке «Проверка». В программы «Отдельные фундаменты», «Отдельные фундаменты CPT», «Свая» и «Куст свай» анализы будут переведены как сочетания нагрузок. В программу «Свая CPT», передаётся только нормальная нагрузка.

  • Ввести несущую способность грунта основания

В вводное поле вводят несущую способность грунта основания. Результаты анализа стены на эксцентриситет и несущую способность грунта основания отображены в правой части рамки. Кнопка «Подробно» открывает диалоговое окно с детальной выпиской результатов анализа несущей способности грунта.

  • Рассчитать несущую способность грунта основания в программе «Отдельные фундаменты»

Кнопкой «Запуск программу Отдельные фундаменты» запустить программу «Отдельные фундаменты», в которой можно рассчитать несущую способность грунта основания, или осадку и поворот фундамента. После выполнения расчётов нажать кнопку «OK» – результаты в т.ч. заданные изображения будут переданы в протокол расчёта программы «Устой». Если не установлена программа «Отдельные фундаменты», то кнопка недоступна. Задают общую длину фундамента стены.

  • Рассчитать несущую способность грунта основания в программе «Отдельные фундаменты CPT»

Процедура расчёта идентична расчёту несущей способности грунта основания с помощью программы «Отдельные фундаменты».

  • Рассчитать вертикальную несущую способность одиночной сваи с помощью программы «Сваи»

Процедура расчёта идентична расчёту несущей способности грунта основания с помощью программы «Отдельные фундаменты». Кнопка «Запуск программу Свая» доступна в случае заложения стены на сваях (рамка «Заложение»). Задаём продольный шаг свай s.

  • Рассчитать вертикальную несущую способность одиночной сваи с помощью программы «Свая CPT»

Процедура расчёта идентична расчёту несущей способности грунта основания с помощью программы «Свая».

  • Рассчитать вертикальную несущую способность куста свай с помощью программы «Куст свай»

Процедура расчёта идентична расчёту несущей способности грунта основания с помощью программы «Отдельные фундаменты». Кнопка «Запуск программы Куст свай» доступна в случае заложения стены на сваях (рамка «Заложение»). Задаём продольный шаг свай s, общее количество рядов свай n и длину нагружения l.

  • Не проводить расчёт (фундамент на сваях)

Не производится расчёт несущей способности грунта основания.

Несущая способность буронабивной сваи: таблица и расчет

Характерным показателем прочности свайного фундамента является несущая способность отдельно взятой сваи. Эта характеристика влияет на общее количество свай в периметре фундамента – регулируя частотность, можно повышать предел нагрузки, которую будет способен выдержать фундамент. Количество буронабивных свай и несущая способность отдельно взятой свайной колонны это взаимосвязанные характеристики, оптимальное соотношение которых определяется путем проведения несложных расчетов.

Подготовка к расчету

Конструкция буронабивных свай

Исходные данные, которые понадобятся для расчета несущей способности буронабивной сваи, получают в итоге проведения геологических изысканий и подсчета общей предполагаемой нагрузки здания. Это обязательные этапы расчета, проведение которых обосновано теорией расчета прочностных характеристик буронабивных фундаментов.

Такие показатели как глубина промерзания, уровень залегания грунтовых вод, разновидность грунта и его механические характеристики очень важны для получения точного результата. Информация о глубине промерзании грунта находится в СНиП 2.02.01-83*, данные разделены по климатическим районам, представлены картографически и в виде таблиц.

Не стоит полагаться на данные геологической и гидрогеологической разведки, полученные на соседних участках. Даже в пределах периметра одного земельного надела состояние грунтов оснований может резко изменяться. Три-четыре контрольные скважины в контрольных точках периметра дадут точную информацию о состоянии почв.

Расчет массы постройки ведут с учетом климатического района, расположения здания относительно румба ветров, среднего количества осадков в зимний период, массы строительных конструкций и оборудования. Этот показатель наиболее значим при проектировании фундамента – данные для проведения этой части расчета, а также схему и расчетные формулы можно найти в СНиП 2.01.07-85.

Проведение геологии

Шурф для проведения геологических изысканий

Проведение геологических изысканий ответственное мероприятие и в массовом поточном строительстве этим занимаются специалисты-геологи. В индивидуальном жилищном строительстве часто проводят самостоятельную оценку состояния грунтов. Не имея опыта проведения изысканий такого уровня очень сложно оценить реальное положение вещей. Работа грамотного специалиста по большей части заключается в визуальной оценке состояния напластований.

Для начала на участке устраивают шуфры – вертикальные выработки грунта прямоугольного или круглого сечения, глубиной от двух метров и шириной достаточной для визуального осмотра основания стенок ямы. Назначение шуфров – раскрытие почвы с целью осуществления доступа к напластованиям, скрытым под верхним слоем грунта. Геологи измеряет глубину пластов, берет пробу грунта из середины каждого слоя, а также впоследствии наблюдает за накоплением воды на дне забоя. Вместо шуфров могут устраиваться круглые скважины, из которых с помощью специального устройства вынимают керн или берут локальные пробы.

Шуфры укрывают на некоторое время – два-три дня – ограничивая попадание атмосферных осадков. После оценивают уровень воды, поднявшийся в полости скважины – эта отметка, отсчитанная от верхней границы, и будет уровнем залегания грунтовых вод.

Все полученные данные заносятся в сводную таблицу.Кроме того, составляется профиль сечения грунта, который позволяет предугадать состояние грунтов в точках, где бурение не производилось. При самостоятельной оценке оснований следует руководствоваться сведениями, представленными в СНиП 2.02.01-83* и ГОСТ 25100-2011, где в соответствующих разделах представлены классификации грунтов с описаниями, методы визуального определения типов грунта и характеристики в соответствии с типами.

Как использовать данные геологической разведки

Поле буронабивных свай

После того как проведена геология местности – самостоятельно или нанятыми специалистами – можно приступать к определению начальных геометрических характеристик свай.

Нас интересуют тип грунта, показатель коэффициента неоднородности грунта, глубина промерзания и уровень расположения грунтовых вод. Схема расчета несущей способности буронабивной сваи для различных типов грунтов находится в приложениях СП 24.13330.2011.

Глубина заложения сваи должна быть как минимум на полметра ниже глубины промерзания, чтобы предотвратить воздействие морозного пучения грунтов на опорную часть колонны. Средняя глубина промерзания в центральной полосе России 1,2 метра, значит, минимальная длина сваи должна составлять в таком случае 1,7 метра. Значение меняется для отдельно взятых регионов.

Не только относительная влажность, но и взаимное расположение нижней отметки промерзания грунта и глубины залегания грунтовых вод. В холодное время года высоко расположенные замерзшие грунтовые воды будут оказывать сильное боковое давление на тело свайной колонны – такие грунты сильно деформируются и считаются пучинистыми.

Некоторые грунты, характеризующихся как слабые, высокопучинистые и просадочные, не подходят для устройства свайных фундаментов – для них больше подходят ленточные или плитные фундаменты. Определить тип грунта, а также тип совместимого фундамента, значит исключить скорое разрушение конструкций. Показатели неоднородности грунта, указанные в таблицах вышеперечисленных нормативных документов, используются в дальнейших расчетах.

Расчет общей нагрузки

Сбор нагрузок позволяет определить массу здания, а значит усилие, с которым постройка будет воздействовать на фундамент в целом и на его отдельно взятые элементы. Существует два типа нагрузок, воздействующих на опорную конструкцию – временные и постоянные. Постоянные нагрузки включают в себя:

  • Массу стеновых конструкций;
  • Суммарную массу перекрытий;
  • Массу кровельных конструкций;
  • Массу оборудования и полезной нагрузки.

Посчитать массу конструкций можно, определив объем конструкций, и умножив его на плотность использованного материала. Пример расчета массы для одноэтажного здания с железобетонными перекрытиями, кровлей из керамической черепицы и со стенами 600 мм из железобетона, размерами 10 на 10 метров в плане, высотой этажа 2 метра:

  • Вычисляем объем стен, для этого умножаем площадь поперечного сечения стены на периметр. Получаем V стены = 20 ∙ 2 ∙ 0,6 = 24 м3. Полученное значение умножаем на плотность тяжелого бетона, которая равняется 2500 кг/см3. Итоговая масса стеновых конструкций умножается на коэффициент надежности, для бетона равный k = 1,1. Получаем массу M стены = 66 т.
  • Аналогично считаем объем перекрытий(подвального и чердачного),масса которых при толщине 250 мм будет равняться Мпк = 137,5 т, с учетом аналогичного коэффициента надежности.
  • Вычисляем массу кровельных конструкций. Масса кровли для 1 м2 металлочерепицы – 65 кг, мягкой кровли – 75 кг, керамической черепицы – 125 кг. Площадь двускатной кровли для здания такого периметра будет составлять примерно 140 м2, а значит масса конструкций составит Мкр = 17,5 т.
  • Общий размер постоянной нагрузки будет равняться Мпост = 221 т.

Коэффициенты надежности для различных материалов находятся в седьмом разделе СП 20.13330.2011. При расчете следует учитывать массу перегородок, облицовочных материалов фасада и утеплителя. Объем, который занимают оконные и дверные проемы не вычитают из общего объема для простоты вычислений, поскольку он составляет незначительную часть общей массы.

Расчет временных нагрузок

Ростверк на винтовых сваях

Временные нагрузки рассчитываются в соответствии с климатическим районом и указаниями свода правил «Нагрузки и воздействия». К временным относятся снеговая и полезная нагрузки. Полезная нагрузка для жилых зданий составляет 150 кг на 1 м2 перекрытия, а значит общее число полезного веса будет равняться Мпол = 15 т.

Масса оборудования, которое предполагается установить в здании, также суммируется в этот показатель. Для определенного типа оборудования применяется коэффициент надежности, расположенный в вышеуказанном своде правил.

Существуют различные типы особых нагрузок, которые также необходимо учитывать при проектировании. Это сейсмические, вибрационные, взрывные и прочие.

Снеговая нагрузка определяется по формуле:

где ce – коэффициент сноса снега, равный 0,85;

ct – термический коэффициент, равный 0,8;

m – переходный коэффициент, для зданий в плане менее 100 м принимаемый по таблице Г вышеуказанного СП;

St – вес покрова снега на 1 м2. Принимается по таблице 10.1, в зависимости от снегового района.

Показатели временных нагрузок суммируются с постоянными и получается количественный показатель общей нагрузки здания на фундамент. Это число используется для расчета нагрузки на одну свайную колонну и сравнения предела прочности. Для удобства расчета и наглядности примера примем временные нагрузки Мвр = 29 т, что в сумме с постоянными даст Мобщ = 250 т.

Посмотрите видео, как правильно рассчитать нагрузку на основание.

Определение несущей способности сваи

Геометрические параметры сваи и предел прочности это взаимосвязанные величины. В данном примере, нагрузка на один метр фундамента будет составлять 250/20 = 12,5 тонн.

Расчет предела предела нагрузки на отдельно взятой буронабивной сваи ведут по формуле:

где F – предел несущей способности; R – относительное сопротивление грунта, пример расчета которого находится в СНиП 2.02.01-83*; А – площадь сечения сваи; Eycf, fi и hi – коэффициенты из вышеуказанного СНиП; y – периметр сечения свайного столба, разделенный на длину.

Посмотрите видео, как проверить несущую способность сваи с помощью профессионального оборудования.

Для сваи полутораметровой длины диаметром 0,4 метра несущая способность будет равняться 24,7 тонны, что позволяет увеличить шаг свайных колонн до 1,5 метров. В таком случае нагрузка на сваю будет составлять 18, 75 тонн, что оставляет довольно большой запас прочности. Изменением геометрических характеристик, а также шага свайных колонн регулируется несущая способность. Данная таблица, представленная ниже, показывает зависимость несущей способности полутораметровой сваи от диаметра:

Зависимость несущей способности от ширины сваи

Существует масса сервисов, позволяющих провести расчет несущей способности сваи онлайн. Пользоваться следует только проверенными порталами, с хорошими отзывами.

Важно не превышать допустимую нагрузку на сваю и оставлять запас прочности – немногие сервисы умеют планировать распределение нагрузки, поэтому следует обратить внимание на алгоритм расчета.

Пример 2.2. Определение несущей способности забивной сваи по грунту

Опубликовал admin | Дата 30 Июнь, 2016

 

 

Требуется определить допустимую нагрузку, которую может воспринять забивная висячая железобетонная свая. Глубина погружения сваи L = 7 м. Се­чение сваи квадратное с размером стороны b = 0,3 м. Свая забита при помощи дизель — молота.

Грунт № 1: супесь с показателем текучести IL = 0,3 Мощность слоя: H1 = 3,5 м.

Грунт № 2: супесь с показателем текучести IL = 0,4. Мощность слоя: H2= 1,5 м.

Грунт № 3: глина с показателем текучести IL =0,5.

Решение

Площадь поперечного сечения сваи A = b2 = 0,32 = 0,09 м2

Периметр сечения сваи: и = 4b = 4*0,3 = 1,2 м.

Расчетное сопротивление грунта под нижним концом сваи R = 1,4 МПа = 1400 кПа.

При определении сопротивления грунта по боковой по­верхности сваи при толщине прорезаемого слоя более 2 м этот слой следует разбивать на несколько слоем с толщиной каждого не более 2 м.

Слой №1 мощностью 3,5 м, поэтому разбиваем его на два толщиной 2 и 1,5 м.

Средняя глубина расположения слоев (см. рис. 1):

h1 = 1,0 м;

h2 = 2,75 м;

 

h3 = 4,25 м;

h4 = 5,75 м.

Расчетное сопротивление по боковой поверхности сваи в первом слое грунта (IL = 0.3) при его средней глубине заложения h1 = 1,0 м,  f1 = 23 кПа

Расчетное сопротивление по боковой поверхности сваи в первом слое грунта (IL = 0.3) при его средней глубине заложения h2 = 2,75 м,  f2 = 33,8 кПа.

Расчетное сопротивление по боковой поверхности сваи во втором слое грунта (IL = 0,4) при его средней глубине заложения h3= 4,25 м, f3 = 27,5 кПа.

Расчетное сопротивление по боковой поверхности сваи в третьем слое грунта (IL = 0,5) при его средней глубине заложения h4 = 5,75 м,  f4  = 24.7 кПа.

Коэффициент условий работы сваи в грунте: γс = 1.0.

Коэффициент условий работы грунта под нижним концом сваи γсR = 1,0.

Коэффициент условий работы грунта по боковой поверхности сваи γсf = 1,0.

Несущая способность одиночной висячей сваи :

FdссR RA + uγсf ∑fi hi ) =

= 1,0(1,0 * 1400 * 0,09 + 1,2 * 1,0 (23*2 + 33,8*1.5 + 27.5*1,5 + 24.7*1.5)) = 336 кН.

Коэф. надежности по грунту γk = 1,4.

Допустимая расчетная нагрузка на сваю по грунту:

F = Fdk = 336/1,4 = 240 кН.

Примеры:

 

Испытание свайных фундаментов – Designing Buildings Wiki

Свайные фундаменты – это фундаменты глубокого заложения. Они состоят из длинных, тонких, столбчатых элементов, обычно сделанных из стали или железобетона, а иногда и из дерева. Фундамент называют «свайным», если его глубина более чем в три раза превышает его ширину.

Несущая способность сваи определяется несколькими факторами, включая размер, форму и тип сваи, а также особые свойства почвы. Метод расчета, который используется в качестве средства испытания свайных фундаментов , зависит от объема выполняемых работ, типа грунта и технических требований инженера.Методы расчета включают:

  • Формулы динамических свай.
  • Статическая формула.
  • Тестовая загрузка.

Целостность и наличие дефектов в новых и существующих сваях можно оценить путем проведения испытания на целостность.

В основном в несвязных грунтах для расчета приблизительной несущей способности свай можно использовать динамические формулы. Они основаны на предположениях, в том числе:

В основе формул лежит то, что способность преодолевать сопротивление грунта проникновению приравнивается к энергии, передаваемой молотком при ударе.Прежде чем рассчитывать безопасную рабочую нагрузку, необходимо применять коэффициент запаса прочности при достижении предельной несущей способности. Это может варьироваться в зависимости от допустимой скорости осадки сваи при рабочей нагрузке, которая определяется размером сваи и сжимаемостью грунта.

Для несвязных грунтов статические формулы, которые можно использовать для испытания свай, включают стандартный тест на проникновение и тест на проникновение конуса.

Стандартный тест на проникновение включает измерение сопротивления грунта проникновению при статической или динамической нагрузке.Для получения дополнительной информации см. Стандартный тест на проникновение.

Тест на проникновение конуса включает конус, заключенный в трубку. Он вдавливается в почву, и измеряются силы, необходимые для независимого продвижения конуса и трубы. Сопротивление конуса забиванию в грунт принимается равным его предельной несущей способности.

Лабораторные испытания больше подходят для оценки значений прочности на сдвиг связных грунтов.

Рекомендуется испытать нагрузку по крайней мере одной сваи на схему, сформировав пробную сваю, которая находится в непосредственной близости, но не является частью фактического фундамента.Сваю следует перегрузить не менее чем на 50% от ее рабочей нагрузки и выдержать 24 часа. Это позволяет проверить предельную несущую способность сваи, а также качество изготовления, необходимое для ее формирования.

% PDF-1.4 % 746 0 объект > эндобдж xref 746 80 0000000016 00000 н. 0000002649 00000 н. 0000002785 00000 н. 0000003134 00000 п. 0000003186 00000 н. 0000003344 00000 п. 0000003705 00000 н. 0000004152 00000 н. 0000004638 00000 н. 0000005025 00000 н. 0000005575 00000 н. 0000006073 00000 н. 0000006302 00000 п. 0000006525 00000 н. 0000006770 00000 н. 0000006815 00000 н. 0000006893 00000 н. 0000007144 00000 н. 0000007783 00000 н. 0000008251 00000 н. 0000008886 00000 н. 0000009474 00000 н. 0000010080 00000 п. 0000010754 00000 п. 0000010979 00000 п. 0000011211 00000 п. 0000011779 00000 п. 0000012352 00000 п. 0000012587 00000 п. 0000012659 00000 п. 0000012742 00000 п. 0000012843 00000 п. 0000012897 00000 п. 0000013020 00000 н. 0000013074 00000 п. 0000013179 00000 п. 0000013228 00000 п. 0000013319 00000 п. 0000013367 00000 п. 0000013465 00000 п. 0000013513 00000 п. 0000013608 00000 п. 0000013656 00000 п. 0000013831 00000 п. 0000013944 00000 п. 0000013992 00000 п. 0000014097 00000 п. 0000014271 00000 п. 0000014368 00000 п. 0000014416 00000 п. 0000014510 00000 п. 0000014669 00000 п. 0000014761 00000 п. 0000014808 00000 п. 0000014889 00000 п. 0000014999 00000 н. 0000015046 00000 п. 0000015144 00000 п. 0000015193 00000 п. 0000015290 00000 п. 0000015339 00000 п. 0000015387 00000 п. 0000015486 00000 п. 0000015535 00000 п. 0000015637 00000 п. 0000015685 00000 п. 0000015788 00000 п. 0000015835 00000 п. 0000015882 00000 п. 0000015930 00000 п. 0000015978 00000 п. 0000016026 00000 п. 0000016137 00000 п. 0000016185 00000 п. 0000016233 00000 п. 0000016312 00000 п. 0000016367 00000 п. 0000016422 00000 п. 0000002452 00000 н. 0000001950 00000 н. трейлер ] >> startxref 0 %% EOF 825 0 объект > поток 8> {{GM \ ie} ˅a̢R $ ʗ ɟ.| & 4 瓂 B * DυOHr! / SuTRJ7m) n * M # vǂHAX ~ ׈ rJ8, * / ZL / ܃ OlX͉? V1E QZE ؁ rrG j {; خ q3 = E5ȶ · ΑoeivnT`8 & pXYv (% BJ8uebbT

% PDF-1.4 % 1 0 объект > эндобдж 2 0 obj > поток 2017-11-21T11: 48: 58 + 09: 002017-11-21T11: 48: 56 + 09: 002017-11-21T11: 48: 58 + 09: 00Слово 用 Acrobat PDFMaker 18uuid: cc093d7d-31e3-4788-8a2f- 2b9b976bb7f8uuid: 37d93c6d-369c-4145-aa3b-36430a51523f

  • 3
  • application / pdf
  • Dicky 2017
  • Библиотека Adobe PDF 15.0D: 20171109042523домашний конечный поток эндобдж 5 0 obj > эндобдж 3 0 obj > эндобдж 7 0 объект > / ExtGState> / Font> / XObject >>> / Type / Page >> эндобдж 8 0 объект > / ExtGState> / Font> / XObject >>> / Type / Page >> эндобдж 9 0 объект > / ExtGState> / Font> / XObject >>> / Type / Page >> эндобдж 10 0 obj > / ExtGState> / Font> / XObject >>> / Type / Page >> эндобдж 11 0 объект > / ExtGState> / Font> / XObject >>> / Type / Page >> эндобдж 12 0 объект > / ExtGState> / Font> / XObject >>> / Type / Page >> эндобдж 13 0 объект > / ExtGState> / Font> / XObject >>> / Type / Page >> эндобдж 66 0 объект > поток HWr6} Wa @ oL ڴ a.$ y: $ = {@; (

    Проектирование свай [разработать подробное руководство]

    В статье обсуждается конструкция свай (одинарные набивные буронабивные сваи). мир как глубокий фундамент, когда осевая нагрузка не может быть достигнута за счет фундаментов мелкого заложения.

    Существуют различные методы проектирования свай. Во всех методах при проектировании свай выполняются расчеты поверхностного трения и концевых опор. По указанным выше параметрам мы легко можем оценить вместимость сваи.

    Расчет отрицательного поверхностного трения и нормального поверхностного трения грунта в этой статье не рассматривается.

    Однако эффект поверхностного трения грунта можно учесть при оценке несущей способности сваи.

    Особенно, когда есть отрицательное поверхностное трение, которое снижает несущую способность сваи, это следует учитывать в расчетах. Влияние трения кожи о землю о кожу будет рассказано в другой статье на этом сайте.

    Как правило, допустимые значения торцевого подшипника и поверхностного трения определяются геотехническими исследованиями.

    В отчете приведены допустимые значения допустимого концевого подшипника и допустимого поверхностного трения.

    Если в отчете о инженерно-геологических исследованиях указаны предельная нагрузка на концевую опору и предельное поверхностное трение, они должны быть преобразованы в допустимые нагрузки, поскольку мы сравниваем их с рабочими нагрузками (эксплуатационными нагрузками) конструкции.

    Уравнения для оценки концевого подшипника и трения обшивки

    Нагрузочная способность концевого подшипника = (допустимая конечная опора) x (площадь поперечного сечения основания сваи)

    Способность к трению обшивки = (допустимое трение обшивки) x (площадь поверхности сваи в длине раструба)

    Площадь поверхности сваи в длине раструба вычисляется путем умножения длины раструба (длины сваи в свежей породе) на длину периметра сваи.Обычно сваи имеют глубину забивки вокруг диаметра сваи, если это не указано в геотехническом отчете.

    Геотехническая способность сваи = Концевая несущая способность + Допустимая сила трения обшивки

    Геотехническая способность сваи сравнивается со структурной способностью сваи для получения несущей способности сваи.

    Структурная способность сваи может быть оценена с помощью структурного анализа.

    Сваю можно спроектировать как колонну, несущую осевую нагрузку в почве и скале.

    Когда сваи выполняются на очень мягких грунтах, таких как торф, рекомендуется провести структурную проверку сваи с учетом эффекта продольного изгиба в очень мягкой среде.

    Как правило, инженеры использовали следующее уравнение для оценки несущей способности свай.

    Структурная способность сваи = 0,25 fcu Ac

    Где fcu = характеристическая кубическая прочность бетона
    Ac = площадь поперечного сечения сваи

    Расчетная способность сваи = меньшая структурная способность и геотехническая нагрузка

    Для ознакомления с конструкцией заглушки можно обратиться к статье Конструкция заглушки .

    Несущая способность почвы – онлайн-курс PDH для инженеров и архитекторов


    Несущая способность грунтов

    Краткое содержание курса

    Этот курс предусматривает руководство по расчету несущая способность почвы под мелкими и глубокими фундаментами, поддерживающими различные типы конструкций и насыпей, основанные на Руководстве инженеров армии США по подшипникам. Емкость почв. В данном руководстве представлены оценки получения подшипника. емкость мелкого и глубокого фундамента для определенных почвенных и фундаментных условий с использованием хорошо установленных, примерных решений по несущей способности.Принципы оценки несущей способности представлены в это руководство применимо к многочисленным типам конструкций, таким как здания и дома, башни и резервуары для хранения, насыпи, насыпи и дамбы. Эти руководящие принципы могут быть полезным при определении грунта, который приведет к нарушению несущей способности или чрезмерные осадки для заданных фундаментов и нагрузок.

    Этот курс включает в конце тест с несколькими вариантами ответов, который призван улучшить понимание конечно материалы.

    Обучение Объективы

    в По завершении этого курса студент:

    • Лучшее понимание руководящих принципов проектирования и критериев для расчета несущей способности грунтов;
    • Будьте знакомы с определениями, видами отказов и факторами, влияющими на несущую способность;
    • Будьте знакомы с учетом конструктивных соображений, не связанных с нагрузкой; и
    • Знать лабораторные и натурные методы определения параметров почвы. требуется для анализа несущей способности.

    Курс Содержимое

    Цель этого курса – предоставить рекомендации по проектированию и критерии для расчета несущей способности грунта под мелким и глубоким фундаментом. Ты сможешь быть направлен на веб-сайт инженерного корпуса армии США для изучения инженерного дела. и конструкция – Несущая способность грунтов (Руководство инженера EM 1110-1-1905, стр. Издание 1992 г., 196 страниц, формат файла PDF), в котором обсуждается несущая способность. процедуры оценки, виды отказов, параметры грунта и не связанные с нагрузкой соображения по проектированию мелкого и глубокого фундамента, такого как просверленный ствол и свайные фундаменты..

    Несущая способность Процедуры оценки

    1 Оцените предельная несущая способность, давление qu или опорная сила Q u , используя указания в данное руководство и уравнение 1-1.

    2 Определить разумный коэффициент безопасности FS, основанный на доступной информации о геологической поверхности, изменчивость почвы, ее слоистость и прочность, тип и значение структура и прошлый опыт. FS обычно составляет от 2 до 4.Типичный FS приведены в Таблице 1-2.

    3 Оценить допустимое несущая способность qa путем деления q и на FS; т.е. q a = q u / FS, уравнение 1-2a или Q a = Q u / FS, уравнение 1-2b.

    4 Выполнить расчет анализа, когда это возможно, и отрегулируйте давление подшипника до тех пор, пока в допустимых пределах. В результате расчетное давление в подшипнике qd может быть меньше чем qa. Анализ оседания особенно необходим, когда сжимаемые слои присутствуют на глубине зоны потенциального отказа подшипника.Урегулирование Анализ должен проводиться на важных сооружениях и тех, которые чувствительны к заселению.

    Несущая способность грунтов

    Содержание

    ГЛАВА 1 ВВЕДЕНИЕ

    Цель и область применения
    Определения
    Режимы отказа
    Факторы, влияющие на несущую способность

    ГЛАВА 2 БЕЗ НАГРУЗКИ СООТВЕТСТВУЮЩИЕ СООБРАЖЕНИЯ ПРИ ПРОЕКТИРОВАНИИ

    Общие
    Землетрясение и динамическое движение
    Морозное воздействие
    Подземные пустоты
    Расширяющиеся и складывающиеся грунты
    Армирование грунта
    Разрушение при пучинистости
    Эрозия почвы и просачивание

    ГЛАВА 3 ПОЧВА ПАРАМЕТРЫ

    Методология
    Исследование участка
    Исследование почвы

    ГЛАВА 4.МЕЛКИЙ FOUNDATIONS

    Основные соображения
    Решение несущей способности
    Подпорные стенки
    Моделирование опорных давлений на месте
    Примеры

    ГЛАВА 5 ГЛУБОКОЕ ФУНДАМЕНТЫ

    Основные положения
    Просверленные валы, секция I
    Допустимая вертикальная нагрузка одиночных валов
    Способность противостоять подъему и опусканию
    Допустимая боковая нагрузка одиночных валов
    Грузоподъемность групп валов
    Забивные сваи, раздел II
    Влияние забивки сваи
    Вертикальная способность Одиночные забивные сваи
    Допустимая боковая нагрузка одинарных свай
    Грузоподъемность свайных групп

    ПРИЛОЖЕНИЕ A ССЫЛКИ A-1
    ПРИЛОЖЕНИЕ B БИБЛИОГРАФИЯ B-1
    ПРИЛОЖЕНИЕ C КОМПЬЮТЕРНАЯ ПРОГРАММА AXILTR
    Организация
    Приложения
    Листинг
    ПРИЛОЖЕНИЕ D ОБОЗНАЧЕНИЕ D-1

    После окончания учебы вышеуказанное содержание курса вам необходимо пройдите тест, чтобы получить кредиты PDH.



    ОТКАЗ ОТ ОТВЕТСТВЕННОСТИ: Материалы, содержащиеся в онлайн-курсе, не предназначены для демонстрации или гарантия со стороны PDHonline.org или любого другого лица / организации, названной здесь. Материалы предназначены только для общего ознакомления. Они не заменяют за грамотную профессиональную консультацию. Применение этой информации к конкретному Проект должен быть рассмотрен зарегистрированным профессиональным инженером. Кто-нибудь делает использование информации, изложенной в настоящем документе, делает это на свой страх и риск и предполагает любую вытекающую из этого ответственность.

    Расчет приложенного давления в подшипниках.

    Рисунок 10.15 показывает типичный пример, когда нагрузка является осевой и нет изменений уровня земли или дополнительной нагрузки. Хотя этот простой пример будет охватывать большую часть построенных фундаментов, необходимо рассмотреть более общую ситуацию, сначала для расчета общего и полезного давления в подшипниках с вариациями надбавок и / или уровней грунта, а затем для эффектов внесения асимметричной нагрузки.

    В то время как на хороших несущих почвах умеренные доплаты и / или изменения уровня земли будут иметь небольшое влияние на несущую способность почвы, в плохих почвенных условиях или там, где изменения нагрузки значительны, они могут иметь драматический эффект. Таким образом, в общем случае чистое увеличение нагрузки N определяется формулой

    . Это схематично показано на Рис. 10.16 .

    Следует отметить, что там, где уровень почвы был значительно снижен на за счет капитальной реконструкции участка или на
    за счет строительства подвалов и т.п., следует учитывать влияние пучения, особенно в глинах или при наличии артезианских грунтовых вод. давления.

    Почти всегда достаточно точно принять вес нового фундамента и засыпки равным весу перемещенного грунта, то есть FB ~ SB. Таким образом, уравнения для чистого увеличения нагрузки и чистого увеличения давления почвы упрощаются до:

    Когда уровни грунта и избыточное давление изменяются только номинально, FS ~ SS, и поэтому формулы уменьшаются до

    т.е. чистое увеличение нагрузки на грунт равно нагрузке от надстройки, как упоминалось ранее.

    В приведенных выше примерах фундамент подвергался осевой нагрузке, так что общее давление в подшипнике равно

    . Несмотря на то, что это наиболее распространенная ситуация, и очевидно, что эффективный принцип проектирования заключается в создании фундамента, который использует максимальное доступное опорное давление по всему основанию, во многих случаях это нецелесообразно, и неравномерное давление в фундаменте имеет следует рассматривать. Эта неоднородность обычно вызвана:

    (1) Приложенная нагрузка P надстройки не находится в центре тяжести фундамента.
    (2) Надстройка, прикрепляемая к фундаменту таким образом, что моменты передаются в фундамент (например, неподвижные основания жестких каркасов качения).
    (3) Приложение горизонтальных нагрузок.

    (4) Изменения относительных нагрузок на комбинированные основания (например, основания, несущие две или более колонны).

    Таким образом, в общем случае полное давление под основанием с малым неуравновешенным моментом составляет

    Момент MT рассчитывается с учетом моментов относительно центра тяжести на нижней стороне фундамента.В этих случаях обычно полезно учитывать полное давление в подшипнике, которое учитывает уравновешивающий эффект результирующей силы из-за эксцентрических нагрузок и / или приложенных моментов.

    То же, что и для простой конструкции балки, если

    давление будет отрицательным и напряжение, теоретически, будет развиваться. Однако для большинства фундаментов невозможно надежно развить натяжение, и давление в фундаменте либо сжимающее, либо нулевое.

    Для простого прямоугольного фундамента

    где eT – результирующий эксцентриситет фундамента.

    Следовательно, если eT меньше L / 6, фундамент будет полностью сжат на . Это известно как правило средней трети, которое проиллюстрировано ранее.

    Если eT больше, чем L / 6, треугольное распределение напряжения создается под частью основания и ноль под остальной частью, а максимальное давление в подшипнике рассчитывается с использованием теории укороченного основания, которое для прямоугольного основания составляет


    (см. F , рис. 10.17 (c) ).

    Опять же, можно получить выгоду, если учесть общее давление в подшипнике, тем самым используя нагрузки на фундамент, которые уменьшают опрокидывание и увеличивают эффективную длину диаграммы давления.Следует также учитывать расположение основания так, чтобы вертикальные нагрузки P и F использовались для противодействия влиянию любого момента или горизонтальных нагрузок. В примере, показанном на рис. 10.17 , нагрузка P должна быть слева от центральной линии, так что формула для расчета общего эксцентриситета принимает вид

    В идеале eT должно быть равно нулю или Хотя при проектировании фундаментов с осевой нагрузкой уместно сравнить существующую нагрузку с новой нагрузкой на землю , в более общем случае, когда нагрузки являются эксцентричными, необходимо учитывать допустимое давление на опору (чистое или полное) с учетом приложенное давление в фундаменте (чистое или полное), и рекомендуется сравнивать давления, а не нагрузки во всех случаях, чтобы поддерживать постоянство
    и избежать путаницы.

    Эксцентрично нагруженные прямоугольные опорные или ленточные фундаменты обычно проектируются по правилу средней трети, где это применимо. Для других форм и условий применяется метод проб и ошибок. Выбирается базовый размер и сравниваются результирующие давления в подшипниках с допустимыми; базовый размер регулируется в большую или меньшую сторону, и вычисления повторяются до тех пор, пока максимальное давление в подшипнике не станет близким к допустимому. Опыт вскоре позволит инженеру сделать довольно точное первое предположение о размере требуемой базы и сократить количество необходимых итераций.

    Рис. 10.16 Определение нагрузок и давлений – общий случай.

    Рис. 10.17 Фундамент при изгибе вокруг одной оси.

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *