Как строить сечения: Учимся строить сечения многогранников. Часть 2.

Содержание

Учимся строить сечения многогранников. Часть 2.

Учимся строить сечения многогранников. Часть 2.

Эта статья для тех, кто хочет научиться строить сечения. Она содержит 11 заданий для построения сечений, подсказки и ответы к каждому заданию. Рекомендую сначала прочитать эту статью и посмотреть это видео.

Вспомним, что сечение многогранника плоскостью представляет собой плоский многоугольник, вершины которого принадлежат сторонам, а ребра – граням многогранника. Две соседние вершины принадлежат одной грани многогранника. 

Чтобы найти точку, лежащую одновременно в двух плоскостях, нужно найти точку пересечения прямой, лежащей в первой плоскости, с прямой, лежащей во второй плоскости.

 

В подсказках и ответах изображение  дополнительных прямых, используемых при построении сечения, сплошными линиями или пунктирными, не зависит от того, видимы эти прямые или нет.

Рядом с каждой дополнительной прямой указан ее порядковый номер при построении сечения. Все прямые проведены через две точки, принадлежащие определенной плоскости. Прямые пронумерованы в порядке их построения. Рекомендуется при использовании подсказки и воспроизведении построения сечения проговаривать, какой плоскости принадлежит данная прямая, каким плоскостям принадлежит точка их пересечения.

Постройте сечения, проходящие через точки .

Задание 1:

Подсказка. показать

Ответ. показать

Задание 2:

Подсказка: показать

 

Ответ: показать

Задание 3:

Подсказка: показать

 

Ответ: показать

Задание 4:

 

Подсказка: показать

 

Ответ: показать

 

Задание 5:

Подсказка: показать

 

Ответ: показать

 

Задание 6:

Подсказка: показать

Ответ: показать

 

Задание 7:

Подсказка: показать

Ответ: показать

Задание 8:

Подсказка: показать

Ответ: показать

 

Задание 9:

Подсказка: показать

Ответ: показать

 

Задание 10:

 

Подсказка: показать

Ответ: показать

 

 

Задание 11:

 

Подсказка: показать

Ответ: показать

И. В. Фельдман, репетитор по математике.

Построение сечений

Определение

Сечение — это плоская фигура, которая образуется при пересечении пространственной фигуры плоскостью и граница которой лежит на поверхности пространственной фигуры.

 

Замечание

Для построения сечений различных пространственных фигур необходимо помнить основные определения и теоремы о параллельности и перпендикулярности прямых и плоскостей, а также свойства пространственных фигур. Напомним основные факты.

Для более подробного изучения рекомендуется ознакомиться с темами “Введение в стереометрию. Параллельность” и “Перпендикулярность. Углы и расстояния в пространстве”.

 

Важные определения

1. Две прямые в пространстве параллельны, если они лежат в одной плоскости и не пересекаются.

 

2. Две прямые в пространстве скрещиваются, если через них нельзя провести плоскость.\circ\).

 

Важные аксиомы

1. Через три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна.

 

2. Через прямую и не лежащую на ней точку проходит плоскость, и притом только одна.

 

3. Через две пересекающиеся прямые проходит плоскость, и притом только одна.

 

Важные теоремы

1. Если прямая \(a\), не лежащая в плоскости \(\pi\), параллельна некоторой прямой \(p\), лежащей в плоскости \(\pi\), то она параллельна данной плоскости.


 

2. Пусть прямая \(p\) параллельна плоскости \(\mu\). Если плоскость \(\pi\) проходит через прямую \(p\) и пересекает плоскость \(\mu\), то линия пересечения плоскостей \(\pi\) и \(\mu\) — прямая \(m\) — параллельна прямой \(p\).


 

3. Если две пересекающиеся прямых из одной плоскости параллельны двум пересекающимся прямым из другой плоскости, то такие плоскости будут параллельны.

 

4. Если две параллельные плоскости \(\alpha\) и \(\beta\) пересечены третьей плоскостью \(\gamma\), то линии пересечения плоскостей также параллельны:

\[\alpha\parallel \beta, \ \alpha\cap \gamma=a, \ \beta\cap\gamma=b \Longrightarrow a\parallel b\]

 

5. Пусть прямая \(l\) лежит в плоскости \(\lambda\). Если прямая \(s\) пересекает плоскость \(\lambda\) в точке \(S\), не лежащей на прямой \(l\), то прямые \(l\) и \(s\) скрещиваются.


 

6. Если прямая перпендикулярна двум пересекающимся прямым, лежащим в данной плоскости, то она перпендикулярна этой плоскости.

 

7. Теорема о трех перпендикулярах.

Пусть \(AH\) – перпендикуляр к плоскости \(\beta\). Пусть \(AB, BH\) – наклонная и ее проекция на плоскость \(\beta\). Тогда прямая \(x\) в плоскости \(\beta\) будет перпендикулярна наклонной тогда и только тогда, когда она перпендикулярна проекции.


 

8. Если плоскость проходит через прямую, перпендикулярную другой плоскости, то она перпендикулярна этой плоскости.

 

Замечание

Еще один важный факт, часто использующийся для построения сечений:

для того, чтобы найти точку пересечения прямой и плоскости, достаточно найти точку пересечения данной прямой и ее проекции на эту плоскость.


 

Для этого из двух произвольных точек \(A\) и \(B\) прямой \(a\) проведем перпендикуляры на плоскость \(\mu\) – \(AA’\) и \(BB’\) (точки \(A’, B’\) называются проекциями точек \(A,B\) на плоскость). Тогда прямая \(A’B’\) – проекция прямой \(a\) на плоскость \(\mu\). Точка \(M=a\cap A’B’\) и есть точка пересечения прямой \(a\) и плоскости \(\mu\).

 

Причем заметим, что все точки \(A, B, A’, B’, M\) лежат в одной плоскости.

 

Пример 1.

Дан куб \(ABCDA’B’C’D’\). \(A’P=\dfrac 14AA’, \ KC=\dfrac15 CC’\). Найдите точку пересечения прямой \(PK\) и плоскости \(ABC\).

 

Решение

1) Т.к. ребра куба \(AA’, CC’\) перпендикулярны \((ABC)\), то точки \(A\) и \(C\) — проекции точек \(P\) и \(K\).\circ, \angle E\) – общий), значит, \[\dfrac{PA}{KC}=\dfrac{EA}{EC}\]

Если обозначить ребро куба за \(a\), то \(PA=\dfrac34a, \ KC=\dfrac15a, \ AC=a\sqrt2\). Тогда:

\[\dfrac{\frac34a}{\frac15a}=\dfrac{a\sqrt2+EC}{EC} \Rightarrow EC=\dfrac{4\sqrt2}{11}a \Rightarrow AC:EC=4:11\]

Пример 2.

Дана правильная треугольная пирамида \(DABC\) с основанием \(ABC\), высота которой равна стороне основания. Пусть точка \(M\) делит боковое ребро пирамиды в отношении \(1:4\), считая от вершины пирамиды, а \(N\) – высоту пирамиды в отношении \(1:2\), считая от вершины пирамиды. Найдите точку пересечения прямой \(MN\) с плоскостью \(ABC\).

 

Решение

1) Пусть \(DM:MA=1:4, \ DN:NO=1:2\) (см. рисунок). Т.к. пирамида правильная, то высота падает в точку \(O\) пересечения медиан основания. Найдем проекцию прямой \(MN\) на плоскость \(ABC\). Т.к. \(DO\perp (ABC)\), то и \(NO\perp (ABC)\). Значит, \(O\) – точка, принадлежащая этой проекции. Найдем вторую точку. Опустим перпендикуляр \(MQ\) из точки \(M\) на плоскость \(ABC\). Точка \(Q\) будет лежать на медиане \(AK\).
Действительно, т.к. \(MQ\) и \(NO\) перпендикулярны \((ABC)\), то они параллельны (значит, лежат в одной плоскости). Следовательно, т.к. точки \(M, N, O\) лежат в одной плоскости \(ADK\), то и точка \(Q\) будет лежать в этой плоскости. Но еще (по построению) точка \(Q\) должна лежать в плоскости \(ABC\), следовательно, она лежит на линии пересечения этих плоскостей, а это – \(AK\).


 

Значит, прямая \(AK\) и есть проекция прямой \(MN\) на плоскость \(ABC\). \(L\) – точка пересечения этих прямых.

 

2) Заметим, что для того, чтобы правильно нарисовать чертеж, необходимо найти точное положение точки \(L\) (например, на нашем чертеже точка \(L\) лежит вне отрезка \(OK\), хотя она могла бы лежать и внутри него; а как правильно?).

 

Т.к. по условию сторона основания равна высоте пирамиды, то обозначим \(AB=DO=a\).\circ, \ \angle L\) – общий). Значит,

\[\dfrac{MQ}{NO}=\dfrac{QL}{OL} \Rightarrow \dfrac{\frac45 a}{\frac 23a} =\dfrac{\frac{7}{10\sqrt3}a+x}{\frac1{2\sqrt3}a+x} \Rightarrow x=\dfrac a{2\sqrt3} \Rightarrow OL=\dfrac a{\sqrt3}\]

Следовательно, \(OL>OK\), значит, точка \(L\) действительно лежит вне отрезка \(AK\).

 

Замечание

Не стоит пугаться, если при решении подобной задачи у вас получится, что длина отрезка отрицательная. Если бы в условиях предыдущей задачи мы получили, что \(x\) – отрицательный, это как раз значило бы, что мы неверно выбрали положение точки \(L\) (то есть, что она находится внутри отрезка \(AK\)).

 

Пример 3

Дана правильная четырехугольная пирамида \(SABCD\). Найдите сечение пирамиды плоскостью \(\alpha\), проходящей через точку \(C\) и середину ребра \(SA\) и параллельной прямой \(BD\).

 

Решение

1) Обозначим середину ребра \(SA\) за \(M\). Т.к. пирамида правильная, то высота \(SH\) пирамиды падает в точку пересечения диагоналей основания. Рассмотрим плоскость \(SAC\). Отрезки \(CM\) и \(SH\) лежат в этой плоскости, пусть они пересекаются в точке \(O\).


 

Для того, чтобы плоскость \(\alpha\) была параллельна прямой \(BD\), она должна содержать некоторую прямую, параллельную \(BD\). Точка \(O\) находится вместе с прямой \(BD\) в одной плоскости – в плоскости \(BSD\). Проведем в этой плоскости через точку \(O\) прямую \(KP\parallel BD\) (\(K\in SB, P\in SD\)). Тогда, соединив точки \(C, P, M, K\), получим сечение пирамиды плоскостью \(\alpha\).

 

2) Найдем отношение, в котором делят точки \(K\) и \(P\) ребра \(SB\) и \(SD\). Таким образом мы полностью определим построенное сечение.

 

Заметим, что так как \(KP\parallel BD\), то по теореме Фалеса \(\dfrac{SB}{SK}=\dfrac{SD}{SP}\). Но \(SB=SD\), значит и \(SK=SP\). Таким образом, можно найти только \(SP:PD\).

 

Рассмотрим \(\triangle ASC\).\circ\), то \(\triangle ABD=\triangle CBD\), следовательно, \(AD=CD\), следовательно, \(\triangle DAC\) – тоже равнобедренный и \(DK\perp AC\).

 

Применим теорему о трех перпендикулярах: \(BH\) – перпендикуляр на \(DAC\); наклонная \(BK\perp AC\), значит и проекция \(HK\perp AC\). Но мы уже определили, что \(DK\perp AC\). Таким образом, точка \(H\) лежит на отрезке \(DK\).


 

Соединив точки \(A\) и \(H\), получим отрезок \(AN\), по которому плоскость \(\alpha\) пересекается с гранью \(DAC\). Тогда \(\triangle ABN\) – искомое сечение пирамиды плоскостью \(\alpha\).

 

2) Определим точное положение точки \(N\) на ребре \(DC\).

 

Обозначим \(AB=CB=DB=x\). Тогда \(BK\), как медиана, опущенная из вершины прямого угла в \(\triangle ABC\), равна \(\frac12 AC\), следовательно, \(BK=\frac12 \cdot \sqrt2 x\).

 

Рассмотрим \(\triangle BKD\). Найдем отношение \(DH:HK\).


 

Заметим, что т.к. \(BH\perp (DAC)\), то \(BH\) перпендикулярно любой прямой из этой плоскости, значит, \(BH\) – высота в \(\triangle DBK\). Тогда \(\triangle DBH\sim \triangle DBK\), следовательно

\[\dfrac{DH}{DB}=\dfrac{DB}{DK} \Rightarrow DH=\dfrac{\sqrt6}3x \Rightarrow HK=\dfrac{\sqrt6}6x \Rightarrow DH:HK=2:1\]


 

Рассмотрим теперь \(\triangle ADC\). Медианы треугольника точной пересечения делятся в отношении \(2:1\), считая от вершины. Значит, \(H\) – точка пересечения медиан в \(\triangle ADC\) (т.к. \(DK\) – медиана). То есть \(AN\) – тоже медиана, значит, \(DN=NC\).

Пошаговое построение сечения параллелепипеда

Построение сечения методом следов – это поэтапное отыскание точек, принадлежащих одной и той же плоскости грани и одновременно плоскости сечения, то есть прямым, проходящим через точки, принадлежащие сечению. Метод подходит для использования тогда, когда следы секущей плоскости и прямые граней многогранника пересекаются в области чертежа, то есть если сечение параллельно или почти параллельно основанию, этот метод построения не подойдет.

Задача 1. Построить сечение параллелепипеда плоскостью, проходящей через точки  .

Задача 1. Дано

Шаг 1. Чезез точки и , которые принадлежат одной грани, и, следовательно, одной плоскости, проводим прямую. Точки этой прямой все принадлежат секущей плоскости. Точка лежит в плоскости основания, поэтому неплохо бы найти найти точку прямой , которая также принадлежала бы основанию. Для этого проводим прямую , и находим точку ее пересечения с прямой – .

Задача 1. Шаг 1.

Шаг 2. Проводим прямую , принадлежащую плоскости основания. Находим точку пересечения этой прямой ребра – .

Задача 1. Шаг 2.

Шаг 3. Точка лежит в задней грани, поэтому надо бы найти точку прямой , которая принадлежала бы плоскости задней грани. Для этого проведем прямую , которая принадлежит как плоскости основания, так и плоскости задней грани, и найдем точку ее пересечения с прямой – . Через две точки задней грани проводим прямую , и находим место пересечения этой прямой с ребром – .

Задача 1. Шаг 3.

Шаг 4. Окончание построения. Соединяем полученные точки отрезками, и строим многоугольник сечения.

Задача 1. Шаг 4.

 

Задача 2. Построить сечение параллелепипеда плоскостью, проходящей через точки 

Задача 2. Дано.

Шаг 1. Точки и лежат в одной плоскости, можно соединить их прямой. Прямая пересечет ребро в точке .

Задача 2. Шаг 1.

Шаг 2. Точки и также лежат в одной плоскости. Соединяем их прямой и отыскиваем точку пересечения ею ребра – .

Задача 2. Шаг 2

Шаг 3. Найдем точку секущей плоскости, принадлежащую передней грани, чтобы затем через эту точку и точку можно было бы тоже провести след секущей плоскости. Для того, чтобы найти такую точку, проведем луч и найдем его пересечение с прямой – ведь обе эти прямые принадлежат плоскости верхней грани. Точка пересечения – точка . Точки и можно соединить отрезком.

Задача 2. Шаг 3.

Шаг 4. Находим точку пересечения отрезком ребра – точку .

Задача 2. Шаг 4

Шаг 5. После этого соединяем отрезками полученные точки и закрашиваем многоугольник сечения.

Задача 2. Шаг 5

Задача 3. Построить сечение параллелепипеда плоскостью, проходящей через точки 

Задача 3. Дано.

Шаг 1. Построим прямую , это можно сделать, так как обе точки принадлежат одной грани. Точка принадлежит грани основания, поэтому нужна точка в этой плоскости.

Задача 3. Шаг 1

Шаг 2. Для того, чтобы найти точку, одновременно принадлежащую и секущей плоскости, и плоскости нижней грани, продолжим прямую и найдем точку ее пересечения с прямой – .

Задача 3. Шаг 2.

Шаг 3. Проводим прямую и находим точку пересечения этой прямой с ребром – точка .

Задача 3. Шаг 3.

Шаг 4. Теперь надо найти точку в плоскости передней  грани, потому что в этой плоскости у нас уже есть точка – точка . Для того, чтобы найти такую точку, продлим прямую  и найдем пересечение этой прямой с прямой – точка .

Задача 3. Шаг 4

Шаг 5. Проводим прямую , отыскиваем точки пересечения ею ребер – точку , и ребра – точку .

Задача 3. Шаг 5.

Шаг 6. Соединяем точки и получаем многоугольник сечения.

Задача 3. Шаг 6

Окончательный вид сечения с другого ракурса:

Окончательный вид

Задача 4. Построить сечение параллелепипеда плоскостью, проходящей через точки  . Точка в задней грани.

Задача 4. Дано

Шаг 1.  Проводим прямую через две точки одной плоскости – и .  Определяем точку пересечения данной прямой ребра – .

Задача 4. Шаг 1.

Шаг 2. Продолжение прямой пересечется с продолжением прямой – так как обе прямые принадлежат плоскости задней грани. Точка также принадлежит задней грани, но также и боковой. А в боковой грани у нас есть точка , и тогда можно провести прямую .

Задача 4. Шаг 2.

Шаг 3. Точка – точка пересечения прямой ребра . Продлим также ребро и найдем пересечение прямой и прямой – точку , которая принадлежит плоскости основания.

Задача 4. Шаг 3

Шаг 4. Соединяем Точки и плоскости основания, определяем точку пересечения данной прямой с ребром – точку . Соединяем полученные точки отрезками. Штрихуем полученный многоугольник сечения.

Задача 4. Шаг 4.

Окончательный вид сечения с другого ракурса:

Окончание построения

Как научиться строить сечения. Построения сечений многогранников

А вы знаете, что называется сечением многогранников плоскостью? Если вы пока сомневаетесь в правильности своего ответа на этот вопрос, то можете довольно просто себя проверить. Предлагаем пройти небольшой тест, представленный ниже.

Вопрос. Назовите номер рисунка, на котором изображено сечение параллелепипеда плоскостью?

Итак, правильный ответ – на рисунке 3.

Если вы ответите правильно, это подтверждает то, что вы понимаете, с чем имеете дело. Но, к сожалению, даже правильный ответ на вопрос-тест не гарантирует вам наивысших отметок на уроках по теме «Сечения многогранников». Ведь самым сложным является не распознавание сечений на готовых чертежах, хотя это тоже очень важно, а их построении.

Для начала сформулируем определение сечения многогранника. Итак, сечением многогранника называют многоугольник, вершины которого лежат на ребрах многогранника, а стороны – на его гранях.

Теперь потренируемся быстро и безошибочно строить точки пересечения данной прямой с заданной плоскостью. Для этого решим следующую задачу.

Построить точки пересечения прямой MN с плоскостями нижнего и верхнего оснований треугольной призмы ABCA 1 B 1 C 1 , при условии, что точка M принадлежит боковому ребру CC 1 , а точка N – ребру BB 1 .

Начнем с того, что продлим на чертеже прямую MN в обе стороны (рис. 1). Затем, чтобы получить необходимые по уловию задачи точки пересечения, продлеваем и прямые, лежащие в верхнем и нижнем основаниях. И вот наступает самый сложный момент в решении задачи: какие именно прямые в обоих основаниях необходимо продлить, так как в каждом из них имеется по три прямые.

Чтобы правильно сделать заключительный шаг построения, необходимо определить, какие из прямых оснований находятся в той же плоскости, что и интересующая нас прямая MN. В нашем случае – это прямая CB в нижнем и C 1 B 1 в верхнем основаниях. И именно их и продлеваем до пересечения с прямой NM (рис. 2).

Полученные точки P и P 1 и есть точки пересечения прямой MN с плоскостями верхнего и нижнего оснований треугольной призмы ABCA 1 B 1 C 1 .

После разбора представленной задачи можно перейти непосредственно к построению сечений многогранников. Ключевым моментом здесь будут рассуждения, которые и помогут прийти к нужному результату. В итоге постараемся в итоге составить шаблон, который будет отражать последовательность действий при решении задач данного типа.

Итак, рассмотрим следующую задачу. Построить сечение треугольной призмы ABCA 1 B 1 C 1 плоскостью, проходящей через точки X, Y, Z, принадлежащие ребрам AA 1 , AC и BB 1 соответственно.

Решение: Выполним чертеж и определим, какие пары точек лежат в одной плоскости.

Пары точек X и Y, X и Z можно соединить, т.к. они лежат в одной плоскости.

Построим дополнительную точку, которая будет лежать в той же грани, что и точка Z. Для этого продлим прямые XY и СС 1 , т.к. они лежат в плоскости грани AA 1 C 1 C. Назовем полученную точку P.

Точки P и Z лежат в одной плоскости – в плоскости грани CC 1 B 1 B. Поэтому можем их соединить. Прямая PZ пересекает ребро CB в некоторой точке, назовем ее T. Точки Y и T лежат в нижней плоскости призмы, соединяем их. Таким образом, образовался четырехугольник YXZT, а это и есть искомое сечение.

Подведем итог. Чтобы построить сечение многогранника плоскостью, необходимо:

1) провести прямые через пары точек, лежащих в одной плоскости.

2) найти прямые, по которым пересекаются плоскости сечения и грани многогранника. Для этого нужно найти точки пересечения прямой, принадлежащей плоскости сечения, с прямой, лежащей в одной из граней.

Процесс построения сечений многогранников сложен тем, что в каждом конкретном случае он различен. И никакая теория не описывает его от начала и до конца. На самом деле есть только один верный способ научиться быстро и безошибочно строить сечения любых многогранников – это постоянная практика. Чем больше сечений вы построите, тем легче в дальнейшем вам будет это делать.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

В этом методе мы первым действием (после нахождения вторичных проекций данных точек) строим след секущей плоскости на плоскости верхнего или нижнего основания призмы или усечённой пирамиды или на основании пирамиды

Зад 2. Дано изображение треугольной призмы ABCA 1 B 1 C 1 и трёх точек M , N , P , которые лежат соответственно на ребре СС 1 и гранях ABB 1 A 1 , BCC 1 B 1 . Построить сечение призмы плоскостью , проходящей через M , N , P .

Решение. Мы уже имеем одну точку на верхнем основании призмы, поэтому и след мы будем строить на верхнем основании. Строим вторичные проекции точек N и P на верхнее основание.Затем: 1 .N P N 3 P 3 =X ; 2 .M X =p –след; 3 .p B 1 C 1 =D .

Дальнейшие действия уже были показаны выше на чертеже.

Зад 3. Реш. Мы будем строить след секущей плоскости на нижнем основании призмы.

Строим:1. M N E D =X , M P EP 3 =Y ;

2. p =XY – след;3. p B C =G , p D C =H .

Нам нужно найти точку на ребре BB 1 или на ребре AA 1 .

ВграниABB 1 A 1 мы уже имеем одну точку P . Поэтому нижнее ребро этой грани, т.е. AB , мы продолжаем до пересечения со следом.

4. A B p =Z .

5. P Z AA 1 =F ; P Z BB 1 =K .Дальнейшие действия уже показаны выше.

Если окажется, что линия AB не пересекается со следом, то искомая FK тоже будет параллельна следу. Зад 4. Реш. 1. P N P o N o =X ;

2. M N CN o =Y ;3. p =XY – след;

3. C B p =Z ;4. Z M S B =E ;

5. E N S A =G 6. GEMF – иск сечение.

17. Построение сечения цилиндра.

Если секущая плоскость задана тремя точками, то мы всегда можем найти её след на плоскости основания цилиндра или конуса и точку (P , O ) на его оси. Поэтому считаем, что секущая плоскость задана именно этими элементами.

Сначала рас-им случай, когда плоскость пересекает только боковую поверхность цилиндра. Тогда сечением цилиндра будет эллипс (;¯ и его изображение – тоже эллипс. Мы знаем способ построения эллипса, если известны два его сопряжённых диаметра. Мы сейчас покажем, как можно найти изображение главных диаметров эллипса (;¯.

Пусть  и  1 – эллипсы, изображающие нижнее и верхнее основания цилиндра, O и O 1 – их центры. Проведём диаметр A 3 B 3 нижнего основания, параллельный следу и сопряжённый ему диаметр C 3 D 3 . Для построения C 3 D 3 мы используем хорду K 3 L 3 , один конец которой принадлежит контурной образующей. Напомним, что A 3 B 3 и C 3 D 3 изображают перпендикулярные диаметры. Продолжим C 3 D 3 до пересечения со следом. Получим точ X . Прям.PX наз-ём осью сечения.

Поднимем точки C 3 и D 3 до оси сечения. Получим C и D . Отрезок CD является изображением большогодиаметра сечения. Поднимем отрезок A 3 B 3 на высоту OP . Получим отрезок AB , который является изображением малого диаметра сечения. Отр-и AB и CD –сопряж-ые диам. эллипса .

Найти ещё точки, в которых эллипс переходит с видимой стороны цилиндра на невидимую, а значит, сплошная линия переходит в пунктир. Это точки пересечения секущей плоскости с контурными образующими. ПустьY 3 =K 3 L 3 C 3 D 3 . Поднимем Y 3 до оси сечения. Получим точку Y . Поднимем хорду K 3 L 3 на высоту YY 3 . Получим отрезок KL . Мы нашли требуемую точку K , а попутно, ещё одну дополнительную точку L . Точка M , изобр-щая пересечение секущей плоск-и со второй контурной образующей симметрична точкеK относительно точкиP .Допол-но построим точN , симметричнуюL относ-нточки P

Покажем способ, как можно найти любое кол-во точек на сечении без испол-ия этих диаметров.

выбираем люб. точкуV 3 на эллипсе . Проводим диаметрV 3 T 3 и продолжаем его до пересечения со следом.Получим точкуU . Поднимаем точки V 3 и T 3 до прямой UP . Получаем две точки V и T на сечении. Выбирая вместо V 3 другую точку, получим др. 2 точки на сеч.Если выбрать точку K 3 , лежащую на контурно образующей, мы найдём точки K и M , в которых сплошная линия на сечении должна перейти в пунктирную.

Само же задание обычно звучит так: “построить натуральный вид фигуры сечения” . Конечно же, мы решили не оставлять этот вопрос в стороне и постараться по возможности объяснить, как происходит построение наклонного сечения.

Для того, чтобы объяснить, как строится наклонное сечение, я приведу несколько примеров. Начну конечно же с элементарного, постепенно наращивая сложность примеров. Надеюсь, что проанализировав эти примеры чертежей сечений, вы разберетесь в том, как это делается, и сможете сами выполнить свое учебное задание.

Рассмотрим “кирпичика” с размерами 40х60х80 мм произвольной наклонной плоскостью. Секущая плоскость разрезает его по точкам 1-2-3-4. Думаю, тут все понятно.

Перейдем к построению натурального вида фигуры сечения.
1. Первым делом проведем ось сечения. Ось следует чертить параллельно плоскости сечения – параллельно линии, в которую проецируется плоскость на главном виде – обычно именно на главном виде задают задание на построение наклонного сечения (Далее я всегда буду упоминать про главный вид, имея в виду что так бывает почти всегда в учебных чертежах).
2. На оси откладываем длину сечения. На моем чертеже она обозначена как L. Размер L определяется на главном виде и равен расстоянию от точки вхождения сечения в деталь до точки выхода из нее.
3. Из получившихся двух точек на оси перпендикулярно ей откладываем ширины сечения в этих точках. Ширину сечения в точке вхождения в деталь и в точке выхода из детали можно определить на виде сверху. В данном случае оба отрезка 1-4 и 2-3 равны 60 мм. Как видно из рисунка выше, края сечения прямые, поэтому просто соединяем два наших получившихся отрезка, получив прямоугольник 1-2-3-4. Это и есть – натуральный вид фигуры сечения нашего кирпичика наклонной плоскостью.

Теперь давайте усложним нашу деталь. Поставим кирпичик на основание 120х80х20 мм и дополним фигуру ребрами жесткости. Проведем секущую плоскость так, чтобы она проходила через все четыре элемента фигуры (через основание, кирпичик и два ребра жесткости). На рисунке ниже вы можете увидеть три вида и реалистичое изображение этой детали


Попробуем построить натуральный вид этого наклонного сечения. Начнем опять с оси сечения: проведем ее параллельно плоскости сечения обозначенного на главном виде. На ней отложим длину сечения равную А-Е. Точка А является точкой входа сечения в деталь, а в частном случае – точкой входа сечения в основание. Точкой выхода из основания является точка В. Отметим точку В на оси сечения. Аналогичным образом отметим и точки входа-выхода в ребро, в “кирпичик” и во второе ребро. Из точек А и В перпендикулярно оси отложим отрезки равные ширине основания (в каждую сторону от оси по 40, всего 80мм). Соединим крайние точки – получим прямоугольник, являющийся натуральным видом сечения основания детали.

Теперь настал черед построить кусочек сечения, являющийся сечением ребра детали. Из точек В и С отложим перпендикуляры по 5 мм в каждую сторону – получатся отрезки по 10 мм. Соединим крайние точки и получим сечение ребра.

Из точек С и D откладывем перпендикулярные отрезки равные ширине “кирпичика” – полностью аналогично первому примеру этого урока.

Отложив перпендикуляры из точек D и Е равные ширине второго ребра и соединив крайние точки получим натуральный вид его сечения.

Остается стереть перемычки между отдельными элементами получившегося сечения и нанести штриховку. Должно получиться что-то вроде этого:


Если же по заданному сечению произвести разделение фигуры, то мы увидим следующий вид:


Я надеюсь, что вас не запугали нудные абзацы описания алгоритма. Если вы прочли все вышенаписанное и еще не до конца поняли, как начертить наклонное сечение , я очень советую вам взять в руки лист бумаги и карандаш и попытаться повторить все шаги за мной – это почти 100% поможет вам усвоить материал.

Когда-то я пообещал продолжение данной статьи. Наконец-то я готов представить вам пошагового построения наклонного сечения детали, более приближенной к уровню домашних заданий. Более того, наклонное сечение задано на третьем виде (наклонное сечение задано на виде слева)

или запишите наш телефон и расскажите о нас своим друзьям – кто-то наверняка ищет способ выполнить чертежи

или создайте у себя на страничке или в блоге заметку про наши уроки – и кто-то еще сможет освоить черчение.

Да всё хорошо, только хотелось бы увидеть как делаеться тоже самое на более сложной детали, с фасками и конусовидным отверстием например.

Спасибо. А разве на разрезах ребра жесткости не штрихуются?
Именно. Именно они и не штрихуются. Потому что таковы общие правила выполнения разрезов. Однако их обычно штрихуют при выполнении разрезов в аксонометрических проекциях – изометрии, диметрии и т.д. При выполнении наклонных сечений, область относящаяся к ребру жесткости так же заштриховывается.

Спасибо,очень доступно.Скажите,а наклонное сечение можно выполнить на виде с верху,или на виде слева?Если да,то хотелось бы увидеть простейший пример.Пожалуйста.

Выполнить такие сечения можно. Но к сожалению у меня сейчас нет под рукой примера. И есть еще один интересный момент: с одной стороны, там ничего нового, а с другой стороны на практике такие сечения чертить реально сложнее. Почему-то в голове все начинает путаться и у большинства студентов возникают сложности. Но вы не сдавайтесь!

Да всё хорошо, только хотелось бы увидеть как делаеться тоже самое, но с отверстиями (сквозными и несквозными), а то в элипс они в голове так и не превращаются

помогите мне по комплексной задаче

Жаль, что вы именно тут написали. Написали бы в почту – может мы смогли бы успеть все обсудить.

Хорошо объясняете. Как быть если одна из сторон детали полукруглая? А также в детали есть отверстия.

Илья, используйте урок из раздела по начертательной геометрии “Сечение цилиндра наклонной плоскостью”. С его помощью сможете разобраться, что делать с отверстиями (они же по сути тоже цилиндры) и с полукруглой стороной.

благодарю автора за статью!кратко и доступно пониманию.лет 20 назад сам грыз гранит науки,теперь сыну помогаю. многое забыл,но Ваша статья вернула фундаментальное понимание темы.Пойду с наклонным сечением цилиндра разбираться)

Добавьте свой комментарий.

Цели урока: рассмотреть решение задач на построение сечений, если две точки сечения принадлежат одной грани.

Ход урока

Изучение новых понятий
Определение 1.
Секущая плоскость многогранника – любая плоскость, по обе стороны от которой имеются точки данного многогранника.
Определение 2. Сечение многогранника – это многоугольник, сторонами которого являются отрезки, по которым секущая плоскость пересекает грани многогранника.
Задание. Назовите отрезки, по которым секущая плоскость пересекает грани параллелепипеда (рис. 1). Назовите сечение параллелепипеда.

Основные действия при построении сечений

Теоретическая основа

Ответ

1. Как проверить: построено сечение или нетОпределение сечения Это должен быть многоугольник, стороны которого принадлежат граням многогранника
2. До начала работы определить: можно ли по данным задачи построить сечениеСпособы задания плоскостиМожно, если данные элементы задают однозначно плоскость, то есть даны три точки, не лежащие на одной прямой, точка и прямая и т.д.
3. В плоскости какой-то грани есть две точки секущей плоскости
Если две точки принадлежат плоскости, то вся прямая принадлежит плоскостиЧерез эти точки провести прямую
4. В одной из параллельных граней есть сторона сечения, а в другой – точка сеченияСвойство параллельных плоскостейЧерез эту точку провести прямую, параллельную данной
5. В одной грани есть точка сечения и известно, что секущая плоскость проходит через прямую, параллельную этой граниПризнак параллельности прямой и плоскости. Свойство параллельных плоскостейПостроить прямую пересечения плоскостей, параллельную данной прямой
6. Две точки сечения принадлежат одной грани, а третья точка лежит в смежнойАксиомы стереометрииСекущая плоскость пересекает грани по отрезкам OC и AB, которые называются следом секущей плоскости на гранях

Решение задач

Задача 1. Какой из четырехугольников, EFKM или EFKL, может быть сечением данного многогранника (рис. 2)? Почему?

Задача 2. Ученик изобразил сечение тетраэдра (рис. 3). Возможно ли такое сечение?

Решение . Нужно доказать, что N, M и H, L лежат в одной плоскости. Пусть точки N и M принадлежат задней грани, H и L – нижней грани, то есть точка пересечения NM и HL должна лежать на прямой, принадлежащей обеим граням, то есть AC. Продлим прямые NM и HL и найдем точку их пересечения. Эта точка не будет принадлежать прямой AC. Значит, точки N, M, L, H не образуют плоский многоугольник. Невозможно.

Задача 3. Построить сечение тетраэдра ABCS плоскостью, проходящей через точки K, L, N, где K и N – середины ребер SA и SB соответственно (рис. 4).

1. В какой грани можно построить стороны сечения?

2. Выбираем одну из точек, на которой оборвалось сечение.
Решение. Способ I. Выбираем точку L.
Определяем грань, в которой лежит выбранная точка и в которой надо построить сечение.

Определяем грань, в которой лежит прямая KN, не проходящая через выбранную точку L.

Находим линию пересечения граней ABC и ASB.

Каково взаимное расположения прямых KN и AB (рис. 5)?
[Параллельны.]

Что нужно построить, если секущая плоскость проходит через прямую, параллельную линии пересечения плоскостей?
[Через точку L провести прямую, параллельную AB. Эта прямая пересекает ребро CB в точке P.]
Соединяем точки, принадлежащие одной грани. KLPN – искомое сечение.
Способ II . Выбираем точку N (рис. 6).


Определяем грани, в которых лежат точка N и прямая KL.

Линией пересечения этих плоскостей будет прямая SC. Находим точку пересечения прямых KL и SC. Обозначим ее Y.
Соединяем точки N и Y. Прямая NY пересекает ребро CB в точке P.
Соединяем точки, принадлежащие одной грани.
KLNP – искомое сечение.
Объясните данное решение.
Один учащийся работает у доски, остальные в тетрадях.

Задача 4 . Построить сечение параллелепипеда, проходящее через точки M, P и H, H ` (A1B1C1) (рис. 7).

Решение. 1. Соедините точки, принадлежащие одной грани.
2. Какую прямую и точку выбираем для построения сечения?
3. Что определяем дальше?
4. Каково взаимное расположение выбранной прямой и линии пересечения граней (рис. 8)?

5. Как построить след секущей плоскости на грани B1C1D1A1, проходящий через точку H?
6. Соедините точки, принадлежащие одной грани.
7. Какую прямую и точку нужно выбрать для построения следа секущей плоскости на грани AA1D1D?
8. Каково взаимное расположение граней BB1C1C и AA1D1D?
9. Каким свойством необходимо воспользоваться для построения следа секущей плоскости на грани AA1D1D?
10. Назовите искомое сечение.

Задача 5. Построить сечение пирамиды SABCD, проходящее через точки M, P и H,
H` (ABC) (рис. 9).

Ответ: см. рисунок 10.

Задание на дом

Задача . Как изменятся построения, если точ-
ка H изменит свое положение? Построить сечения, используя разные варианты (рис. 11).

В ходе урока все желающие смогут получить представление о теме « Задачи на построение сечений в параллелепипеде». Вначале мы повторим четыре основные опорные свойства параллелепипеда. Затем, используя их, решим некоторые типовые задачи на построение сечений в параллелепипеде и на определение площади сечения параллелепипеда.

Тема: Параллельность прямых и плоскостей

Урок: Задачи на построение сечений в параллелепипеде

В ходе урока все желающие смогут получить представление о теме «Задачи на построение сечений в параллелепипеде» .

Рассмотрим параллелепипед АВСDА 1 B 1 C 1 D 1 (рис. 1). Вспомним его свойства.

Рис. 1. Свойства параллелепипеда

1) Противоположные грани (равные параллелограммы) лежат в параллельных плоскостях.

Например, параллелограммы АВСD и А 1 B 1 C 1 D 1 равны (то есть их можно совместить наложением) и лежат в параллельных плоскостях.

2) Длины параллельных ребер равны.

Например, AD = BC = A 1 D 1 = B 1 C 1 (рис. 2).

Рис. 2. Длины противоположных ребер параллелепипеда равны

3) Диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам.

Например, диагонали параллелепипеда BD 1 и B 1 D пересекаются в одной точке и делятся этой точкой пополам (рис. 3).

4) В сечение параллелепипеда может быть треугольник, четырехугольник, пятиугольник, шестиугольник.

Задача на сечение параллелепипеда

Например, рассмотрим решение следующей задачи. Дан параллелепипед АВСDА 1 B 1 C 1 D 1 и точки M, N, K на ребрах AA 1 , A 1 D 1 , A 1 B 1 соответственно (рис. 4). Постройте сечения параллелепипеда плоскостью MNK. Точки M и N одновременно лежат в плоскости AA 1 D 1 и в секущей плоскости. Значит, MN – линия пересечения двух указанных плоскостей. Аналогично получаем MK и KN. То есть, сечением будет треугольник MKN.

1. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. – 5-е издание, исправленное и дополненное – М.: Мнемозина, 2008. – 288 с.: ил.

Задания 13, 14, 15 стр. 50

2. Дан параллелепипед АВСDА 1 B 1 C 1 D 1 . М и N – середины ребер DC и A 1 B 1 .

а) Постройте точки пересечения прямых АМ и AN плоскостью грани ВВ 1 С 1 С.

б) Постройте линию пересечения плоскостей AMN и ВВ 1 С 1

3. Постройте сечения параллелепипеда АВСDА 1 B 1 C 1 D 1 плоскостью, проходящей через ВС 1 и середину М ребра DD 1 .

Сечение куба плоскостью

Задачи на построение сечений куба плоскостью, как правило, проще чем, например, задачи на сечения пирамиды.

Провести прямую можем через две точки, если они лежат в одной плоскости. При построении сечений куба возможен еще один вариант построения следа секущей плоскости. Поскольку две параллельные плоскости третья плоскость пересекает по параллельным прямым, то, если в одной из граней уже построена прямая, а в другой есть точка, через которую проходит сечение, то можем провести через эту точку прямую, параллельную данной.

Рассмотрим на конкретных примерах, как построить сечения куба плоскостью.

1) Построить сечение куба плоскостью, проходящей через точки A, C и M.

Задачи такого вида — самые простые из всех задач на построение сечений куба. Поскольку точки A и C лежат в одной плоскости (ABC), то через них можем провести прямую. Ее след — отрезок AC. Он невидим, поэтому изображаем AC штрихом. Аналогично соединяем точки M и C, лежащие в одной плоскости (CDD1), и точки A и M, которые лежат в одной плоскости (ADD1). Треугольник ACM — искомое сечение.

 

 

 

2) Построить сечение куба плоскостью, проходящей через точки M, N, P.

Здесь только точки M и N лежат в одной плоскости (ADD1), поэтому проводим через них прямую и получаем след MN (невидимый). Поскольку противолежащие грани куба лежат в параллельных плоскостях, то секущая плоскость пересекает параллельные плоскости (ADD1) и (BCC1) по параллельным прямым. Одну из параллельных прямых мы уже построили — это MN.

 

Через точку P проводим прямую, параллельную MN. Она пересекает ребро BB1 в точке S. PS — след секущей плоскости в грани (BCC1).

Проводим прямую через точки M и S, лежащие в одной плоскости (ABB1). Получили след MS (видимый).

Плоскости (ABB1) и (CDD1) параллельны. В плоскости (ABB1) уже есть прямая MS, поэтому через точку N в плоскости (CDD1) проводим прямую, параллельную MS. Эта прямая пересекает ребро D1C1 в точке L. Ее след — NL (невидимый). Точки P и L лежат в одной плоскости (A1B1C1), поэтому проводим через них прямую.

Пятиугольник MNLPS — искомое сечение.

3) Построить сечение куба плоскостью, проходящей через точки M, N, P.

 

Точки M и N лежат в одной плоскости (ВСС1), поэтому через них можно провести прямую. Получаем след MN (видимый). Плоскость (BCC1) параллельна плоскости (ADD1),поэтому через точку P, лежащую в (ADD1), проводим прямую, параллельную MN. Она пересекает ребро AD в точке E. Получили след PE (невидимый).

 

 

 

Больше нет точек, лежащей в одной плоскости, или прямой и точки в параллельных плоскостях. Поэтому надо продолжить одну из уже имеющихся прямых, чтобы получить дополнительную точку.

Если продолжать прямую MN, то, поскольку она лежит в плоскости (BCC1), нужно искать точку пересечения MN с одной из прямых этой плоскости. С CC1 и B1C1 точки пересечения уже есть — это M и N. Остаются прямые BC и BB1. Продолжим BC и MN до пересечения в точке K. Точка K лежит на прямой BC, значит, она принадлежит плоскости (ABC), поэтому через нее и точку E, лежащую в этой плоскости, можем провести прямую. Она пересекает ребро CD в точке H. EH -ее след (невидимый). Поскольку H и N лежат в одной плоскости (CDD1), через них можно провести прямую. Получаем след HN (невидимый).

Плоскости (ABC) и (A1B1C1) параллельны. В одной из них есть прямая EH, в другой — точка M. Можем провести через M прямую, параллельную EH. Получаем след MF (видимый). Проводим прямую через точки M и F.

Шестиугольник MNHEPF — искомое сечение.

 

Если бы мы продолжили прямую MN до пересечения с другой прямой плоскости (BCC1), с BB1, то получили бы точку G, принадлежащую плоскости (ABB1). А значит, через G и P можно провести прямую, след которой PF. Далее — проводим прямые через точки, лежащие в параллельных плоскостях, и приходим к тому же результату.

Работа с прямой PE дает то же сечение MNHEPF.

 

4) Построить сечение куба плоскостью, проходящей через точку M, N, P.

Здесь можем провести прямую через точки M и N, лежащие в одной плоскости (A1B1C1). Ее след — MN (видимый). Больше нет точек, лежащих в одной плоскости либо в параллельных плоскостях.

 

 

 

 

Продолжим прямую MN. Она лежит в плоскости (A1B1C1), поэтому пересечься может только с одной из прямых этой плоскости. С A1D1 и C1D1 точки пересечения уже есть — N и M. Еще две прямые этой плоскости — A1B1 и B1C1. Точка пересечения A1B1 и MN — S. Поскольку она лежит на прямой A1B1, то принадлежит плоскости ( ABB1), а значит, через нее и точку P, лежащую в этой же плоскости, можно провести прямую. Прямая PS пересекает ребро AA1 в точке E. PE — ее след (видимый). Через точки N и E, лежащие в одной плоскости (ADD1), можно провести прямую, след которой — NE (невидимый). В плоскости (ADD1) есть прямая NE, в параллельной ей плоскости (BCC1) — точка P. Через точку P можем провести прямую PL, параллельную NE. Она пересекает ребро CC1 в точке L. PL — след этой прямой (видимый). Точки M и L лежат в одной плоскости (CDD1), значит, через них можно провести прямую. Ее след — ML (невидимый). Пятиугольник MLPEN — искомое сечение.

 

Можно было продолжать прямую NM в обе стороны и искать ее точки пересечения не только с прямой A1B1, но и с прямой B1C1, также лежащей в плоскости (A1B1C1). В этом случае через точку P проводим сразу две прямые: одну — в плоскости (ABB1) через точки P и S, а вторую — в плоскости (BCC1), через точки P и R. После чего остается соединить лежащие в одной плоскости точки: M c L, E — с N.

 

 

 

 

Сложные сечения. Метод следа – Сечения многогранников и тел вращения

                Следом называют прямую пересечения плоскости сечения и плоскости какой-либо грани многогранника. Чтобы построить след, достаточно знать две его точки, т. е. точки, лежащие одновременно в секущей плоскости и плоскости рассматриваемой грани.

                Основные правила построения сечений методом следа:

  • Если даны (или уже построены) две точки плоскости сечения на одной грани многогранника, то след сечения этой плоскости – прямая, проходящая через эти три точки.
  • Если дана (или уже построена) прямая пересечения плоскости сечения с основанием многогранника (след на основании) и есть точка, принадлежащая определенной боковой грани, то нужно определить точку пересечения данного следа с этой боковой гранью ( точка пересечения данного следа с общей прямой основания и данной боковой грани)
  • Точку пересечения плоскости сечения с основанием можно определить как точку пересечения какой-либо прямой в плоскости сечения с ее проекцией на плоскость основания.
                       То есть, суть метода заключается в построении вспомогательной прямой, являющейся изображением линии пересечения секущей плоскости с плоскостью какой-либо грани фигуры. Удобнее всего строить изображение линии пересечения секущей плоскости с плоскостью нижнего основания. Используя след, легко построить изображения точек секущей плоскости, находящихся на боковых ребрах или гранях фигуры. 
                       Для тех, кто знаком с гомологией, удобно ее применять при нахождении образов точек нижнего основания фигуры F – изображения фигуры. Последовательно соединяя образы этих точек, получим изображение искомого сечения. 
                      В дальнейшем будем допускать вольность речи и говорить «строим сечение» вместо «строим изображение сечения». 

Рассмотрим задачи:

Пример 1

Постройте сечение призмы A1B1C1D1ABCD плоскостью, проходящей через три точки M, N, K. Рассмотрите все случаи расположения точек M, N, K на поверхности призмы

Рассмотрим случай

M ϵ BB1 , N ϵ CC1D1D,  K ϵ AA1E  .  В данном случае очевидно, что М1 = В1  .

Построение

1.     MN ∩ M1N1 = X

2.     MK M1K1 = Y

3.     XY =s – след секущей плоскости

4.     A1K1 ∩ s  = A0

5.     A1K∩ AA1 =A, A1K∩ EE1 = E.

6.     D1N1 ∩ s =D0

7.     D0N ∩ DD1 =D, D0N ∩ CC1 = C.

AMCDE – искомое сечение
Пример 2

Постройте сечение пирамиды SABCDE плоскостью, проходящей через точку M, принадлежащую грани SBC и прямую l, лежащую в грани SED 

Построение

1.     SM ∩ BC = M1

2.     l  ∩SD = D, l ∩ SE=E.

3.     ME ∩ ME1 = X, l ∩ ED= Y, XY=s – след секущей плоскости

4.     s ∩ AB = K, s ∩ AE = N

5.     BC ∩ s = B0, B0M ∩ SB = B, B0M ∩ SC = C.

6.     KBCDEN – искомое сечение

                 При объяснении шагов построения можно использовать  факты стереометрии, опираясь на наглядное представление о данных в условии задачи фигурах. Например, в последнем примере комментарии учителя могут быть следующими: 
  • То, что дано, считается построенным.
  • Так как точка M лежит в грани SBC, то прямые SM и BC пересекаются, следовательно, легко построить их точку пересечения M1
  • Прямая l лежит в грани SED, значит, она пересекает ребра SD и SE в точках D’ и E’ (на рисунке эти имена даны с верхней горизонтальной чертой)
  • Находим прямую s пересечения плоскости основания и секущей плоскости, используя известные точки M, D’, E’ в секущей плоскости
  • Очевиден шаг построения
  • Прямые BC и s лежат в одной плоскости, B0 – их точка пересечения лежит в секущей плоскости, в плоскости основания и в плоскости SBC. Точка M лежит в секущей плоскости и в плоскости SBC. Следовательно, прямая B0M является прямой пересечения секущей плоскости с плоскостью грани SBC. Таким образом, легко построить точки и B’, C’

Пример 3 Построить сечение призмы ABCDA1B1C1D1 плоскостью, проходящей через точки P, Q, R

Построение

  • Построим след секущей плоскости на плоскость нижнего основания призмы. Рассмотрим грань АА1В1В. В этой грани лежат точки сечения P и Q. Проведем прямую PQ.
  • Продолжим прямую PQ, которая принадлежит сечению, до пересечения с прямой АВ. Получим точку S1, принадлежащую следу.
  • Аналогично получаем точку S2 пересечением прямых QR и BC.
  • Прямая S1S2 – след секущей плоскости на плоскость нижнего основания призмы.
  • Прямая S1S2 пересекает сторону AD в точке U, сторону CD в точке Т. Соединим точки P и U, так как они лежат в одной плоскости грани АА1D1D. Аналогично получаем TU и RT.
  • PQRTU – искомое сечение.

Обучение с МК

Пример: модели МК в электронном учебнике

Сечения многогранников

ТЕОРИЯ

В этом разделе мы рассмотрим методы построения сечений многогранников. Плоскость сечения, как правило, будет задаваться тремя точками – K, L, M. Сложность такой задачи во многом определяется расположением точек, задающих плоскость сечения.

Пример 1

Самый простой случай – когда точки лежат на трёх смежных рёбрах пирамиды – не нуждается в разборе.


Модель 1

Основной метод, который используется при построении сечений, называется методом следов.

Следом называется прямая, по которой плоскость сечения пересекает плоскость любой из граней многогранника. Если такой след найден, то точки его пересечения с соответствующими рёбрами многогранника и будут вершинами искомого сечения.

Пример 2

Пусть теперь точки K и M лежат на боковых рёбрах пирамиды, а точка L – на стороне основания.


Модель 2

  1. Проведём в плоскости SAC прямую KL – след сечения в этой плоскости.
  2. Отметим точку P пересечения KL с SC.
  3. Проведём прямую PM – след сечения в плоскости SBC, – и отметим точку пересечения PM и BC.
  4. Все четыре вершины сечения получены – строим сечение.
Пример 3

Несколько труднее случай, когда одна из точек лежит на ребре, а две другие – на гранях пирамиды.


Модель 3

Теперь сразу построить след плоскости сечения в какой-то из граней нельзя.

  1. Рассмотрим вспомогательную плоскость SKM, которая пересекает рёбра AC и BC в точках E и F соответственно.
  2. Построим в этой плоскости прямую KM – след плоскости сечения – и отметим точку P пересечения KM с EF.
  3. Точка P лежит в плоскости сечения и в плоскости ABC. Но в этой же плоскости лежит и точка L. Проведём прямую PL – след сечения в плоскости ABC – и отметим точку пересечения PL с BC.
  4. Строим след сечения в плоскости SBC и отмечаем точку его пересечения с SC.
  5. Строим след сечения в плоскости SAC и отмечаем точку его пересечения с SA.
  6. Все четыре вершины сечения получены – строим сечение.

Использованный на первом шаге построения приём часто называют методом вспомогательных плоскостей. Рассмотрим ещё один пример, где он используется.

Пример 4

Рассмотрим теперь самый общий случай, когда все три точки K, L и M лежат на гранях пирамиды.


Модель 4

  1. Как и в предыдущем случае проведём вспомогательную плоскость CKM, которая пересекает рёбра SA и SB в точках E и F соответственно.
  2. Построим в этой плоскости прямую KM – след плоскости сечения – и отметим точку P пересечения KM с EF.
  3. Точка P, как и L, лежит в плоскости SAB, поэтому прямая PL будет следом сечения в плоскости SAB, а её точки пересечения с SA и SB – вершинами сечения.
  4. Теперь можно построить следы сечения в плоскостях SAC и SBC и отметить их точки пересечения с рёбрами AC и BC.
  5. Все четыре вершины сечения получены – строим сечение.

С помощью метода вспомогательных плоскостей можно строить сечения, «не выходя» за пределы многогранника. Вернёмся в связи с этим к примеру 2.

Пример 2’

Точки K и M лежат на боковых рёбрах пирамиды, а точка L – на стороне основания. Построим сечение, «не выходя» за пределы многогранника.


Модель 5

  1. Проведём вспомогательную плоскость SLB и в ней отрезок LM, который принадлежит плоскости сечения.
  2. Проведём ещё одну вспомогательную плоскость BCK и построим точку пересечения SL и CK – точку E. Эта точка принадлежит обеим вспомогательным плоскостям.
  3. Отметим точку пересечения отрезков LM и EB – точку F. Точка F лежит в плоскости сечения и в плоскости BCK.
  4. Проведём прямую KF и отметим точку пересечения этой прямой c BC – точку N. Эта точка будет недостающей четвёртой вершиной сечения.
  5. Все четыре вершины сечения получены – построим сечение.

Можно использовать ту же самую идею иначе. Проведём в начале анализ построенного сечения – т.е. начнём с конца. Допустим, что по точкам K, L и M построено сечение KLMN.


Модель 6

Анализ

Обозначим через F точку пересечения диагоналей четырёхугольника KLMN. Проведём прямую CF и обозначим через F1 точку её пересечения с гранью SAB. С другой стороны, точка F1 совпадает с точкой пересечения прямых KB и MA, исходя из чего её и можно построить.

Построение

  1. Проведём прямые KB и MA и отметим точку их пересечения F1.
  2. Проведём прямые CF1 и LM и отметим точку их пересечения F.
  3. Проведём прямую KF и отметим точку её пересечения с ребром CB – точку N. Эта точка будет недостающей четвёртой вершиной сечения.
  4. Все четыре вершины сечения получены – построим сечение.

Использованный в этом решении приём называют методом внутреннего проектирования. Построим с его помощью сечение из примера 4, когда все три точки лежат на гранях пирамиды.

Пример 3’

Точки K, L и M лежат на гранях пирамиды. Построим сечение, «не выходя» за пределы многогранника.

Допустим, что сечение уже построено.


Модель 7

Анализ

Пусть плоскость сечения пересекает ребро CB в точке P. Обозначим через F точку пересечения KM и LP. Построим центральные проекции точек K, F и M из точки C на плоскость SAB и обозначим их K1, F1 и M1. Точки K1 и M1 легко находятся, а точку F1 можно получить как точку пересечения K1M1 и LB.

Построение

  1. Построим центральные проекции точек K и M из точки C на плоскость SAB и обозначим их K1 и M1.
  2. Проведём прямые K1M1 и LB и отметим точку их пересечения F1.
  3. Проведём прямые CF1 и KM и отметим точку их пересечения F.
  4. Проведём прямую LF и отметим точку её пересечения с ребром CB – точку P. Это первая вершина искомого сечения.
  5. Проведём прямую PM и отметим точку её пересечения с ребром SB. Это вторая вершина сечения.
  6. Из второй вершины проведём прямую через точку L и найдём третью вершину сечения.
  7. Из третьей вершины проведём прямую через точку K и найдём четвёртую вершину сечения.
  8. Все четыре вершины сечения получены – построим сечение.

УПРАЖНЕНИЯ

Более сложные упражнения помечены звёздочкой.

1. Постройте сечение треугольной пирамиды плоскостью, проходящей через точки K, L и M (см. модели).

2. Постройте сечение куба плоскостью, проходящей через точки K, L и M (см. модели).

3. На рёбрах пирамиды SABC отмечены точки K, L и M. Постройте:

4*. На рёбрах пирамиды SABC отмечены точки K, L, M, P, N и Q. Постройте:

5*. На ребре AB треугольной пирамиды SABC отмечена точка K. Постройте сечение пирамиды плоскостью, проходящей через точку K и параллельной BC и SA.


Модель

6*. На рёбрах AB и CS треугольной пирамиды SABC отмечены точки K и M. Постройте сечение пирамиды плоскостью, проходящей через точки K и M и параллельной AS.


Модель

7*. Постройте сечение треугольной пирамиды плоскостью, проходящей через точки K, L и M, лежащих в плоскостях её боковых граней (но не на самих гранях!).


Модель

8*. На плоскости проведены три луча с общим началом – a, b и с – и отмечены три точки – A, B и C. Постройте треугольник, вершины которого лежат на этих лучах, а стороны проходят через точки A, B и C.


Модель

Мы не можем найти эту страницу

(* {{l10n_strings.REQUIRED_FIELD}})

{{l10n_strings.CREATE_NEW_COLLECTION}} *

{{l10n_strings.ADD_COLLECTION_DESCRIPTION}}

{{l10n_strings.COLLECTION_DESCRIPTION}} {{addToCollection.description.length}} / 500 {{l10n_strings.TAGS}} {{$ item}} {{l10n_strings.PRODUCTS}} {{l10n_strings.DRAG_TEXT}}

{{l10n_strings.DRAG_TEXT_HELP}}

{{l10n_strings.ЯЗЫК}} {{$ select.selected.display}}

{{article.content_lang.display}}

{{l10n_strings.AUTHOR}}

{{l10n_strings.AUTHOR_TOOLTIP_TEXT}}

{{$ select.selected.display}} {{l10n_strings.CREATE_AND_ADD_TO_COLLECTION_MODAL_BUTTON}} {{l10n_strings.CREATE_A_COLLECTION_ERROR}}

Как построить поперечный разрез по карте – видео и стенограмма урока

Создание поперечного сечения

Давайте рассмотрим различные шаги, необходимые для создания поперечного сечения на карте.

Шаг 1:

Возьмите тонкую полоску бумаги и поместите ее вдоль линии поперечного сечения. В местах пересечения контуров с полоской бумаги сделайте отметку и запишите высоту. Эти отметки и отметки показаны красным.


Шаг 2:

Возьмите эту полоску бумаги и положите ее на новый лист бумаги. Нарисуйте две вертикальные линии (похожие на две оси и на графике), представляющие границы вашего поперечного сечения.Кроме того, нарисуйте линии возвышения, расположенные на одинаковом расстоянии от полосы бумаги. Эти линии будут параллельны оси x на графике и помечены числами, представляющими высоту. Будет хорошо, если вы сделаете нижнюю линию на 50 футов ниже самой низкой отметки, а верхнюю линию на 50 футов выше самой высокой.


Шаг 3:

Нарисуйте точки, соответствующие отметкам на полосе бумаги, представляющей линию поперечного сечения.


Шаг 4:

Нарисуйте плавную линию, соединяющую точки. В некоторой степени это сделано по художественным причинам. Мы действительно не знаем, как выглядит местность между контурными линиями, поэтому делаем приблизительную оценку того, как это может выглядеть.

Вот как выглядит местность на хребте Армадилло при переходе от A к A ‘.Мы видим, что если бы мы взобрались на этот гребень, самый легкий путь к вершине был бы от A ‘до A , потому что местность плавно поднимается от 100 до 200 футов по сравнению с другой стороной гребня. Крутизна подъема примерно одинакова от 250 футов до пика на высоте 300 футов.

Резюме урока

Давайте вспомним важную информацию, которую мы узнали о построении поперечных сечений на карте. Топографическая карта – это плоская карта, представляющая высоты с горизонтальными линиями .Эти контурные линии соединяют места с одинаковой высотой над уровнем моря. Поперечное сечение – это боковой профиль определенной линии, которую мы хотим нарисовать на карте. Обычно мы представляем эту линию поперечного сечения, начиная с A и заканчивая A ‘(A-прямое). Рисование поперечного сечения состоит из четырех этапов.

Step 1:

Поместите полоску бумаги вдоль поперечного сечения и сделайте отметку на бумаге в том месте, где контурные линии пересекаются с бумагой.Обязательно запишите высоту в этой точке.

Step 2:

Возьмите эту полоску бумаги и положите ее на чистый лист бумаги. Затем нарисуйте границы, определяемые линией поперечного сечения. Кроме того, нарисуйте линии высот, расположенные на равном расстоянии друг от друга, убедитесь, что они начинаются на 50 футов ниже самого низкого уровня. Закончите на 50 футов выше вашей максимальной отметки.

Шаг 3:

Нарисуйте точки на высотных линиях, обозначенных вашей полосой бумаги.

Шаг 4:

Нарисуйте плавную линию, соединяющую точки.Мы хотим, чтобы поперечное сечение выглядело естественно, а не угловато.

Создание поперечных сечений | OpenRoads | CAD / D Section

После проектирования коридора можно создать поперечные сечения. Однако, если вы хотите, чтобы на участках отображалось больше, чем просто предлагаемый коридор и существующий участок земли, необходимо будет выполнить другие процедуры. Чтобы элемент отображался в поперечных сечениях, это должен быть трехмерный элемент.

Обратите внимание, что ссылки на «12345» в именах файлов относятся к пятизначному номеру проекта.

  1. Создание ландшафта для аннотирования существующих деталей поперечного сечения
  2. Чтобы создать линии конструкции и поверхности земляного полотна, см. Создание ландшафтов для строительства.
  3. Чтобы аннотировать существующие отметки, необходимо создать существующий профиль земли.
  4. Чтобы отобразить метки полосы отвода, окружающей среды и предлагаемой полосы отвода на секциях, перейдите к разделу «Создание полосы отвода и элементов окружающей среды».
  5. Чтобы отобразить подробные элементы, такие как деревья и столбы, перейдите в раздел «Точечные элементы поперечного сечения» для предлагаемой трассы.

Создайте чертеж поперечного сечения

  • Создайте или откройте 12345-cross-section.dgn, если он существует. Откройте модель по умолчанию.
  • Прикрепите модель Combined.dgn по умолчанию в качестве справочного файла с Live Nesting, установленным на 1.
  • Откройте модель Default-3D. Не используйте многомодельный вид.

Поперечные сечения создаются на основе того, что отображается в DGN-модели Default-3D. Откройте модель и используйте «Отображение уровня», чтобы включить трехмерное отображение всех ваших коридоров, геометрии, ландшафта, подземных коммуникаций (SUE), различных элементов и любых элементов деталей поперечного сечения, которые должны быть включены в поперечные сечения.Убедитесь, что к 2D-чертежам и моделям нет прикрепленных ссылок. Поверните 3D-вид, чтобы убедиться, что нет никаких элементов выше или ниже. Это приведет к тому, что секции не будут разрезаны.

Примечание: важно сохранить настройки и сохранить файл DGN, чтобы любые сделанные вами изменения отражались на поперечных сечениях!

Откройте модель по умолчанию. Инструменты для создания поперечных сечений находятся в четвертом разделе меню задачи моделирования коридора, обозначенном «Поперечные сечения коридора».

Создать сечения

Используйте второй инструмент на панели инструментов Corridor Cross-Sections, Create Cross Sections, Select the Alignment, это откроет панель, показанную ниже. Затем нажмите кнопку «Настройки». Выберите NHDOTsectsV, нажмите «Загрузить», затем нажмите «Закрыть».

Измените имя модели: Roadname-MC1M в разделе «Общие» на странице «Создание поперечного сечения», затем нажмите «Применить». Должна быть создана модель разреза и нанесены листы разрезов. Наберитесь терпения, это может занять некоторое время.В правом нижнем углу должен быть индикатор выполнения. Закройте коробку, когда процесс будет завершен.

нестандартные поперечные сечения

Пользовательские поперечные сечения позволяют разрезать сечения различными способами. Диапазоны пикетов могут иметь разные интервалы или смещения. Отдельные секции также могут быть разрезаны на станциях как перпендикулярных, так и наклонных, а также вдоль линейных колонн для проездов, дренажных сооружений и вдоль труб.Выберите папку Custom.

Диалог создания поперечного сечения

Используйте раскрывающийся список «Тип», чтобы выбрать тип раздела. Кнопки рядом с каждым значением позволяют выбрать значение в представлении по умолчанию для получения значения. Когда настройки для каждой записи завершены, нажмите кнопку «Добавить», чтобы добавить ее в список в центре.

Если запись необходимо изменить, выберите ее в списке, и она заполнит записи справа, которые можно изменить. Нажмите кнопку «Обновить», чтобы обновить измененную запись в списке.

Секция может быть разрезана по строке. Строка строки не может содержать дуг и должна быть выбрана до выбора строки Type – line. Используйте кнопку «Графика», чтобы добавить выбранную строку в список разделов.

Выберите запись и используйте клавишу Delete на клавиатуре, чтобы удалить запись. Когда все записи будут добавлены, их можно сохранить в виде файла .xsc, который в будущем можно будет импортировать для повторной резки секций. Нажмите «Применить», чтобы вырезать разделы. Дополнительные сведения см. В файлах справки OpenRoads в списке задач.

Независимо от того, используется ли стандартное или нестандартное поперечное сечение, нажатие кнопки «Применить» должно вырезать и нарисовать все секции на границе. Если вы получаете сообщение об ошибке, что чертеж слишком велик для печати, посмотрите на повернутый вид модели Default-3D, чтобы найти любой элемент, который находится намного выше или ниже секций и вызывает ошибку. ИСПРАВИТЬ, удалите модель сечения, а затем заново создайте сечения.

Настройки раздела

В настоящее время существует два предпочтения сечения: NHDOTsectsV и NHDOTsectsH.V для вертикальных листов 100 ‘влево и вправо и H для горизонтальных листов 150’ влево и вправо, оба для 10 масштабных секций. Настройки сохраняются в файле .xin. Файл nhdot-ali-preferens.xin можно скопировать в папку проектов MX \ imperial_styles, чтобы можно было сохранить новые настройки.

Для обзора аннотаций чертежей поперечных сечений см. Обзор аннотаций поперечных сечений.

Создайте поперечное сечение в Surfer – Golden Software Support

Вы можете использовать Surfer для создания поперечного сечения, добавив профиль или используя команду Grid Slice .Метод 1 рекомендуется в большинстве случаев, но некоторые пользователи, особенно те, у кого есть старые версии Surfer, могут обнаружить, что метод 2 обеспечивает больший контроль над конечными результатами.

Метод 1 : Используйте инструмент Profile для создания поперечного сечения, используя нарисованную вручную линию трассы или ранее импортированную полилинию базовой карты, определяющую трассу. Полилинию можно нарисовать на карте как часть базового слоя или в формате векторного файла (например, BLN, BNA, SHP, DXF и т. Д.).

  1. Выберите многослойную карту.
  2. Если вам нужно провести линию профиля:
    1. Щелкните Инструменты карты | Добавить на карту | Профиль .
    2. Щелкните на карте в том месте, где должна начинаться линия поперечного сечения. Дважды щелкните в том месте, где должна заканчиваться линия поперечного сечения (вы также можете щелкнуть вдоль линии сечения, чтобы включить точки между начальной и конечной точками). Как только вы дважды щелкните, чтобы завершить линию сечения, объект профиля будет создан и помещен под картой, а базовый слой добавится к вашей существующей карте, содержащий только что начерченную линию сечения.Если карта содержала несколько слоев из разных сеток, каждая сетка нарезается и автоматически добавляется в профиль. При желании вы можете отключить слои в свойствах профиля.
  3. ИЛИ, если линия профиля уже нарисована в слое Base .
    1. Щелкните правой кнопкой мыши полилинию в окне Содержание и выберите Добавить профиль .
  4. Выберите объект Профиль в окне Содержание .Выберите соответствующую поверхность из раскрывающегося списка Текущий профиль в окне Свойства , а затем отредактируйте свойства линии и заливки для этой поверхности.
  5. Если вы хотите отредактировать положение линии профиля, вы можете использовать команду Изменить форму (Элементы | Изменить элементы | Изменить форму ) на нарисованной линии в базовом слое, или вы можете изменить координаты каждой вершины в Координаты вкладка окна Свойства .

Метод 2 : Используйте команду Grid Slice . Эта опция извлекает срез сетки вдоль трассы, определяемой ломаной линией. Полилинию можно нарисовать на карте как часть базового слоя или в формате векторного файла (например, BLN, BNA, SHP, DXF и т. Д.).

Если у вас есть значения XY для линии сечения, простой векторный формат для создания – это формат BLN. Это формат ASCII, состоящий из строки заголовка с количеством вершин, за которой следуют координаты XY вершин.Дополнительную информацию о создании файла BLN можно найти в статье Создание файла NoData Polygon или BLN в Surfer.

Для создания поперечного сечения:

  1. Нажмите Сетки | Рассчитать | Срез .
  2. В диалоговом окне Grid Slice :
    1. В разделе Входная сетка либо выберите слой на основе сетки, созданный из файла сетки, либо нажмите кнопку Обзор , чтобы перейти к файлу сетки и выбрать его.
    2. В разделе Slice Line либо выберите базовый слой, созданный из вашего векторного файла, либо базовый слой с нарисованной линией на нем, либо нажмите кнопку Browse , чтобы перейти к векторному файлу и выбрать его.
    3. Поле Output BLN будет проверено по умолчанию и является соответствующим типом файла. Измените имя файла и / или нажмите кнопку Изменить имя файла , чтобы изменить место сохранения.
      • Если вам также нужен файл DAT, установите флажок рядом с Output DAT. Файл DAT отличается от BLN тем, что он экспортирует координаты, а также значения Z, где BLN просто экспортирует значение расстояния и координату Z, необходимые для создания поперечного сечения.
      • При желании вы можете установить значения вне сетки на определенное значение, а также переназначить значения NoData на другое значение.
    4. Нажмите ОК , чтобы сгенерировать файл BLN.
  3. Вернувшись в окно графика, щелкните На главную | Новая карта | База | База.
  4. В диалоговом окне Импорт выберите вновь сохраненный файл BLN и нажмите Открыть .
  5. Карта создана с пропорциональным масштабированием. Если вы хотите увеличить вертикальное преувеличение,
  6. Выберите слой Base в окне Contents .
    1. Выберите Карта в окне Содержание .
    2. В окне «Свойства » на странице «Масштаб » снимите флажок «Пропорциональное масштабирование по оси XY».
    3. Если вы видите сообщение Surfer Warning , сообщающее, что ширина или высота будет меньше 0,25 дюйма, нажмите OK , чтобы продолжить.
    4. В разделе X Scale и / или Y Scale введите желаемую длину в единицах страницы. Например, введите 6 дюймов для длины шкалы X и 1,5 для длины шкалы Y , чтобы соответствовать масштабу профиля по умолчанию.
  7. На странице General в окне Properties измените цвет Color в разделе Line properties .
  8. Повторите шаги 1–8 для любых других файлов сетки, которые вы хотите включить в строку своего профиля, но щелкните На главную | Добавить на карту | Слой | База на шаге 8 вместо На главную | Новая карта | База | База , поэтому каждый новый раздел добавляется к существующему профилю, а не к новому профилю.

Для разных цветов заливки и узоров можно преобразовать полилинии в каждом слое Base в многоугольник и заполнить многоугольник.Для этого:

  1. В окне Содержание разверните и выберите слой Base .
  2. Щелкните Функции | Группа | Начать редактирование (не обязательно в Surfer 18 и более новых версиях).
  3. Выберите полилинию в слое Base .
  4. Щелкните Функции | Редактировать особенности | Изменить форму .
  5. Выберите самый дальний узел справа, удерживая нажатой клавишу CTRL, щелкните под нижней осью и справа от правой оси.
  6. Выберите самый дальний узел слева, удерживайте нажатой клавишу CTRL и щелкните под нижней осью и слева от левой оси.
  7. Нажмите ESC, чтобы выйти из режима изменения формы.
  8. Щелкните Функции | Изменить тип | Изменить тип | Полилиния в многоугольник . Теперь поверхность представляет собой многоугольник, который можно заливать.
  9. Щелкните Функции | Группа | Остановите редактирование , чтобы выйти из режима редактирования (не обязательно в Surfer 18 и более новых версиях).
  10. Выделив многоугольник, на странице Заливка в окне Свойства измените свойства заливки по своему усмотрению.
  11. Повторите шаги 1–10 для всех остальных слоев Base .
  12. При необходимости щелкните и перетащите базовые слои в окне Содержание таким образом, чтобы слой с наименьшей высотой был вверху списка слоев в окне Содержимое , а слой с наибольшей высотой – внизу. списка.

Другой вариант – создать файлы DAT срезов в Surfer и создать сечения в Grapher, используя файлы DAT. Grapher имеет возможность добавлять заливку между кривыми, упрощая процесс отображения данных.

См. Также: Как создать файл BLN

Обновлено апрель 2020 г.

Построение сечений доходности акций Светланой Брызгаловой, Маркусом Пелгером, Джейсоном Чжу :: SSRN

79 стр. Добавлено: 19 дек 2019 Последняя редакция: 28 сен 2020

См. Все статьи Светланы Брызгаловой