Как рассчитать толщину стены: Толщина наружных стен дома с примером расчета на газобетоне

Содержание

Толщина наружных стен дома с примером расчета на газобетоне

Методический материал для самостоятельного расчета толщины стен дома с примерами и теоретической частью.

Часть 1. Сопротивление теплопередаче – первичный критерий определения толщины стены

Чтобы определится с толщиной стены, которая необходима для соответствия нормам энергоэффективности, рассчитывают сопротивление теплопередаче проектируемой конструкции, согласно раздела 9 «Методика проектирования тепловой защиты зданий» СП 23-101-2004.

Сопротивление теплопередаче – это свойство материала, которое показывает, насколько способен удерживать тепло данный материал. Это удельная величина, которая показывает насколько медленно теряется тепло в ваттах при прохождении теплового потока через единичный объем при перепаде температур на стенках в 1°С. Чем выше значение данного коэффициента – тем «теплее» материал.

Все стены (несветопрозрачные ограждающие конструкции) считаются на термоспротивление по формуле:

R=δ/λ (м2·°С/Вт), где:

δ – толщина материала, м;

λ – удельная теплопроводность, Вт/(м ·°С) (можно взять из паспортных данных материала либо из таблиц).

Полученную величину Rобщ сравнивают с табличным значением в СП 23-101-2004.

Чтобы ориентироваться на нормативный документ необходимо выполнить расчет количества тепла, необходимого для обогрева здания. Он выполняется по СП 23-101-2004, получаемая величина «градусо·сутки». Правила рекомендуют следующие соотношения.

Таблица 1. Уровни теплозащиты рекомендуемых ограждающих конструкций наружных стен

Материал стены

Сопротивление теплопередаче (м2·°С/Вт) / область применения (°С·сут)

конструкционный

теплоизоляционный

Двухслойные с наружной теплоизоляцией

Трехслойные с изоляцией в середине

С невентили- руемой атмосферной прослойкой

С вентилируемой атмосферной прослойкой

Кирпичная кладка

Пенополистирол

5,2/10850

4,3/8300

4,5/8850

4,15/7850

Минеральная вата

4,7/9430

3,9/7150

4,1/7700

3,75/6700

Керамзитобетон (гибкие связи, шпонки)

Пенополистирол

5,2/10850

4,0/7300

4,2/8000

3,85/7000

Минеральная вата

4,7/9430

3,6/6300

3,8/6850

3,45/5850

Блоки из ячеистого бетона с кирпичной облицовкой

Ячеистый бетон

2,4/2850

2,6/3430

2,25/2430

Примечание. В числителе (перед чертой) – ориентировочные значения приведенного сопротивления теплопередаче наружной стены, в знаменателе (за чертой) – предельные значения градусо-суток отопительного периода, при которых может быть применена данная конструкция стены.

Полученные результаты необходимо сверить с нормами п. 5. СНиП 23-02-2003 «Тепловая защита зданий».

Также следует учитывать климатические условия зоны, где возводится здание: для разных регионов разные требования из-за разных температурных и влажностных режимов. Т.е. толщина стены из газоблока не должна быть одинаковой для приморского района, средней полосы России и крайнего севера. В первом случае необходимо будет скорректировать теплопроводность с учетом влажности (в большую сторону: повышенная влажность снижает термосопротивление), во втором – можно оставить «как есть», в третьем – обязательно учитывать, что теплопроводность материала вырастет из-за большего перепада температур.

Часть 2.

Коэффициент теплопроводности материалов стен

Коэффициент теплопроводности материалов стен – эта величина, которая показывает удельную теплопроводность материала стены, т.е. сколько теряется тепла при прохождении теплового потока через условный единичный объем с разницей температур на его противоположных поверхностях в 1°С. Чем ниже значение коэффициента теплопроводности стен – тем здание получится теплее, чем выше значение – тем больше придется заложить мощности в систему отопления.

По сути, это величина обратная термическому сопротивлению, рассмотренному в части 1 настоящей статьи. Но это касается только удельных величин для идеальных условий. На реальный коэффициент теплопроводности для конкретного материала влияет ряд условий: перепад температур на стенках материала, внутренняя неоднородная структура, уровень влажности (который увеличивает уровень плотности материала, и, соответственно, повышает его теплопроводность) и многие другие факторы. Как правило, табличную теплопроводность необходимо уменьшать минимум на 24% для получения оптимальной конструкции для умеренных климатических зон.

Часть 3. Минимально допустимое значение сопротивления стен для различных климатических зон.

Минимально допустимое термосопротивление рассчитывается для анализа теплотехнических свойств проектируемой стены для различных климатических зон. Это нормируемая (базовая) величина, которая показывает, каким должно быть термосопротивление стены в зависимости от региона. Сначала вы выбираете материал для конструкции, просчитываете термосопротивление своей стены (часть 1), а потом сравниваете с табличными данными, содержащимися в СНиП 23-02-2003. В случае, если полученное значение окажется меньше установленного правилами, то необходимо либо увеличить толщину стены, либо утеплить стену теплоизоляционным слоем (например, минеральной ватой).

Согласно п. 9.1.2 СП 23-101-2004, минимально допустимое сопротивление теплопередаче Rо2·°С/Вт) ограждающей конструкции рассчитывается как

Rо = R1+ R2+R3, где:

R1=1/αвн, где αвн – коэффициент теплоотдачи внутренней поверхности ограждающих конструкций, Вт/(м2 × °С), принимаемый по таблице 7 СНиП 23-02-2003;

R2 = 1/αвнеш, где αвнеш – коэффициент теплоотдачи наружной поверхности ограждающей конструкции для условий холодного периода, Вт/(м2 × °С), принимаемый по таблице 8 СП 23-101-2004;

R3 – общее термосопротивление, расчет которого описан в части 1 настоящей статьи.

При наличии в ограждающей конструкции прослойки, вентилируемой наружным воздухом, слои конструкции, расположенные между воздушной прослойкой и наружной поверхностью, в этом расчете не учитываются. А на поверхности конструкции, обращенной в сторону вентилируемой воздухом снаружи прослойки, следует принимать коэффициент теплоотдачи αвнеш равным 10,8 Вт/(м2·°С).

Таблица 2. Нормируемые значения термосопротивления для стен по СНиП 23-02-2003.

Жилые здания для различных регионов РФ

Градусо-сутки отопительного периода, D, °С·сут

Нормируемые значения сопротивления теплопередаче , R, м2·°С/Вт, ограждающих конструкций для стен

Астраханская обл., Ставропольский край, Краснодарский край

2000

2,1

Белгородская обл., Волгоградская обл.

4000

2,8

Алтай, Красноярский край, Москва, Санкт Петербург, Владимирская обл.

6000

3,5

Магаданская обл.

8000

4,2

Чукотка, Камчатская обл.,

г. Воркута

10000

4,9

 

12000

5,6

Уточненные значения градусо-суток отопительного периода,  указаны в таблице 4.1 справочного пособия к СНиП 23-01-99* Москва, 2006.

Часть 4. Расчет минимально допустимой толщины стены на примере газобетона для Московской области.

Рассчитывая толщину стеновой конструкции, берем те же данные, что указаны в Части 1 настоящей статьи, но перестраиваем основную формулу: δ = λ·R, где δ – толщина стены, λ – теплопроводность материала, а R – норма теплосопротивления по СНиП.

Пример расчета минимальной толщины стены из газобетона с теплопроводностью 0,12 Вт/м°С в Московской области со средней температурой внутри дома в отопительный период +22°С.

  1. Берем нормируемое теплосопротивление для стен в Московском регионе для температуры +22°C: Rreq= 0,00035·5400 + 1,4 = 3,29 м2°C/Вт
  2. Коэффициент теплопроводности λ для газобетона марки D400 (габариты 625х400х250 мм) при влажности 5% = 0,147 Вт/м∙°С.
  3. Минимальная толщина стены из газобетонного камня D400: R·λ = 3,29·0,147 Вт/м∙°С=0,48 м.

Вывод: для Москвы и области для возведения стен с заданным параметром теплосопротивления нужен газобетонный блок с габаритом по ширине не менее 500 мм , либо блок с шириной 400 мм и последующим утеплением (минвата+оштукатуривание, например), для обеспечения характеристик и требований СНиП в части энергоэффективности стеновых конструкций.

Таблица 3. Минимальная толщина стен, возводимых из различных материалов, соответствующих нормам теплового сопротивления согласно СНиП.

Материал

Толщина стены, м

Тепло-

проводность,

 Вт/м∙°С

Прим.

Керамзитоблоки

0,46

0,14

Для строительства несущих стен используют марку не менее D400.

Шлакоблоки

0,95

0,3-0,5

 

Силикатный кирпич

1,25

0,38-0,87

 

Газосиликатные блоки d500

0,40

0,12-0,24

Использую марку от D400 и выше для домостроения

Пеноблок

0,20-0.40

0,06-0,12

строительство только каркасным способом

Ячеистый бетон

От 0,40

0,11-0,16

Теплопроводность ячеистого бетона прямо пропорциональна его плотности: чем «теплее» камень, тем он менее прочен.

Арболит

0,23

0,07 – 0,17

Минимальный размер стен для каркасных сооружений

Кирпич керамический полнотелый

1,97

0,6 – 0,7

 

Песко-бетонные блоки

4,97

1,51

При 2400 кг/м³ в условиях нормальной температуры и влажности воздуха.

Часть 5. Принцип определения значения сопротивления теплопередачи в многослойной стене.

Если вы планируете построить стену из нескольких видов материала (например, строительный камень+минеральный утеплитель+штукатурка), то R рассчитывается для каждого вида материала отдельно (по этой же формуле), а потом суммируется:

Rобщ= R1+ R2+…+ Rn+ Ra.l где:

R1-Rn – термосопротивления различных слоев

Ra. l – сопротивление замкнутой воздушной прослойки, если она присутствует в конструкции (табличные значения берутся в СП 23-101-2004, п. 9, табл. 7)

Пример расчета толщины минераловатного утеплителя для многослойной стены (шлакоблок – 400 мм, минеральная вата – ? мм, облицовочный кирпич – 120 мм) при значении сопротивления теплопередаче 3,4 м2*Град С/Вт (г. Оренбург).

R=Rшлакоблок+Rкирпич+Rвата=3,4

Rшлакоблок = δ/λ = 0,4/0,45 = 0,89 м2×°С/Вт

Rкирпич = δ/λ = 0,12/0,6 = 0,2 м2×°С/Вт

Rшлакоблок+Rкирпич=0,89+0,2 = 1,09 м2×°С/Вт (<3,4).

Rвата=R-(Rшлакоблок+Rкирпич) =3.4-1,09=2,31 м2×°С/Вт

δвата=Rвата·λ=2,31*0,045=0,1 м=100 мм (принимаем λ=0,045 Вт/(м×°С) – среднее значение теплопроводности для минеральной ваты различных видов).

Вывод: для соблюдения требований по сопротивлению теплопередачи можно использовать керамзитобетонные блоки в качестве основной конструкции с облицовкой ее керамическим кирпичом и прослойкой из минеральной ваты теплопроводностью не менее 0,45 и толщиной от 100 мм.

Расчет толщины стен

Стены должны быть теплыми! Что такое теплые? Это по теплопроводности опережающие СНиП! Для начала нужно разобраться какими они должны быть в соответствии со СНиПом. Это не так сложно, как кажется на первый взгляд.

Первым делом возникает вопрос: “а сколько дней в году длиться отопительный сезон?”, может нам вообще ничего отапливать не надо и живем мы в Индии… Однако суровые реальности подсказывают, что из 365 дней 202 температура воздуха ≤ 8 °C. Но это в моей Липецкой области, а в вашей наверняка другие цифры. Какие? На этот вопрос вам ответит СНиП 23-01-99. В нем ищем таблицу №1 в ней ищем 11 столбик и свой населенный пункт. Цифра на пересечении и есть количество дней где температура ниже 8 градусов.

Зачем все это было нужно? Для того чтобы открыть СНиП 23-02-2003, найти в нем формулу, и определить градусо-сутки отопительного периода. Величина показывает температурную разницу наружного и внутреннего воздуха, то есть “на сколько нагревать”.

Умноженную на количество этих суток, то есть “сколько суток нагревать”

Ну узнали… Толк-то от этого какой? А такой! На Данном этапе мы получаем какую-то цифру, в моем случае получилась 5050. По этой цифре, того же самого СНиПа в таблице 4 ищем чему равно нормируемое значение сопротивление теплопередаче стен (3-й столбик). Получается что-то между 2,8-3,5 путем интерполяции находим точное значение (если надо и интересно) или берем максимальное. У меня получилось 3,2°С/Вт.

Теперь, чтобы посчитать толщину стены, нам необходимо воспользоваться формулой R = s / λ (м2•°С/Вт). Где R – сопротивление теплопередаче, s – толщина стены (м), а λ – теплопроводность. Теперь представим, что мы решили построить свою стену из газосиликатных блоков, полностью. В моем случае это блоки Липецкого силикатного завода. Нужно узнать коэффициент теплопроводности. Для этого идем на сайт производителя вашего материала, находим свой материал и смотрим описания характеристик. В моем случае это блоки из ячеистого бетона и коэффициент теплопроводности равен 0,10-0,14.

Возьмем 0,14 (влажность и все такое). По вышеуказанной формуле нам нужно найти S. S = R * λ, то есть S = 3,2 * 0,14 = 0,45 м.

Хорошая получилась стена. И дорогая. Наверное есть способ сэкономить… Что если мы возьмем блок толщиной 20 см и сделаем из него стену. Получим сопротивление теплопередачи у такой стены равное 1,43 (м2•°С/Вт), а в нашем регионе 3,2 (м2•°С/Вт). Маловато будет! А что если мы сделаем многослойную стену и снаружи стены используем пенопласт, а лучше минеральную вату, потому как они с примерно одинаковыми коэффициентами теплопроводности, но минвата экологически чище и не горит к томуже. Да и мышки ее как-то не жалуют. Нам осталось добрать теплопередачи… 3,2 – 1,43 = 1,77 (м2•°С/Вт). Теперь тут опять все просто. Так как стена у меня трехслойная и снаружи еще обложена кирпичом, то нужно подобрать утеплитель который лучше всего подходит для этого дела. Я выбрал ROCKWOOL КАВИТИ БАТТС максимально обозначенная теплопроводность у него λ = 0,041 Вт/(м·К) по ней и посчитал, S = 1.

77 * 0.041 = 0.072. У меня получилась стена из газосиликатного блока 20 см и 7 см каменной ваты. Согласитесь лучше чем 45 см газосиликата? А может плюнуть на все и сделать каркасник с утеплителем? Можно))) в Канаде и многих европейских странах все так и делают. Но мы то русские! Поэтому обложим все это хозяйство облицовочным кирпичом, и будет у нас красиво и практично! Почему мы в расчет не принимали облицовочный кирпич? Просто он не несет никаких энергосберегающих функций. Более того в нем необходимо сделать вентиляционные зазоры. Но это уже другая история.

В конечном итоге, решив, что требования СНиПов постоянно повышаются, я сделал утеплитель толщиной 10 см. Тем более, что стоило это не на много дороже.

Далее немного про паропроницаемость стен.

P.S.: Если в ручную считать немного лень, то вот тут я наваял калькулятор, который работает по этой формуле. Правда, он пока считает только однослойные стены.

 

толщина стен и теплопотери дома.

Последнее обновление:

При строительстве дома в обязательном порядке нужно рассчитать толщину стен.

Стены нужны для сохранения тепла в жилище, поэтому необходимо делать проект дома, учитывая технические характеристики строительного материала, его коэффициент теплопроводности.

В противном случае может получится ситуация, когда вы будите отапливать зимой улицу.

Толщина стены напрямую зависит от теплового сопротивления каждого отдельного материала

КТС=ТС / КТП

КТС – коэффициент теплового сопротивления. Измеряется разницей температуры в Кельвинах – К (либо градусах по Цельсию) – С, которая требуется для переноса 1 Вт тепловой энергии на квадратный метр площади: м²·K/Вт или м²·С/Вт. Обычно в формулах применялась для его обозначения латинская буква R.

ТС – толщина материала в метрах (толщина стены, иногда S)

КТП – коэффициент теплопроводности, он указывается в технических характеристиках стройматериала.

Если пойти от обратного и сделать расчет толщины стены, исходя из этой формулы, то есть имея значения КТС и КТП, то формула будет выглядеть так:

ТС=КТС * КТП

Некоторые значения КТС (теплового сопротивления) для ряда областей России:

Московская область — 3,2

Средняя полоса России — 3,15

Якутия — 4,89

Барнаул — 3,9

Южно-Сахалинск — 3,41

Толщина стен
, которая соответствует результатам расчетов, несколько превышает принятые в строительстве размеры.

Это происходит потому, что часто неправильно учитываются все направления теплопотерь:

за счет стен (около 30%)

через потолочные перекрытия и пол (до 40%)

через оконные и дверные проемы (26-28%).

Становится понятно, что за счет толщины стен серьезно теплопотери не снизить.

В противном случае придется запасаться большими объемами брикетов, пеллет или других видов топлива. Следует правильно утеплять пол и потолок, устанавливать стеклопакеты на окна, хорошо подгонять двери, чтобы они плотно закрывались.

Оптимальная толщина стен домов из разных материалов:

Деревянный брус 28 см + утеплитель

Газобетон D500 50 см

Кирпич 250*120*65 мм 25 см + утеплитель

Газоблоки М400 и М500 36 и 45 см

Шлакоблоки 44 см + штукатурка с обеих сторон

Если стена возводится с использованием нескольких видов стройматериалов, то расчет делается путем сложения КТС каждого слоя.

На самом деле на выбор толщины стен будущего дома влияет достаточно много факторов (местоположение, влажность, длительность отопительного сезона, материал стен и т.д), поэтому расчеты делаются не с помощью одной формулы.

Ниже даны источники, к которым лучшевсего обратиться для изучения данного вопроса.

Более подробную информацию по определению толщины стен читайте в следующих материалах:

  • СНиП 23-02-2003 «Тепловая защита зданий»
  • СП 23-101-2004 «Проектирование тепловой защиты зданий»

Также следует внимательно отнестись и к выбору системы отопления: какой вид топлива, какой котел и т.

п.

Более подробно читайте в заметках:

Как рассчитать мощность системы отопления.

Как выбрать котел для отопления дома. Сравнение систем отопления в зависимости от вида топлива.

10 моментов, которые нужно учесть при расчетах цены на систему отопления дома.

Калькулятор расчета толщины стен онлайн

Данный калькулятор позволяет рассчитать ориентировочную толщину стен будущего дома. Для этого необходимо выбрать регион, где будет располагаться строение, температуру и материал, из которого будут изготовлены стены.

Онлайн калькулятор расчета толщины стен дома основан на СНиП II-3-79 «Строительная теплотехника» и СНиП 23-01-99 «Строительная климатология».

Район проживания:
Майкоп
АлейскБарнаулБеляБийскЗмеиного рскКатандаКош-АгачОнгудайРодиноРубцовскСлавгородТогул
АрхараБелогорскБлаговещенскБомнакБратолюбовкаВыссаГошДамбукиЕрофей ПавловичЗавитинскЗеяНорский складОрогонПоярковоСвободныйСковородиноСредняя НожкаТыган-УрканТындаУнахаУсть-НожкаЧерняевоШимановскЭкиман
АрхангельскБорковскаяЕмецкКой насМезеньОнега
АстраханьВерхний Баскунчак
БелорецкДуванМелеузУфаЯнаул
Белгород
Брянск
БабушкинБаргузинБагдаринКяхтаМондыНижнеангарскСосново-ОзерскоеУкаитУлан-УдэХоринск
ВладимирМуром
ВолгоградКотельниковоЭльтон
ВологдаВытеграНикольскТотьма
Воронеж
ДербентМахачкала
ИвановоКинешма
АлыгджерБодайбоБратскВерхняя ГутараДубровскоеЕрбогаченЖигаловоЗимаИкаИлимскИркутскИчераКиренскМамаМарковоНаканноНевонНепаОрлингаПеревозПреображенкаСлюдянкаТайшетТулунУсть-Ордынский — Бурятский АО
Нальчик
Калининград
Элиста
Калуга
Апука — Корякский ДОИча — Корякский АОКлючиКозыревскКорф — Корякский АОЛопатка, мысМильковоНачикио. БерингаОссора — Корякский АОПетропавловск-КамчатскийСемлячикиСоболевоКронокиУкаОктябрьскаяУсть-Воямполка — Корякский АОУсть-КамчатскУсть-Хайрюзово
Черкесск
КемьЛоухиОлонецПанадыПетрозаводскРеболы
КемеровоКиселевскКондомаМариинскТайгаТисульТопкиУстъ-Кабырза
ВяткаНагорскоеСовали
ВендингаВоркутаОбъячевоПетруньПечораСыктывкарТроицко-ПечорскУсть-УсаУсть-ЦильмаУсть-ЩугорУхта
КостромаЧухломаШарья
КраснодарСочиТихорецк
АгатаАчинскБайкит — Эвенкийский АОБоготолБогучаныВанавара — Эвенкийский АОВельмоВерхнеимбатскВолочанкаДиксон — Таймырский АОДудинка — Таймырский АОЕнисейскЕссей — Эвенкийский АОИгаркаКанскКежмаКлючиКрасноярскМинусинскТаимбаТроицкоеТура — Эвенкийский АОТуруханскХатанга — Таймырский АОЧелюскин, мыс — Таймырский АОЯрцево
Ай-ПетриКлепининоСимферопольФеодосияЯлта
Курган
Курск
Липецк
СвирицаТихвинСанкт-Петербург
АркагалаБроховоМагаданОмсукчанПалаткаСреднеканСусуман
Йошкар-Ола
Саранск
ДмитровКашираМосква
Вайда-ГубаКандалакшаКовдорКраснощельеЛовозероМончегорскМурманскНиванкюльПулозероПялицаТериберкаТерско-ОрловскийУмбаЮкспор
АрзамасВыксаНижний Новгород
Новгород
БарабинскБолотноеКарасукКочкиКупиноКыштовкаНовосибирскТатарскЧулым
Исиль-КульОмскТараЧерлак
Оренбург
Оренбург
ЗеметчиноПенза
БисерПермь
АнучиноАстраханкаБогопольВладивостокДальнереченскМельничноеПартизанскПосьетПреображениеРудная ПристаньЧугуевка
Великие ЛукиПсков
МиллеровоРостов-на-ДонуТаганрог
Рязань
Самара
ВерхотурьеЕкатеринбургИвдель
Саратов
Александровск-СахалинскийДолинскКировскоеКорсаковКурильскМакаровНевельскНогликиОхаПогибиПоронайскРыбновскХолмскЮжно-КурильскЮжно-Сахалинск
Владикавказ
ВязьмаСмоленск
АрзгирСтаврополь
Тамбов
БугульмаЕлабугаКазань
БежецкТверьРжев
АлександровскоеКолпашевоСредний ВасюганТомскУсть-Озерное
Кызыл
Тула
Березово — Ханты-Мансийский АОДемьянскоеКондинское — Ханты-Мансийский АОЛеушиМарресаляНадымОктябрьскоеСалехардСосьваСургут — Ханты-Мансийский АОТарко-Сале — Ямало-Ненецкий АОТобольскТюменьУгутУренгой — Ямало-Ненецкий АОХанты-Мансийск — Ханты-Мансийский АО
ГлазовИжевскСарапул
СурскоеУльяновск
АянБайдуковБикинБираБиробиджанВяземскийГвасюгиГроссевичиДе-КастриДжаорэЕкатерино-НикольскоеКомсомольск-на-АмуреНижнетамбовскоеНиколаевск-на-АмуреОблучьеОхотскИм. Полины ОсипенкоСизиманСоветская ГаваньСофийский ПриискСредний УргалТроицкоеХабаровскЧумиканЭнкэн
АбаканШира
Челябинск
Грозный
АгинскоеАкшаАлександровский ЗаводБорзяДарасунКалаканКрасный ЧикойМогочаНерчинскНерчинский ЗаводСредний КаларТунгокоченТупикЧараЧита
ПорецкоеЧебоксары
АнадырьМарковоОстровноеУсть-ОлойЭньмувеем
АлданАллах-ЮньАмгаБатамайБердигястяхБуягаВерхоянскВилюйскВитимВоронцовоДжалиндаДжарджанДжикимдаДружинаЕкючюЖиганскЗырянкаИситьИэмаКрест-ХальджайКюсюрЛенскНагорныйНераНюрбаНюяОймяконОлекминскОленекОхотский ПеревозСангарСаскылахСреднеколымскСунтарСуханаСюльдюкарСюрен-КюельТокоТоммотТомпоТуой-ХаяТяняУсть-МаяУсть-МильУсть-МомаЧульманЧурапчаШелагонцыЭйикЯкутск
ВарандейИндигаКанин НосКоткиноНарьян-МарХодоварихаХоседа-Хард
Ярославль

Комфортная температура в доме:


Материал стен:


ЖелезобетонБетон на гравии или щебне из природного камняКерамзитобетонГазо- и пенобетон, газо- и пеносиликат
Глиняный обыкновенный на цементно-песчаном раствореСиликатный на цементно-песчаном раствореКерамический пустотный на цементно-песчаном растворе
Сосна и ельДуб
Маты минераловатные прошивныеПлиты из стеклянного штапельного волокна
Медь (для сравнения)Стекло оконное

HEBEL D400HEBEL D500YTONG D400H+H D400H+H D500H+H D600КЗСМ D400КЗСМ D500КЗСМ D600EuroBlok D400EuroBlok D500EuroBlok D600ЭКО D400ЭКО D500ЭКО D600Bonolit D300Bonolit D400Bonolit D500Bonolit D600AeroStone D400AeroStone D500AeroStone D600AeroStone D700AeroStone D800ГРАС D400ГРАС D500ГРАС D600
BRAER Ceramic Thermo 14,3 NFBRAER Ceramic Thermo 12,4 NF BRAER BLOCK 44BRAER Ceramic Thermo 10,7 NFBRAER Ceramic Thermo 10,7 NF тип 2 BRAER BLOCK 25Porotherm 8Porotherm 12Porotherm 25Porotherm 38Porotherm 44Porotherm 51Porotherm 51 Premium
ISOVER ОптималROCKWOOL ЛАЙТ БАТТСROCKWOOL КАВИТИ БАТТСROCKWOOL РОКФАСАДKNAUF Insulation Термо Плита 037KNAUF Insulation Фасад Термо Плита 034KNAUF Insulation Фасад Термо Плита 032
ISOVER Классик Плюс


Рассчитать

Калькулятор теплопотерь стен дома.

Расчет толщины стен для различных регионов.


Листовой металл выпускается в виде широких полос и листов методом прокатки или ковки (реже). Последовательная обработка производится раскроем (лазерным, механическим или плазменным), гибкой, пробивкой. В некоторых случаях используется сочетание нескольких методов металлообработки. Механический раскрой делается на гильотине и ножницах, гибка и пробивка — с применением пресса.

Приложение А (справочное). Характеристика методов определения толщины покрытия

Приложение А (справочное)

Таблица А.1 — Определение толщины высушенного покрытия

Принцип Метод Окраши- ваемая поверх- ность Область применения Стандарт Точность/ прецизионность
Механический 4А — измерение толщины микрометром/ индикатором с круговой шкалой nd/d с l ASTM D 1005, DIN 50933 Механический: нижний предел — 5 мкм.

Электронный: нижний предел — 3 мкм

Магнитный 7А — метод отрыва магнита nd с l/p/f ISO 2178 Систематическая погрешность — ±5 мкм.

Воспроизводимость — ±6%

7В — метод магнитной индукции nd с l/p/f ISO 2178 Систематическая погрешность — ±2 мкм.

Воспроизводимость — ±3%

7D — метод вихревых токов nd с l/p/f ISO 2360 Систематическая погрешность — ±2 мкм.

Воспроизводимость — ±3%

,/ — любой ферромагнитный металл/неферромагнитный металл.
d — разрушающий;

nd — неразрушающий

c — контактный;

l/p/f — применим в лаборатораторных, производственный и полевых условиях.
Типичные международные (национальные стандарты), в которых описаны данные методы.
Данные точности и прецизионности для этих методов имеются у производителей приборов и могут быть проверены с помощью поверочных эталонов. Приведенные цифры основаны на эмпирических значениях, которые указаны производителем приборов и получены пользователем. Возможны изменения.
Зависит от методики.

Расчет необходимой толщины однослойной стены

В таблице ниже определена толщина однослойной наружной стены дома, удовлетворяющая требованиям норм по теплозащите.Требуемая толщина стены определена при значении сопротивления теплопередачи равном базовому (3,19 м²·°C/Вт). Допустимая – минимально допустимая толщина стены, при значении сопротивления теплопередачи равном допустимому (2,01 м²·°C/Вт).

№ п/пМатериал стеныТеплопроводность, Вт/м·°CТолщина стены, мм
ТребуемаяДопустимая
1Газобетонный блок0,14444270
2Керамзитобетонный блок0,5517451062
3Керамический блок0,16508309
4Керамический блок (тёплый)0,12381232
5Кирпич (силикатный)0,7022211352

Вывод: из наиболее популярных строительных материалов, однородная конструкция стены возможна только из газобетонных и керамических блоков. Стена толщиной более метра, из керамзитобетона или кирпча, не представляется реальной.

Расчет многослойной конструкции

Если стену будем строить из различных материалов, допустим, кирпич, минеральная вата, штукатурка, рассчитывать величины следует для каждого отдельного материала. Зачем полученные числа суммировать.

В этом случае стоит работать по формуле:

Rобщ= R1+ R2+…+ Rn+ Ra, где:

R1-Rn- термическое сопротивление слоев разных материалов;

Ra.l– термосопротивление закрытой воздушной прослойки. Величины можно узнать в таблице 7 п. 9 в СП 23-101-2004. Прослойка воздуха не всегда предусмотрена при постройке стен. Подробнее о расчетах смотрите в этом видео:

На основании этих подсчетов можно сделать вывод о том, можно ли применять выбранные стройматериалы, и какой они должны быть толщины.

Показатели теплопередачи для различных материалов

Величины проводимости тепла материалами и их плотность указаны в таблице:

Показатель теплопроводностиРегион
12 м2•°С/ВтКрым
22,1 м2•°С/ВтСочи
32,75 м2•°С/ВтРостов—на—Дону
43,14 м2•°С/ВтМосква
53,18 м2•°С/ВтСанкт—Петербург
МатериалВеличина теплопроводностиПлотность
Бетонные1,28—1,512300—2400
Древесина дуба0,23—0,1700
Хвойная древесина0,10—0,18500
Железобетонные плиты1,692500
Кирпич с пустотами керамический0,41—0,351200—1600

Теплопроводность строительных материалов зависит от их плотности и влажности. Одни и те же материалы, изготовленные разными производителями, могут отличаться по свойствам, поэтому коэффициент нужно смотреть в инструкции к ним.

Калькулятор теплопотерь стен дома. Расчет толщины стен для различных регионов.

Калькулятор расчета теплопроводности стен жилых домов разработан в строгом соответствии с СНиП П-03-79. Функционал позволяет рассчитать степень теплопроводности любой стены и сравнить его с требуемой СНИПом величиной. От Вас требуется указать предполагаемый регион строительства и выбрать материал и толщину стен.

Рассмотрим участвующие в вычислениях величины.

Статистические сведения для каждого региона определены в СНиП:

  • Темп. наружного воздуха — типичная минимальная температура наружного воздуха в зимний период.
  • Ср. темп. отопит. периода – среднесуточная температура наружного воздуха по отопительному периоду.
  • Продолжительность отопит. периода – среднестатистическая продолжительность отопительного периода в днях.
  • Условия эксплуатации в зонах влажности — зона влажности географического региона (A или B).

Используемые для расчетов константы из ГОСТ и СНиП, характеризующие внутренние жилые помещения (одинаковы для всех регионов):

Для расчетов также используются установленные характеристики для внутренних помещений.

Характеристики внутреннего помещения, используемые в вычислениях

  • Темп. внутреннего воздуха — положенная СНиПом минимальная температура внутреннего воздуха для жилых помещений.
  • Влажность внутреннего воздуха — предполагаемая влажность внутреннего воздуха помещения. При разной влажности материалы стен обладают различной теплопроводностью.
  • Коэффициент теплоотдачи внутренней поверхности – как быстро материал передает тепло вовнутрь помещения.
  • Коэффициент теплоотдачи наружной поверхности — как быстро материал передает тепло во внешнюю среду.
  • Коэффициент теплотехнической однородности – коэффициент, позволяющий оценить теплотехническую однородность стенового материала.
  • Коэффициент полож. наружной поверхности
  • Нормируемый температурный перепад

Вышеуказанный СНиП также утверждает методики расчета теплопроводности стен, будь то стена из одного материала, или стеновой пирог из нескольких компонентов. Полученный по формулам коэффициент теплопроводности должен удовлетворять требованиям из этого же СНИП, т.е. быть выше двух коэффициентов, рассчитанным по разным формулам.

Приведем ряд рекомендаций, опубликованных специалистами НАУЧНО-ИССЛЕДОВАТЕЛЬСКОГО ИНСТИТУТА СТРОИТЕЛЬНОЙ ФИЗИКИ (НИИСФ) ГОССТРОЯ СССР.

Рекомендации разработчиков СНиП-II-3-79 по устройству стенового пирога

Рекомендации касаются проектирования ограждающих конструкций зданий и сооружений.

Преимущество при проектировании стеновых конструкций следует отдавать многослойным наружным стенам с использованием эффективного теплоизоляционного материала Однослойные наружные стены показывают некоторую эффективность при использовании легкого бетона плотностью не выше 1000 кг/м3, ячеистого бетона плотностью менее 800 кг/м3. Также хорошо показывает себя кладка из пустотелых керамических или силикатных камней и кирпичей. Пирог многослойных стен необходимо проектировать таким образом, чтобы с теплой стороны (изнутри) располагался материал с большим коэффициентом теплопроводности, что обеспечивает более высокую температуру угла;

Если утеплитель располагается внутри, скажем, кирпичной кладки, его рациональнее располагать ближе к внешней поверхности стены. При проектировании помещений для районов с расчетной скоростью ветра в июле не менее 2 м/с допускается использовать покрытия с вентилируемой воздушной прослойкой. Оптимальная толщина вентилируемой воздушной прослойки в наружных стенах находится в пределах 0,05-0,1 а оптимальная высота — 5-6 м.

Рациональнее организовать в ограждающей конструкции несколько воздушных прослоек малой толщины, чем одну большей толщины, при этом воздушные прослойки должны располагаться ближе к наружной стороне ограждения;

Поскольку переувлажненные материалы стеновых конструкций хуже справляются со своей задачей, слои материалов следует располагать изнутри наружу в порядке увеличения паропроницаемости.

Наружные и внутренние стены следует предохранять от грунтовой влаги путем устройства гидроизоляции. Основная обязательная во всех случаях горизонтальная гидроизоляция в нижней части наружной стены или по всему верху цоколя должна быть расположена выше тротуара или отмостки здания, но ниже отметки пола первого этажа. Дополнительную горизонтальную гидроизоляцию следует предусматривать в стенах зданий с подвалами и цокольными этажами ниже уровня их пола.

Для чего нужен расчет

Чтобы сэкономить на отоплении и способствовать созданию здорового микроклимата в помещении, нужно правильно рассчитать толщину стен и утеплительных материалов, которые будем использовать при строительстве. По закону физики, когда на улице холодно, а в помещении тепло, то через стену и кровлю тепловая энергия выходит наружу.

Если неправильно рассчитать толщину стен, сделать их слишком тонкими и не утеплить, это приведет к негативным последствиям:

  • зимой стены будут промерзать;
  • на обогрев помещения будут затрачиваться значительные средства;
  • сместиться точка росы, что приведет к образованию конденсата и влажности в помещении, заведется плесень;
  • летом в доме будет так же жарко, как и под палящим солнцем.

Чтобы избежать этих неприятностей, нужно перед началом строительства просчитать показатели теплопроводности материала и определиться, какой толщины возводить стену, и каким теплосберегающим материалом ее утеплять.

Расчет толщины утеплителя для стен

На практике все эти способы используют вместе, но с экономической точки зрения, больший приоритет имеет утепление дома, а точнее увеличение толщины утеплителя.

Как же рассчитать необходимую толщину стен и утеплителя, чтобы дом был не только крепким, но теплым.

Наш расчет будет состоять из двух основных этапов:

  1. Нахождения сопротивлением теплопередаче стен, которое необходимо для дальнейших вычислении.
  2. Подбор необходимой толщины утеплителя в зависимости от конструкции и материала стен.

В начале, предлагаем посмотреть небольшое видео, в котором эксперт подробно рассказывает для чего нужно закладывать утеплитель в наружные стены кирпичного дома и какой вид утеплителя при этом использовать.

Сопротивлением теплопередаче стен

Для нахождения этого параметра используем СП 50.13330.2012 «Тепловая защита зданий» который можно скачать на нашем сайте (ссылка).

В пункте 5 «Тепловая защита зданий» представлены несколько формул, которые помогут нам рассчитать толщину утеплителя и стен. Для того чтобы это сделать существует параметр, называемый сопротивлением теплопередаче и обозначаемый буквой R. Он зависит от необходимой температуры внутри помещения и климатических условий данного города или района.

В общем случает он рассчитывается по формуле R ТР = a х ГСОП + b.

Согласно таблице 3, значения коэффициентов a и b для стен жилых зданий равняется 0,00035 и 1,4 соответственно.

Осталось только найти величину ГСОП. Расшифровывается она как градусо-сутки отопительного периода. С этим значением придется немного повозится.

Формула для расчета ГСОП = (tВ—tОТ) х zОТ.

В данной формуле tВ — это температура, которая должна быть внутри помещения. По нормам она равняется 20-22 0 С.

Значение параметров tОТи zОТ означают среднюю температуру наружного воздуха и количество суток отопительного периода в году. Узнать их можно в СНиП 23-01-99 «Строительная климатология». (ссылка).

Если посмотрите на данный СНиП, то увидите большую таблицу в самом начале, где для каждого города или района приведены климатические параметры.

Нас будет интересовать колонка, в которой написано «Продолжительность и средняя температура воздуха периода со средней суточной температурой воздуха ≤ 8 0 С».

Пример расчета параметра R ТР

Для того, чтобы все стало более понятным, давайте рассчитаем сопротивлением теплопередаче стен (R ТР ) для дома построенного в г. Казань.

Для этого у нас есть две формулы:

R ТР = a х ГСОП + b,

Сначала рассчитаем ГСОП. Для этого ищем г. Казань в правой колонке СНиП 23-01-99.

Выполняем расчеты

Расчет толщины стен по теплопроводности является важным фактором в строительстве. При проектировании зданий архитектор рассчитывает толщину стен, но это стоит дополнительных денег. Чтобы сэкономить, можно разобраться, как рассчитать нужные показатели самостоятельно.

Скорость передачи тепла материалом зависит от компонентов, входящих в его состав. Сопротивление передачи тепла должно быть больше минимального значения, указанного в нормативном документе «Тепловая изоляция зданий».

Рассмотрим, как рассчитать толщину стены в зависимости от применяемых в строительстве материалов.

δ это толщина материала, используемого для строительства стены;

λ показатель удельной теплопроводности, рассчитывается в (м2·°С/Вт).

Когда приобретаете стройматериалы, в паспорте на них обязательно должен быть указан коэффициент теплопроводности.

Значения параметров для жилых домов указаны в СНиП II-3-79 и СНиП 23-02-2003.

Обыкновенный глиняный, силикатный и полнотелый кирпич

При сплошной кладке с внутренней штукатуркой

  • Для температуры воздуха 4С — толщина стен 30 см;
  • При температуре -5°С – толщина стен 25 см;
  • При температуре -10°С – 38 см;
  • При температуре -20°С – 51 см;
  • При температуре -30°С – 64 см.

Кирпичная кладка с воздушной прослойкой

  • Для температуры воздуха -20°С (-30°С) – толщина стен 42 см;
  • Для температуры воздуха -30°С (-40°С) – толщина стен 55 см;
  • Для температуры воздуха -40°С (-50°С) – толщина стен 68 см;

Сплошная кладка с плитными наружными утеплителями толщиной 5 сантиметров и внутренней штукатуркой

  • Для температуры воздуха -20°С (-30°С) – толщина стен 25 см;
  • Для температуры воздуха -30°С (-40°С) – толщина стен 38 см;
  • Для температуры воздуха -40°С (-50 °С) – 51 см;

Сплошная кладка с внутренним утеплением плитами термоизоляционными, имеющими толщину 10 сантиметров

  • Для температуры воздуха -20°С (-25°С) – толщина стен 25 см;
  • Для температуры воздуха -30°С (-35°С) – толщина стен 38 см;
  • Для температуры воздуха -40°С (-50 °С) – 51 см.

Кладка колодцевая с минеральной засыпкой с объемной массой 1400 кг/м3 и внутренней штукатуркой

  • Для температуры -10°С(-20°С) – 38 см;
  • Для температуры -25°С (-35°С) – 51 см;
  • Для температуры -35°С (-50°С) – 64 см.

Расчет теплопроводности стены – правила

Расчет теплопроводности стены

Каждый, кто строит дом или же собирается проводить ремонт, задается вопросом: какой толщины делать стены, какую теплоизоляцию и какой утеплитель лучше всего использовать.

Именно ответы на эти вопросы позволят сделать любой дом или квартиру уютными, комфортными и удобными для проживания.

Опять же, использование некачественных материалов и в недостаточных количествах, игнорирование утепления, как такового, могут привести к весьма печальным последствиям.

В таком доме просто будет сложно жить как в жару, так и в морозы. Температура в комнатах будет мало отличаться от температуры на улице.

Поэтому следует выяснить, какой же толщины должна быть теплоизоляция конкретно для вашего случая.

Как лучше поступить

На сегодняшний день это можно сделать самостоятельно: произвести необходимые расчеты, выяснить оптимальные материалы для работы и самостоятельно их установить.

Можно предпочесть работу заказу крупной фирме, которая сможет за отдельную плату совершить точный расчет, подобрать материалы и приступить к их монтажу.

Конечно, в случае, если вы все сделаете сами, претензии выдвигать будет некому.

В случае с фирмой, вы сможете пожаловаться на некачественную, недобросовестную работу или же когда требуемый эффект от произведенных работ не был достигнут.

Для расчет теплопроводности стены можно воспользоваться специальными программами, специализированными онлайн-калькуляторами, которые помогут вам получить нужные цифры.

Или же вы сможете это сделать самостоятельно. Многие заблуждаются, думая, что сами не в состоянии произвести расчеты, подсчитать, сколько теплоизоляции для работы будет необходимо на комнату, квартиру или же дом. Это сделать необычайно просто, ведь рассчитать толщину необходимой теплоизоляции можно довольно просто: на всех материалах производители указывают коэффициент теплопроводности.

Этикетка с коэффициентом

В чем необходимость расчета теплопроводности и монтажа теплоизоляции

Как уже говорилось, на это есть ряд причин:

  • отсутствие или недостаточность теплоизоляции приведет к промерзанию стен;
  • есть вероятность переноса так называемой точки росы, что, в свою очередь, вызовет появление конденсата на стенах, добавит излишнюю влажность в помещениях;
  • в жаркое время в помещениях будет хуже, чем под ярким солнцем на улице; в таких домах будет жарко, душно и неуютно.

Опять же, приведенные выше причины принесут вам и новые проблемы: та же влажность будет способствовать порче как используемых внутри помещения строительных материалов, так и мебели, техники. Это, в свою очередь, заставит вас тратить деньги на ремонт, обновление, приобретение новых вещей. Пример подобного можно с легкостью увидеть ниже.

Влага и роса в квартире

Так что теплоизоляция – это залог сохранности ваших денег в дальнейшем.

Как рассчитывать толщину теплоизоляции

Чтобы просчитать необходимую толщину, следует знать величину теплосопротивления, которая является постоянной, значение имеет разное, в зависимости от географического положения, то есть разное для каждого отдельно взятого района. За основу возьмем следующие показатели: теплосопротивление стен – 3.5м2*К/Вт, а потолка – 6м2*К/Вт. Первое значение назовем R1, а второе, соответственно, R2.

При расчетах стен или же потолка, или же пола, состоящих из более чем одного слоя, следует просчитать теплосопротивление каждого из них, а затем суммировать.

R= R+R1+R2 и т.д.

Соответственно, необходимая толщина теплоизоляции, ее слоя, будет получена путем следующих манипуляций и при помощи формул:

R=p/k, где pявляется толщиной слоя, а k – коэффициентом теплопроводности материала, который можно узнать у производителя.

Опять же, не забывайте, если есть несколько слоев, то по данной формуле следует просчитать каждый, и затем полученные результаты суммировать.

Пример таковых расчетов

Ничего сложного в этом процессе нет, можно с легкостью провести расчет для любого материала. В качестве примера мы можем взять расчет для дома из кирпича.

Скажем, толщина измеряемых стенок будет составлять 1.5 длины кирпича, а в качестве теплоизоляции решим использовать минвату.

Кирпич и минвата

Итак, нам требуется теплосопротивление стены не меньше 3.5. Для начала просчета нам потребуется узнать текущее тепловое сопротивление данной стены из кирпича.

Толщина составляет около 38 сантиметров, коэффициент теплопроводности составляет 0,56.

Соответственно, 0,38/0,56 = 0,68. Чтобы достигнуть показателя в 3.5, мы отнимем от него полученный результат (нам нужно 2,85 метр квадратный * К/Вт).

Теперь мы сделаем расчет толщины теплоизоляции, как уже говорилось выше, минеральной ваты: 2,85*0,045=0,128

Позволим себе немного округлить результат и получим следующее: при необходимости утеплить кирпичную стену, толщиной в полтора кирпича, нам потребуется толщина теплоизоляционного материала 130мм, при условии, что мы будем использовать минеральную вату. Если учитывать предстоящие внутренние и внешние работы, как отделочные, так и декоративные, можно позволить себе слой минваты в 100мм. Как видите, ничего сложного.

Что еще даст такой расчет

Используя такой расчет, вы сможете сравнивать различные типы утепления и теплоизоляции, сможете выбрать наиболее эффективный при наименьшем слое.

Если у вас проблема в пространстве, если же вы хотите сэкономить, то подобная работа позволит вам путем нехитрых манипуляций быстро выяснить, какой материал будет вам обходиться дешевле.

Если вы еще на этапе планировки дома, то сможете выяснить, что обойдется вам дешевле и менее трудоемко. Это может быть увеличение толщины кирпичной кладки, использование других типов теплоизоляционных материалов или же использование других строительных материалов для возведения стены, скажем, вместо кирпича использовать блоки и т.д.

Стена из блоков

Многие ленятся делать расчеты самостоятельно, в этом случае можно легко позволить себе воспользоваться калькуляторами, которые предлагаются в сети на многих страницах.

Здесь вы найдете массу шаблонов и заготовок, практически вся информация собрана в справочниках, вам нужно будет подставлять только тип строительных материалов, регион проживания и показатель толщины. В этом случае все вычисления будут происходить очень быстро и легко.

Онлайн калькулятор

Но в данном случае высока вероятность того, что на том или ином сайте жульничают: пытаются выставить материал, которым торгуют, в лучшем свете. В таком случае вероятна ошибка в расчетах, которая может дорого вам обойтись.

Не стоит бояться самостоятельных расчетов, для этого вам понадобятся только ручка, бумага и калькулятор.

Вы легко сможете в любой момент перепроверить свои расчеты или же показать их специалисту. Консультация со знакомым строителем выйдет гораздо дешевле, чем найм профессиональной компании.

Снова-таки, выбирая материалы, просчитывая необходимую толщину и цену на них, учитывайте и другие полезные свойства, которые вам могут быть интересны.

Например, пожаробезопасность, звукоизоляцию, водо- или влагонепроницаемость. Например, звукоизоляцией и теплоизоляцией обладает стекловата.

Стекловата

Да, к сожалению, такие материалы будут выходить несколько дороже, но все же, разница по цене в 10-20% с учетом того, что вы получите, скажем, не только теплоизоляцию, но еще и звукоизоляцию, стоит назвать хорошей покупкой и удачным решением.

Видео – расчет теплопроводности стены

На данном видео можно воочию увидеть, как производится расчет теплопроводности стены с помощью специализированной программы.

Толщина стен из газобетона — какая должна быть?

Толщина стен из газоблока непосредственно влияет на тепло в доме. Чем толще газобетонные стены, тем комфортнее в помещении зимой. Казалось бы, что может быть проще: делай стену шире — и забудь про холода. Но есть и обратная сторона медали: большая ширина стены из газобетона означает и использование большого количества стройматериалов, а значит, рост расходов.

Решать, какая должна быть толщина кладки из газоблока, необходимо еще на стадии проектирования жилища, когда закладываются его главные параметры. При этом важно ориентироваться на критерии, от которых зависит теплопроводность стен.

Теплоизоляционные характеристики газобетона

Газобетонные блоки входят в категорию ячеистых бетонов. Имеют низкие показатели теплопроводности по сравнению с большинством других стеновых материалов. Такой уровень — залог того что в помещении будет тепло зимой зимой и комфортно летом.

Низкой теплопроводностью блоки из газобетона обязаны пористой структуре. В процессе производства материала пузырьки газа равномерно распределяются внутри, тем самым снижая его способность отдавать тепло.

Пористая структура, с одной стороны, наделяет газоблоки преимуществами, но с другой — ухудшает их прочность. Прочность газобетона на сжатие в зависимости от марки составляет 15–50 кг/см2. Блоки с низкой плотностью, например, D200, имеют минимальную теплопроводность. Однако использовать такой газоблок для несущих стен нельзя из-за ограниченной несущей нагрузки: как правило, он применяется в качестве утеплителя.

Выбирая размер подходящего блока газобетона для кладки стен дома, уделяют внимание и теплопроводности, и прочности на сжатие.

Рассчитывая оптимальное значение толщины стен объекта из газобетона, важно помнить о влиянии влаги на теплопроводность. Намокшие блоки хуже удерживают тепло, поэтому нужно защищать их от осадков фасадными материалами: кирпичом, сайдингом, штукатуркой.

Соотношение прочности газоблоков и этажности зданий

Нормативы по возведению стен здания из газобетонных блоков указаны в СТО 501-52-01-2007. В соответствии с этим документом при строительстве зданий нужно учитывать прочность газоблоков на сжатие.

Определить, какой должна быть прочность материала для постройки стены из газобетонных блоков, поможет таблица:

Этажность здания Одноэтажное Двухэтажное Трехэтажное
Прочность газоблоков   со сборно- монолитными или плитами перекрытия с монолитными перекрытиями со сборно- монолитными или плитами перекрытия с монолитными перекрытиями
В 2,0 + – ! – ! – !
В 2,5 ++ +
В 3,5 +++ ++ + + +
В 5,0 +++ +++ ++ ++ +

Условные обозначения:

«+» — материал подходит для использования;

«++» — подходит с запасом;

«+++» — подходит с большим запасом;

«–» — не рекомендуется;

«– !» — категорически не рекомендуется.

По плотности выделяют теплоизоляционные марки газобетона (до D350), конструкционные (от D700) и комбинированные — конструкционно-теплоизоляционные (D400, D500 и D600).

Оптимальную плотность газоблоков определяют с учетом назначения постройки. Например, при определении толщины стен возводимого гаража из газобетона или подсобного помещения, для которого качественная теплоизоляция не важна, уделяют внимание только прочности.

Для многих регионов России оптимальным стройматериалом считаются газоблоки марок D400 и D500. Они достаточно прочны при низкой теплопроводности. Например, теплопроводность блоков ЭКО D500 B3,5 составляет 0,12 Вт/м* °С.

Кроме того, выбирая газобетон для наружных стен, важно оценивать его морозостойкость. Качество изготовленный материал способен перенести до сотни циклов заморозки-разморозки без каких-либо отрицательных последствий для своих характеристик и эксплуатационных свойств.

Толщина газобетонной стены: стандарты и рекомендации

Показатели теплозащиты зданий, которые обеспечивают формирование благоприятной температуры в помещении и способствуют экономичному расходу энергии, можно найти в СНиП 23-02-2003. Документ содержит правила для объектов с постоянным проживанием и отоплением.

Рекомендуемая толщина возводимых стен из газобетона должна вычисляться при проектировании дома. Определиться с этим параметром помогает учет следующих критериев:

  • устойчивость стройматериала к морозу, влаге, коррозии, высокой температуре;
  • траты на отопление;
  • защита от излишнего увлажнения.

Если у вас нет желания обращаться за составлением теплотехнического расчета к специалистам, можно выполнить его самостоятельно, ориентируясь на средние показатели. Этого достаточно, чтобы в доме было уютно и тепло.

По рекомендациям производителей и на основе статистики установлены следующие стандарты подбора размеров (толщины) газоблока для строительства дома:

  • При постройке домов сезонного проживания толщина стены с кладкой из газобетонных блоков может начинаться от 200 мм. Но специалисты рекомендуют остановиться на 300 мм.
  • При устройстве цоколя и подвала следует выбирать газоблоки толщиной 400 мм, марки D500 или D600, класса В3,5-В5.
  • Для межквартирных перегородок рекомендована толщина газобетона 300 мм, для межкомнатных — 100-150 мм.
  • Минимальная толщина, которую может иметь несущая стена на основе прошедшего автоклавирование газобетона, — 375 мм, самонесущей — 300 мм. Для сравнения: наименьшая толщина стен из пеноблоков при равнозначной теплопроводности конструкций должна быть в 1,6 раза больше, т. е. для несущих — 600 мм, для самонесущих — 480 мм.

 

Расчет оптимальной толщины кладки из газобетонных блоков

конструкций должна быть в 1,6 раза больше, т. е. для несущих — 600 мм, для самонесущих — 480 мм.

В упрощенном виде толщина несущей стены, строящейся из газобетона, рассчитывается по следующей формуле:

Т = Rreg*λ

Теплопроводность

λ — коэффициент теплопроводности. У каждой марки блоков этот коэффициент свой. Необходимый показатель в конкретном случае можно выбрать в таблице ниже: в ней приведены общие значения по ГОСТ 31359-2007. Также его можно найти в протоколах испытаний завода-изготовителя стройматериалов.

Марка по плотности Коэф. теплопроводности в сухом состоянии, Вт/м*°С
D400 0,096
D500 0,12
D600 0,14
D700 0,17

 

Сопротивление передаче тепла

Rreg — сопротивление передаче тепла, которым обладают стены из газоблока. Данный параметр можно вычислить, умножив коэффициент a (0,00035) на Dd (градусо-сутки периода отопления, ГСОП) и прибавив к полученному числу коэффициент b (1,4).

Данные коэффициенты представлены в СНиП 23-02-2003. ГСОП представляют собой разницу между тем, какая температура за окном и в помещении наблюдается в течение отопительного периода, умноженную на длительность сезона отопления. Эти значения можно посмотреть в СНИП 23-01-99 и пособии «Строительная климатология».

Но проще найти нужное значение в таблице (не для всех городов):

Город Необходимое сопротивление передаче тепла, м2*°С/Вт
Москва 3,28
Пермь 3,64
Омск 3,82
Краснодар 2,44
Санкт-Петербург 3,23
Екатеринбург 3,65
Казань 3,45
Красноярск 4,84
Челябинск 3,64
Новосибирск 3,93
Волгоград 2,91
Якутск 5,28
Сочи 1,79
Магадан 4,33
Тверь 3,31
Уфа 3,48

Если использовать формулу, получится, что толщина блока для дома, расположенного в Москве, должна составлять минимум 44 см при применении газобетона D500. При использовании газоблоков D400 показатель составляет 37,5 см.

Для северных регионов расчетные значения толщины стен равны 74–77 см. При строительстве домов из газобетона в таких условиях рекомендуется сооружать многослойную конструкцию.

Толщина стены из газоблоков и звукоизоляция

За счет ячеистой структуры газоблоки прекрасно гасят звуковую энергию. Стены дома из этого материала хорошо ограждают от уличного шума. Разобраться, какой толщины должна быть стена из газобетона для комфортной тишины, помогут следующие нормы звукоизоляции:

                    • межквартирные стены и перегородки — от 52 дБ;
                    • стены между жилыми помещениями и магазинами — от 55 дБ;
                    • перегородки между комнатами — от 43 дБ;
                    • перегородки между комнатой и санузлом — от 47 дБ.

При возведении межкомнатных перегородок размером 100–150 мм рекомендуется использовать блоки D600. Покрытые гипсовой штукатуркой такие конструкции имеют индекс изоляции звука 43 дБ — в пределах нормы. Конструкции толщиной 300 мм обеспечивают изоляцию от шума в 52 дБ. Эффективно уменьшить уровень шума помогает внутренняя отделка гипсокартоном.

Факторы снижения энергоэффективности

Когда вычисляется толщина стены, строящейся из газобетонных блоков для дома или другого объекта, речь идет о цельном газоблоке. На практике при строительстве здания используют отдельные элементы, которые соединяют друг с другом бетонными или растворными швами. Получается большое количество стыков — возможных «мостиков холода». Кроме того, в стеновую конструкцию укладывают арматуру, формируют армирующий пояс — это приводит к повышению теплопроводности.

Чтобы сохранить высокие изоляционные характеристики газобетонной кладки, необходимо придерживаться следующих правил:

                    • Скрепляющие растворы нужно готовить из сухих клеевых составов, предназначенных специально для газобетона. Такие смеси состоят из цемента, минеральных компонентов и полимерных модифицирующих добавок. Если работы проводятся зимой, в составе смеси должны быть противоморозные добавки. Для минимизации потерь тепла рекомендуется делать слой клеящего шва толщиной 2–3 мм. Если в попытках сэкономить заменить специальный состав раствором цемента и песка, результаты будут не самыми приятными: увеличится размер шва, что приведет к проблемам с «мостиками холода».
                    • Через стены уходит до 25% тепла. Основная масса теплопотерь связана с окнами, крышей и фундаментом. Поэтому этим проблемным зонам требуется уделять особое внимание и тщательно обустроить теплоизоляцию.
                    • В населенных пунктах с холодным климатом желательно утеплять стены снаружи.

Многослойные конструкции — альтернатива увеличению толщины стен

Для комфортного проживания без больших затрат на отопление в доме из газобетонных блоков можно использовать не только метод увеличения толщины стен. Еще один эффективный способ — возводить конструкции из двух или трех слоев с применением утеплителя и отделочного материала.

Популярные способы создания таких конструкций

  • Облицовка кирпичом без утепления. При этом между слоями оставляют вентиляционный зазор. Кирпичная кладка осуществляется по стандартной технологии с применением гибких связей.
  • Оштукатуривание. В случае с двухслойной конструкции помимо слоя штукатурки используется утеплитель. Для утепления чаще всего используется полужесткая базальтовая вата. Ее толщину следует подбирать в соответствии с СП 23-101-2004.
  • Облицовка с утеплителем. В этом случае возводится 3-слойная конструкция. Используется вентфасад с утеплителем или отделка кирпичом с дополнительным утепляющим слоем между внутренней и внешней стеной.

Наружное утепление дома со стенами из газобетона необходимо выполнять комплексно. При этом важно учитывать изоляцию цоколя и фундамента, создание отмостки. При монтаже нескольких слоев следует обращать внимание на то, что коэффициент их паропроницаемости должен идти по нарастающей изнутри наружу. В таком случае пар не будет накапливаться в ячеистых блоках и беспрепятственно выйдет на улицу.

Вывод

При строительстве дома из газобетона следует придерживаться такой толщины стен, чтобы обеспечивалась низкая теплопередача при высокой прочности конструкции. Принять во внимание оба эти фактора позволяет учет таких показателей при выборе газоблоков, как класс прочности, плотность и коэффициент теплопроводности. Большое значение для правильного расчета толщины стены из блоков газобетона имеют и климатические условия региона.

Онлайн калькулятор: Толщина стенки трубы

Толщина стенки трубы

Формула

Барлоу используется для расчета давления в трубе с учетом ее диаметра, толщины стенки и кольцевого напряжения (в материале трубы). Таким образом, его можно использовать для вычисления любого из этих параметров как функции трех других.
Помимо некоторых других упрощений, важное теоретическое предположение, сделанное для использования формулы Барлоу, состоит в том, что стенка трубы ведет себя как мембрана (или тонкостенная труба), что означает, что кольцевое напряжение в стенке трубы распределяется равномерно по всем его толщина.Внутри стенки трубы нет моментов любого типа. Одним из параметров, обеспечивающих поведение мембраны в стенке трубы, является отношение диаметра к толщине (D / t), которое должно быть больше или равно 20 , хотя некоторые авторы считают 16 .
Однако решение о том, использовать или не использовать формулу, обычно основывается не на геометрии ее сечения (отношение D / t), а на обслуживании трубы, с учетом типа жидкости, промышленности и физических условий, таких как, например, , ASME (Американская ассоциация инженеров-механиков) делает.

  • P: Давление в трубе
  • S: Обруч
  • т: Толщина стенки трубы
  • D: Внешний диаметр
Расчеты по формуле Барлоу
Точность расчетов

Цифры после десятичной точки: 3

content_copy Ссылка сохранить Сохранить расширение Виджет

Следуя этим критериям обслуживания, код ASME B31.4 (Трубопроводные системы транспортировки жидкостей и шламов) применяет формулу следующим образом:

  • A: Допуск на резьбу, нарезание канавок, коррозию
Толщина стенки по формуле Барлоу согласно ASME B31.4
Точность вычисления

Цифры после десятичной точки: 3

Толщина стенки трубы, (дюймы)

content_copy Ссылка сохранить Сохранить расширение Виджет

Код

ASME B31.8 (Системы газоснабжения и распределения газа) применяет его следующим образом:

и для расчета минимальной толщины стенки с учетом припуска:

это должно быть выражено так:

  • F: Расчетный коэффициент
  • E: Коэффициент продольного шарнира
  • T: Температурный коэффициент снижения номинальных характеристик
  • A: Допуск на резьбу, нарезание канавок, коррозию
Давление в трубе по формуле Барлоу согласно ASME B31.8
Расчетный коэффициент, (безразмерный) 0,80 для класса размещения 1, раздела 10,72 для класса местоположения 1, раздела 20.60 для класса местоположения 20,50 для класса местоположения 30,40 для класса размещения 4 Коэффициент продольного соединения (безразмерный) 1,00 для бесшовных труб ASTM A531. 00 для трубы, сваренной сопротивлением ASTM A53 0,60 для трубы ASTM A53, сваренной встык: труба непрерывного сварного шва 1,00 для трубы ASTM A106 бесшовная 0,80 для трубы электросварной сварки плавлением ASTM A134 1,00 для трубы электросварной сварки ASTM A135 0.60 для трубы API 5L, сваренной встык с печью, 0,80 для трубы, сваренной встык, ASTM A1390,80 для трубы, сваренной методом спиральной сварки ASTM A211, 1,00 для бесшовной трубы ASTM A333, 1,0 для трубы, сваренной сопротивлением ASTM A333, 1,0 для трубы, сваренной сопротивлением ASTM A381, с двойной погружной сваркой Дуговая сварная труба0,80 для электросварной сварки ASTM A671 классов 13,23,33,43,53 Труба 1,00 для электросварки плавлением ASTM A671 классов 12,22,32,42,52 Труба0,80 для электросварки плавлением ASTM A672 Труба классов 13,23,33,43,531.0 для трубы, сваренной плавлением согласно ASTM A672, классов 12,22,32,42,521.00 для бесшовной трубы API 5L 1,00 для трубы API 5L, сваренной электрическим сопротивлением, 1,00 для трубы, сваренной оплавлением оплавлением API 5L 1,00 для трубы, сваренной под флюсом API 5L для 300 ° F) 0,933 (для 350 ° F) 0,900 (для 400 ° F) 0,867 (для 450 ° F) Точность вычисления

Цифры после десятичной точки: 3

content_copy Ссылка сохранить Сохранить расширение Виджет

Код

ASME B31.9 (Строительные трубопроводы) применяет его следующим образом:

  • E: Коэффициент продольного шарнира
  • A: Допуск на резьбу, нарезание канавок, коррозию
Толщина стенки трубы по формуле Барлоу согласно ASME B31.9
Коэффициент продольного соединения, (безразмерный) 0,6 (для трубы под сварку встык или непрерывной сварки) 0,75 (для трубы со спиральным швом ASTM A211) 0,8 (для трубы с одинарным стыковым сварным швом) 0,85 (для трубы с контактным сварным швом) 0,9 (для трубы с двойным швом) труба под сварку встык) 1,00 (для стыкового шва со 100% радиографическим исследованием трубы) Точность расчета

Цифры после десятичной точки: 3

Толщина стенки трубы, (дюймы)

content_copy Ссылка сохранить Сохранить расширение Виджет

С другой стороны, в отличие от предположения о тонкой стенке или теории мембран, существуют формулы для изогнутой пластины или толстостенной трубы, полученные из теории Ламе, использование которых более сложно, иногда с итерациями, и требует осторожного подхода, например, например, в ASME B 31.1 (силовые трубопроводы), ASME B 31.3 (технологические трубопроводы) и ASME B 31.5 (холодильные трубопроводы и компоненты теплопередачи).

Расчет толщины стенки трубы (ASME B31.3)

Результаты

NPS [[getResult ([‘NPS’])]]
Внутренний диаметр d [[getResult ([‘d’])]] [[gUL (‘длина’)]]
Внешний диаметр D [[getResult ([‘D’])]] [[gUL (‘длина’)]]
Номинальная толщина т н [[getResult ([‘tn’])]] [[gUL (‘длина’)]]
Undertol.толщина т н * ут / 100 [[getResult ([‘t_ut’])]] [[gUL (‘длина’)]]
Минимальная толщина Т = t n (1-ут / 100) [[getResult ([‘T’])]] [[gUL (‘длина’)]]
Допустимое напряжение S [[getResult ([‘S’])]] [[gUL (‘давление’)]]
Коэффициент Y Y [[getResult ([‘Y’])]]
Фактор качества сварного соединения E [[getResult ([‘E’])]]
Расчетная толщина давления т [[getResult ([‘t’])]] [[gUL (‘длина’)]]
Общий механический припуск c = ca + h [[getResult ([‘c’])]] [[gUL (‘длина’)]]
Требуемая толщина т м [[getResult ([‘tm’])]] [[gUL (‘длина’)]]
Приемлемость отбора Т> т м [[getResult ([‘приемлемость’])]]

Расчет толщины оболочки

  • Вы здесь:
  • Дом
  • Расчет толщины оболочки

Расчет толщины оболочки

Корпус статического оборудования, находящегося под давлением, во многих случаях имеет цилиндрическую форму.Более сложное оборудование, такое как ректификационные колонны, также может иметь коническую или более коническую часть. Однако резервуары для сжиженного нефтяного газа обычно имеют сферический корпус.

Страница расчета толщины оболочки предназначена для расчета толщины стенок цилиндра, конуса и сферы под давлением без отверстий. Расчет не принимает во внимание дополнительное напряжение вокруг отверстий для сопел и, следовательно, является основным расчетом прочности. Коды расчета – ASME, Голландские правила и EN Euronorm.

На рисунке ниже показаны размеры, использованные в расчетах.Для расчета также требуется, чтобы пользователь ввел значение напряжения в зависимости от материала. На странице расчета есть ссылка на страницу свойств материала, но значения на страницах материалов приведены только для справки и не должны использоваться в реальных расчетах.

Расчет толщины стенки цилиндра
в соответствии с голландскими правилами

Допустимое напряжение f = f 1 = 0.67 * R e (T d ) = 0,67 * 175,2 = 117,38 Н / мм 2
Расчетная толщина d = d n – Ca – tol = 8,2 – 1 – 1,03 = 6,17 мм
Цилиндр:
Внутренний диаметр D i = D e – 2 * d = 219.1-2 * 6,17 = 206,76 мм
Требуемая толщина стенки
0,5 * 219,1
(2 * 1 * 117,384 + 0,5)
=
0.47 мм
Требуемая номинальная толщина d rn = d r + Ca + tol = 0,466 + 1 + 1,03 = 2,50 мм
Требуемое уменьшение прочности
0.5 * (206,76 + 6,17)
2 * 6,17 * 117,384
=
0,07350
Расчет толщины, d> d r ? d n = 8,2 мм в норме
Вес 96.22 кг
Закрытый том 0,073 м 3

Как рассчитать минимальную требуемую толщину стенки для трубки

При расчетах по кодам ASME с использованием цилиндрических компонентов для энергетики 3-го класса вам потребуется знать, как рассчитать минимальную требуемую толщину стенки для труб.Трубки, для которых вам может потребоваться определить минимальную толщину, могут быть, помимо прочего, трубами пароперегревателя или трубами водотрубного котла. Этот пост помогает объяснить материал, освещенный в:

Все указанные ниже номера страниц взяты из кода 2007 ASME для котлов и сосудов высокого давления .

Формула

Чтобы определить минимальную требуемую толщину трубок, воспользуйтесь формулой, содержащейся в коде ASME «Котлы и сосуды высокого давления» PG-27 «Цилиндрические компоненты под внутренним давлением».В частности, PG-27.2.1 на стр.8 .

PG-27.2.1 Трубка – до 5 дюймов включительно. (125 мм) внешний диаметр . Важно помнить об этом моменте, так как любой кусок материала с наружным диаметром более 125 мм теперь считается трубопроводом, и необходимо использовать уравнение, приведенное в PG-27.2.2 стр. 10.

Формула для расчета минимально необходимой толщины:

Переменные формулы

Символы, используемые в формулах PG-27, содержатся в параграфе PG-27.3 page 10 и определяются следующим образом.

C = Минимальный допуск на резьбу и стабильность конструкции (мм) (PG-27.4, примечание 3) стр.11

D = или O.D. is Наружный диаметр цилиндра (мм) «В данном случае трубка»

E = Эффективность продольных сварных швов или связок между отверстиями, в зависимости от того, что ниже (допустимые значения E перечислены в PG-27.4, примечание 1) стр. 11

e = коэффициент толщины расширенных концов трубы (мм) (см. PG-27.4, примечание 4) стр.11

P = Максимально допустимое рабочее давление «Манометрическое давление» (МПа) (см. PG-21, относится к избыточному давлению)

R = Внутренний радиус цилиндра (мм) «В данном случае трубка»

S = Максимально допустимое значение напряжения при рабочей температуре металла (Раздел II, Часть D, Таблица 1A. См. PG-27.4, примечание 2) стр. 11. При определении максимально допустимого значения напряжения необходимо проверить ( Материалы пластин PG-6) стр. 4 и (материалы котельных труб PG-9) стр. 5 перед началом расчетов, поскольку эта информация определит правильную таблицу напряжений для использования, указав, является ли материал углеродистой сталью или легированной сталью.

t = минимальная требуемая толщина (мм) (см. PG-27.4, примечание 7) стр.12

y = температурный коэффициент (см. PG-27.4, примечание 6) стр. 11

Как рассчитать минимальную требуемую толщину стенки трубы

Примечание: Все вопросы кода должны быть рассчитаны на дюймов (мм) и (МПа), если не указано иное. Преобразуйте соответствующим образом и правильно перед расчетом.

Как определить минимальную требуемую толщину стенки для трубной практики Вопрос № 1

Как определить минимальную требуемую толщину стенки для трубной практики Вопрос № 2

Резюме

Надеюсь, представленные примеры помогут вам понять, как рассчитать минимальную требуемую толщину стенки трубы.Если у вас есть дополнительные вопросы, отзывы или идеи по улучшению предоставленного контента, дайте мне знать в разделе комментариев ниже.

Энергетика 101

Определение толщины стенок глубоководных трубопроводов

Модифицированная формула для тонкостенных труб

учитывает внешнее давление
Джейён Ли, Уильям Рейни, Марк Бруннер
Aker Engineering
Толщина стенки цилиндрического сосуда с внутренним давлением определяется расчетным путем. обруч стресса.Напряжение кольца должно быть меньше максимально допустимого. Если расчетное кольцевое напряжение больше допустимого, толщину стенки трубы необходимо увеличить.

Для конструкции труба в трубе, в которой внутренняя труба окружена внешней обсадной трубой с давлением в кольцевом пространстве, или труба в морской среде, подверженная внешнему гидростатическому напору, при определении толщины стенки трубы следует учитывать внешнее давление. .

Существует два основных метода расчета кольцевого напряжения: формула для толстостенной трубы и формула для тонкостенной трубы.

Формула для толстостенной трубы дает точное решение, но требует итеративного решения для определения требуемой толщины стенки трубы. Формула для тонкостенной трубы проще и удобнее использовать при расчете толщины стенки трубы. Он обеспечивает достаточно точные результаты для тонкостенных труб, таких как трубы с отношением D / t более 20.

Результаты формулы для тонкостенных труб обычно меньше чем на 5% по сравнению с точным решением, полученным по формуле для толстостенных труб, если нет внешнее давление существует.Однако существующая формула для тонкостенных труб дает ошибочные результаты в случаях, когда существует внешнее давление.

Формула для толстостенных труб

Французский инженер Ламе вывел формулу толстостенного цилиндра в 1833 году, используя систему напряжений, показанную на Рисунке 1 [10 841 байт] (Blake, 1990). Труба под давлением создает как касательные, так и радиальные напряжения в двумерном поперечном сечении. Продольным или осевым напряжением можно пренебречь, предполагая отсутствие ограничений на концах трубы. Касательное напряжение создается в окружном или кольцевом направлении в стенке трубы.Радиальное напряжение действует перпендикулярно стенке трубы.

Исходя из равновесия сил (сумма сил в каждом направлении должна быть равна нулю) и интегрирования, касательное или кольцевое напряжение (sh) и радиальное напряжение (sr) можно выразить, как показано (Shigley, 1983).

Формулы обеспечивают «точные» решения в диапазоне упругости для любой толщины стенки цилиндрической трубы. В этих уравнениях положительные напряжения указывают на растяжение, а отрицательные напряжения указывают на сжатие. Подставив a = Di / 2, b = Di + 2t и r = a = Di / 2 на внутренней поверхности трубы, уравнение 1 [8 595 байтов] можно переписать как группу уравнения 3 [19 805 байтов].

Таким же образом кольцевое напряжение при r = b = D / 2 на внешней поверхности трубы представлено в группе Уравнения 4 [20 087 байтов].

Когда внешнее давление равно нулю, где Po = 0, тогда применяются уравнение 5 [7 750 байтов] и уравнение 6 [7 529 байтов].

Таким же образом можно выразить радиальные напряжения на внутренней и внешней поверхностях стенки трубы, как показано в Уравнении 7 [4 489 байтов] и Уравнении 8 [3 741 байта].

На рис. 2 [32,770 байт] и рис. 3 [20871 байт] показаны общие характеристики напряжений толстостенной трубы по толщине стенки трубы (уравнения с 1 по 8).

Абсолютное кольцевое напряжение максимально на внутренней поверхности стенки независимо от отношения внутреннего давления к внешнему. По этой причине внутренний диаметр используется для расчета кольцевого напряжения при использовании формулы для толстостенной трубы. Разница кольцевых напряжений между поверхностью внутренней стенки и поверхностью внешней стенки такая же, как и перепад давления Pi – Po (уравнение 3 минус уравнение 4).

Показано, что кольцевое напряжение является растягивающим, когда внутреннее давление превышает внешнее давление.Однако, когда внутреннее давление равно внешнему, кольцевое напряжение становится сжимающим (см. Рисунок 3). Уравнения 3 и 4 показывают, что кольцевое напряжение становится сжимающим при одинаковом внутреннем и внешнем давлениях (Pi = Po). Это означает, что переход кольцевого напряжения от растяжения к сжатию происходит до того, как Pi = Po. Другими словами, труба уже находится в зоне сжатия до того, как внешнее и внутреннее давления сравняются. Это будет подробно исследовано позже в этой статье.

Радиальное напряжение всегда сжимающее.

Абсолютные значения на внутренней или внешней поверхности стены такие же, как внутреннее или внешнее давление. Разность радиальных напряжений такая же, как и разность давлений внутри и снаружи трубы. Сумма кольцевого напряжения и радиального напряжения всегда постоянна по толщине стенки трубы (сумма уравнения 1 и уравнения 2 [8 687 байтов]).

Уравнение 9 [6,357 байта]

Как упоминалось ранее, нулевое кольцевое напряжение возникает до того, как внешнее давление сравняется с внутренним давлением.При Pi = Po труба испытывает сжимающее напряжение, равное окружающему давлению (установите уравнение 3 равным нулю, чтобы найти точку возникновения нулевого кольцевого напряжения). Уравнение дает Уравнение 10 [5 609 байт], результаты которого всегда меньше 1,0.

Это означает, что нулевое кольцевое напряжение всегда возникает, когда внешнее давление меньше внутреннего давления. Это логично, если мы рассмотрим соответствующие области, на которые воздействует внутреннее давление и внешнее давление.

Рисунок 4 [24,355 байта] представляет уравнение 10 в графической форме. При D / t = 20 нулевое кольцевое напряжение возникает, когда внешнее давление составляет 90,5% от внутреннего давления. Например, если внутреннее давление составляет 2500 фунтов на квадратный дюйм, нулевое кольцевое напряжение будет возникать при 2500 раз 0,905 или внешнем давлении в 2263 фунтов на квадратный дюйм. Выше внешнего давления 2263 фунта на квадратный дюйм при постоянном внутреннем давлении труба будет испытывать кольцевое напряжение сжатия. Кольцевые и радиальные сжимающие напряжения будут составлять 2500 фунтов на квадратный дюйм при Pi = Po = 2500 фунтов на квадратный дюйм (рисунок 3).

Величина кольцевого напряжения всегда максимальна на внутренней поверхности стенки (рисунки 2 и 3). Поскольку труба должна быть рассчитана на максимальное напряжение через стенку, для определения толщины стенки трубы используется формула толстостенной трубы с r = a (уравнение 3). Это уравнение дает точное максимальное кольцевое напряжение для любой толщины стенки трубы и называется «формулой для толстостенной трубы».

Уравнение 11 [7,701 байт] применимо для труб в упругой области, что приемлемо, поскольку пластическая деформация из-за внутреннего давления обычно не допускается при определении толщины стенки трубы.Тем не менее, толщина стенки трубы, определяемая уравнением 11, должна быть проверена на предмет чрезмерного давления внешнего изгиба и сжатия. Методы расчета смятия трубы представлены во многих отраслевых нормах и не описываются в этой статье.

Для известной толщины стенки трубы кольцевое напряжение можно рассчитать с помощью уравнения 11. Однако при неизвестной толщине стенки трубы и известном максимально допустимом кольцевом напряжении (нормальная практика) уравнение требует нескольких итераций для решения толщина стенки трубы.Поэтому была введена более простая формула, которая широко используется в производстве сосудов высокого давления. Формула получена для тонкостенной трубы и поэтому называется «формулой для тонкостенной трубы».

Формула тонкостенной трубы

Когда длинный свободный участок тонкостенной трубы подвергается внутреннему давлению, на трубу создается кольцевое напряжение. Кольцевые силы будут находиться в равновесии с силами Y-составляющей внутреннего давления (рис. 5 [6,626 байта]).

Уравнение 12 [7 278 байтов] получено из следующих допущений:

(1) Незначительное радиальное напряжение для тонкостенной трубы

(2) Равномерное кольцевое напряжение по толщине стенки трубы

(3) Внешнее давление отсутствует.

Радиальное напряжение при Po = 0 незначительно для тонкостенной трубы. Как показано на Рисунке 6 [27 382 байта], радиальное напряжение составляет менее 10% от кольцевого напряжения для отношений D / t больше 20. Предполагая пренебрежимо малое радиальное напряжение, кольцевое напряжение будет равномерным по толщине стенки, поскольку сумма кольцевых напряжений и радиальных напряжений должна быть постоянной.

Рисунок 6 также показывает, что использование формулы тонкостенной трубы для толстостенной трубы, например, отношение D / t менее 20, дает неточные результаты, поскольку в этой области нельзя пренебречь радиальным напряжением.По мере увеличения внешнего давления кольцевое напряжение растяжения уменьшается. Радиальное напряжение на внутренней поверхности стенки равно внутреннему давлению (на него не влияет внешнее давление), поэтому отношение радиального напряжения к кольцевому напряжению увеличивается по мере увеличения внешнего давления.

На рис. 6 показано, что отношение радиального напряжения к кольцевому напряжению становится 19% при соотношении D / t = 20, когда Po / Pi = 0,4. Более того, при Pi = Po радиальное напряжение равно кольцевому напряжению, что означает, что отношение достигает 100%.По мере увеличения отношения Po / Pi вклад радиального напряжения в кольцевое напряжение увеличивается экспоненциально. Это показывает, что формулу для тонкостенной трубы нельзя использовать в ситуациях внешнего давления, когда нельзя пренебречь радиальным напряжением.

Формула для тонкостенной трубы дает однородное кольцевое напряжение по толщине стенки, а формула для толстостенной трубы дает переменное кольцевое напряжение с максимумом на внутренней поверхности стенки. Формула тонкостенной трубы обеспечивает максимальное кольцевое напряжение при использовании наружного диаметра трубы.На рисунке 7 показано кольцевое напряжение, рассчитанное по формуле для тонкостенной трубы с использованием внешнего диаметра трубы, среднего диаметра и внутреннего диаметра.

Использование внешнего диаметра дает примерно 5% завышение прогноза точного решения при соотношении 20 D / t. Если используется средний диаметр, формула для тонкостенных труб немного занижает точное решение на 0,3-0,1% при соотношении D / t от 20 до 40. Средний диаметр может использоваться, если прогноз на 0,3% или меньше занижает. при соотношении D / t более 20 приемлемо.Однако коды API и ASME используют внешний диаметр, что является консервативным.

Уравнение 13 [4,867 байта] дает разумные результаты для отношений D / t больше 20 без внешнего давления. Чтобы учесть внешнее давление, большинство отраслевых кодексов, таких как API 1111 и ASME B31.8, вычитают внешнее давление из члена внутреннего давления в уравнении 13 (показано в уравнении 14 [4 620 байтов]).

Это уравнение неверно, поскольку исходное уравнение (уравнение 13) получено из предположений об отсутствии внешнего давления и незначительном радиальном напряжении.Следовательно, уравнение 13 не может быть изменено для учета влияния внешнего давления. Это можно доказать, подставив Pi = Po в уравнение 14. Когда Pi = Po, уравнение 14 показывает нулевое кольцевое напряжение, что противоречит формуле для толстостенной трубы. Когда Pi = Po, кольцевое напряжение должно быть отрицательным (-) Po согласно формуле для толстостенной трубы (уравнение 11).

По этой причине уравнение 14 переоценивает кольцевое напряжение при высоких внешних давлениях. На рисунке 8 показано, насколько уравнение 14, которое называется «формулой исходной тонкостенной трубы», переоценивает кольцевое напряжение по сравнению с формулой для толстостенной трубы.Если внешнего давления нет, когда Po = 0 и отношение D / t больше 20, исходная формула для тонкостенной трубы переоценивает кольцевое напряжение максимум на 5% по сравнению с формулой для толстостенной трубы.

Завышение оценки на 5% вызвано пренебрежением радиальным напряжением и приемлемо с точки зрения консервативных расчетов. Однако при высоком внешнем давлении, таком как Po / Pi = 0,4 при D / t = 20, исходная формула для тонкостенной трубы предсказывает на 13% более высокое кольцевое напряжение, чем результат для толстостенной трубы.Превышение прогноза увеличивается до 80% при Po / Pi = 0,8 и D / t = 20.

Рисунок 8 демонстрирует, насколько излишне консервативна и неточна исходная формула для тонкостенных труб в случаях высокого внешнего давления. По мере увеличения толщины стенки трубы и внешнего давления разница между отношениями кольцевых напряжений между исходной формулой для тонкой стенки и формулой для толстой стенки значительно увеличивается. Это указывает на то, что исходная формула для тонких стенок неправильно предсказывает кольцевое напряжение, особенно для случаев высокого внешнего давления.

Модифицированная формула

Чтобы найти более реалистичную формулу для учета внешнего давления, нам нужно вернуться к формуле для толстостенной трубы (уравнение 11), которая дает точное решение. В уравнении 11, предполагая очень тонкую толщину (когда t приближается к нулю), мы имеем уравнение 15 [5 765 байтов].

Подстановка уравнения 15 в уравнение 11 дает уравнение 16 [6 147 байтов].

Левая часть уравнения 15 всегда меньше D, поэтому уравнение 16 всегда дает более высокие требования к толщине стенки, чем формула для толстостенной трубы.Обратите внимание, что уравнение 16 имеет дополнительный член минус (-) Po по сравнению с исходной формулой для тонкостенной трубы (уравнение 13). Уравнение 16 называется «формулой модифицированной тонкостенной трубы».

Когда внешнее давление равно внутреннему давлению, уравнение 16 дает сжимающие напряжения, эквивалентные внешнему давлению, что согласуется с теорией толстостенных труб. Модифицированная формула для тонкостенной трубы предсказывает кольцевое напряжение более точно, чем исходная формула для тонкостенной трубы, представленная на рисунке 9.

Для отношений D / t больше 20 при Po / Pi = 0,4 исходная формула для тонкостенных труб завышает оценку на 13% или меньше (Рисунок 8), в то время как модифицированная формула для тонкостенных труб превышает кольцевое напряжение на 6 % (Рис. 8), оба значения сравниваются с формулой для толстостенных труб. По мере увеличения толщины стенки трубы и внешнего давления разница в погрешности между исходной и модифицированной формулами для тонкой стенки становится более значительной.

Рекомендация

По мере увеличения внешнего давления, например, с увеличением глубины воды для морского трубопровода, формула тонкой стенки предсказывает более высокое кольцевое напряжение, чем точное значение.Это вызвано использованием теории тонкостенных трубок, в которой термин Pi заменяется на (Pi – Po) для учета эффекта внешнего давления. Это неверно, поскольку исходное уравнение для тонкостенной трубы получено из предположений «отсутствие внешнего давления» и «незначительное радиальное напряжение».

Основываясь на теории «точной» толстостенной трубы, исходная формула для тонкостенной трубы должна иметь дополнительный член минус внешнего давления, как показано в уравнении 16, для более точного учета влияния внешнего давления.

Предлагаемая модифицированная формула для тонкостенных труб (уравнение 16) обеспечит достаточно точные оценки, менее чем на 10% по сравнению с точными значениями, для отношений D / t больше 20. Для отношений D / t меньше 20, с использованием толстостенных труб. формула трубы рекомендуется.

Некоторые отраслевые нормы не учитывают влияние внешнего давления, они должны быть изменены для глубоководных применений с учетом внешнего давления либо с использованием модифицированной формулы для тонкостенных труб, либо по формуле для толстостенных труб.

Ссылки

API 1111, «Проектирование, строительство, эксплуатация, техническое обслуживание морских углеводородных трубопроводов», 1993 г., API, Вашингтон, округ Колумбия.

ASME B31.8, «Системы газотранспортных и распределительных трубопроводов», 1992 г., Американское общество механиков Инженеры, Нью-Йорк.

Блейк, Александр, «Практический анализ напряжений в инженерном проектировании», 1990, Marcel Dekker, Inc., Нью-Йорк.

Шигли, Джозеф Э. и Митчелл, Ларри Д., «Машиностроительный дизайн», 1983, McGraw-Hill Book Company, Нью-Йорк.

t
Номенклатура
a Внутренний радиус трубы
b Наружный радиус трубы
D Наружный диаметр Внутренний диаметр трубы
dr Изменение радиуса трубы
Pi Внутреннее расчетное давление
Po Внешнее давление
r Радиус трубы в любой точке по толщине стенки трубы Номинальная толщина стенки трубы
sh Напряжение в кольце = окружное напряжение = касательное напряжение, точное значение из формулы толстостенной трубы
shm Напряжение в кольце из модифицированной формулы тонкостенной трубы
sho Напряжение пялец из оригинальной тонкой ва формула трубы ll
sho ‘ Напряжение в кольце из исходной формулы тонкостенной трубы без учета внешнего давления
sr Радиальное напряжение

Copyright 1998 Oil & Gas Journal.Все права защищены.

Калькулятор веса трубы – британская и метрическая

Калькулятор веса трубы – британская и метрическая

Щелкните для просмотра данных или таблицы:


Формула веса трубы – эту формулу можно использовать для определения веса на фут для трубы любого размера с любой толщиной стенки.


Формула в английской системе мер:
Вес / фут = 10,69 * (OD – Толщина стенки) * Толщина стенки

* Итоговые значения следует использовать как оценку веса.

* Сумма должна использоваться как оценка веса.


Как рассчитать вес

Вес любой трубы можно рассчитать по следующим формулам. Просто умножьте соответствующую плотность сплава на приведенный ниже расчет требуемой детали.

Имперская система Пример
плотность (фунты / дюйм³) 0.284 фунтов / дюйм³
х
(OD² – (OD – 2xT) ²) (3,0 дюйма ² – (3,0 дюйма – 2×0,022 дюйма) ²)
х
Длина 12 дюймов
х
π / 4
=
вес 0.702 фунта

Метрическая система Пример
плотность (г / см³) 7,85 г / см³
х
(OD² – (OD – 2xT) ²) (50,0 мм² – (50,0 мм – 2×1,0 мм) ²)
х
Длина 1 мес.
х
π / 4000
=
вес 1.209 кг

Узнайте, как рассчитать толщину стенок для 3D-печати

Автор Sculpteo 26 июля, 2017 |

Создавали ли вы когда-нибудь 3D-модель, которую невозможно напечатать на 3D-принтере из-за ее хрупкости? Расчет минимальной толщины стенки – один из самых важных шагов при подготовке 3D-модели для 3D-печати. В этом блоге мы подготовили для вас несколько советов, которые следует учитывать при проектировании вашей детали, а также обзор инструментов 3D-печати Sculpteo, которые помогут вам добиться успеха.

Минимальная толщина стенки – это минимальная толщина, которую ваша модель должна иметь для любого данного материала или технологии. Прежде чем вы решите напечатать свой объект на 3D-принтере, необходимо лучше понимать толщину стенок, потому что 3D-принтеру требуется именно эта толщина для успешной 3D-печати вашего объекта. Когда дело доходит до 3D-печати, проблемы с толщиной стенок часто являются причиной того, что ваша модель не может быть напечатана. Есть четыре важных момента, которые необходимо учитывать, чтобы предотвратить плохой результат при отправке вашей 3D-модели в онлайн-службу 3D-печати или даже на ваш собственный 3D-принтер.

Установите минимальный масштаб вашей модели

Моделирование вашего 3D-файла не обязательно требует, чтобы вы работали с заданными единицами измерения или масштабом. Это особенно верно для таких программ, как Blender, в которых вы можете указать пропорции, но не единицы. Эта работа будет выполнена после этапа моделирования, когда вы отправите свою модель на 3D-принтер. Вот почему вам нужно уделять особое внимание как масштабу, так и размеру вашей 3D-модели на этом этапе. Создание 3D-печати в миллиметрах вместо сантиметров вполне может привести к плохой 3D-печати.

Пример этого можно найти в архитектурных моделях. Фактически, это одна из основных проблем, с которыми мы столкнулись при работе с La Cité de L’Architecture над репродукцией La Merveille. С архитектурными моделями, например, может быть вполне возможно напечатать на 3D-принтере что-то в масштабе 1/10 и просто невозможно сделать то же самое в 1/250. После определенного уровня миниатюризации детали (присутствующие в цифровом 3D-файле) начинают исчезать, когда он превращается в физический объект, потому что 3D-принтер не может их создать (или создаст очень хрупкие).Довольно часто для архитектурных моделей необходимо вмешательство человека, чтобы решить, какие детали будут сохранены, а какие нет, чтобы 3D-файл не содержал информации, которую нельзя распечатать.

3D-печатная модель для архитектурных целей

И снова результат таков, что детали невозможно распечатать или, что еще хуже, они могут сломаться или даже вызвать сбой 3D-принтера.

Проверьте минимальную толщину стенок материала для 3D-печати, который вы выбрали

Каждый материал для 3D-печати (и, следовательно, технология) ведет себя по-разному.Хотя спецификации остаются примерно одинаковыми для каждой технологии 3D-печати, при переключении между разными технологиями вы можете найти очень конкретные рекомендации. Например, если вы решите напечатать свои детали на 3D-принтере из наших пластиковых или алюминиевых материалов, вы можете легко сослаться на ограничения используемой технологии. В случае пластика минимальная толщина стенки составляет 0,8 мм в соответствии с нашими проектными требованиями. Однако, если вы пытаетесь печатать на 3D-принтере с помощью Multicolor, вам необходимо установить минимальную толщину стенки как минимум 2 мм.

Для наших самых прочных металлических материалов для 3D-печати, особенно для металлических материалов, использующих технологию DMLS, таких как титан Ti64 и нержавеющая сталь 316L, минимальная толщина стенки, необходимая для вашей 3D-модели, составляет 2 мм. Более того, для легкого и прочного материала, такого как алюминий AlSi7Mg0,6, он должен быть тоньше как минимум на 0,5 мм.

Создание оптимизированных форм для 3D-печати

Важным фактором для толщины стены, конечно же, является структура и геометрия конструкции.Есть две вещи, в которых 3D-принтеры плохи: выступ и большая плоская поверхность.
Чтобы избежать выступов, некоторые технологии 3D-печати используют опоры, которые удерживают деталь во время печати. Эти опоры можно удалить с помощью химической ванны, в то время как другие (например, SLA или DLP) требуют удаления опор вручную, что, вероятно, оставит некоторые «следы» на 3D-принте. Для порошковой 3D-печати (SLS или Binder Jetting) проблема немного иная, поскольку сам порошок внутри печатного объема работает как опора.Это позволяет машине создавать сложные формы без поддержки. Тем не менее, физика здесь по-прежнему применима, и экстремальные вылеты по-прежнему не могут быть распечатаны или должны быть проверены в первую очередь.

Пример выступа, из-за которого объект не печатается.

Если вы хотите напечатать на 3D-принтере большую поверхность (или, еще лучше, большую плоскую поверхность), вам нужно принять во внимание одну вещь: машина должна иметь возможность физически строить «неподдерживаемые стены» или что плоские поверхности имеют тенденцию оборачиваться. при охлаждении.Это означает, что плоские поверхности 3D-файла с недостаточной толщиной не останутся плоскими после печати.

Пример минимальной толщины пластмассовой стенки для стен с опорой и без опоры

Старайтесь не создавать слишком толстые стены

Слишком толстые стены также могут быть причиной того, что мы не можем напечатать вашу деталь на 3D-принтере. Слишком большая толщина стенки может вызвать слишком большое напряжение, которое может привести к растрескиванию вашего 3D-печатного объекта, а если он будет еще более толстым, ваш объект может сломаться.Вот почему мы всегда рекомендуем вам проверять каждый из рекомендаций по материалам и соблюдать максимальную толщину стенок.

Не забывайте о гравитации!

Даже если вы позаботились обо всех упомянутых выше проблемах, иногда легко упустить из виду очевидные вещи: гравитация существует. Хотя наш оператор будет работать над обнаружением физических аберраций, таких как плавающие детали, нестабильное положение, детали, несущие слишком большой вес по сравнению с их толщиной, всегда легче исправить их в первую очередь.Особое внимание следует уделять геометрии вашей конструкции, а наиболее напряженные части должны быть утолщены.

Это говорит само за себя, правда?

Что можно сделать, чтобы легко бороться с этими ошибками?

В Sculpteo 3D-печать может быть доступной и простой всего за несколько кликов. Во второй части поста познакомьтесь с нашими онлайн-инструментами программного обеспечения для 3D-печати, которые помогут вам проверить и улучшить толщину стенок вашего дизайна прямо в нашем интерфейсе. Таким образом, нет необходимости снова возвращаться к программному обеспечению для 3D-моделирования.

1. Проверьте прочность 3D-печатной детали с помощью Solidity Check

.

Когда вы загружаете свой 3D-файл на наш веб-сайт, вы заметите, что мы отображаем правильный рендеринг вашего 3D-файла. Эта тепловая карта или проверка твердости является частью вкладки обзора и показывает, где ваша модель слишком тонкая. Эта тепловая карта строится в зависимости от материала и окончательного размера ваших объектов. Когда все зеленое, ваша модель готова к работе. Однако, если некоторые детали слишком хрупкие и не соответствуют минимальной толщине, они будут отображаться оранжевым или даже красным.Это означает, что ваш объект хрупкий и его легко сломать. Лучше всего тогда еще раз пересмотреть свою модель.

Проверка твердости – отличный инструмент для проверки прочности вашего объекта, и в то же время очень простой и быстрый в использовании. Это первый шаг, который необходимо сделать перед оформлением заказа. Когда вы меняете размер модели или материал, обновление выполняется автоматически.

Вы можете обратиться к нашей странице обзора на Solidity Check, чтобы узнать больше о том, как работает этот программный инструмент для 3D-печати.

2. Автоматически корректируйте 3D-модель с помощью нашего инструмента утолщения

Инструмент «Утолщение»

работает, автоматически корректируя недостаточную толщину вашей 3D-модели для соблюдения минимальной толщины. Этот программный инструмент для 3D-печати рассчитывает для каждой точки, принадлежащей хрупким деталям, новое положение, чтобы создать сетку с соблюдением минимальной толщины стенок. Наш инструмент для утолщения включен в наш набор инструментов для проверки вместе с проверкой на твердость, видом в разрезе и досье для 3D-печати – окончательное подтверждение.

Перед использованием Утолщение:

После использования Утолщение:

3. Используйте наш инструмент для долбления, чтобы оптимизировать вашу модель

Если вы задаетесь вопросом о наилучшей толщине стенки для сложной модели, которая должна быть полой для снижения веса и стоимости материала, то хорошим решением может быть создание модели в виде заполненного твердого тела, а затем использование нашего автоматического инструмента для создания полых отверстий для выдолбите это. Считается одним из наиболее часто используемых нами программных инструментов для 3D-печати. ​​Вытяжка помогает добавлять отверстия в структуру и создавать пустые детали внутри.У этого есть два преимущества: удаление неиспользованного материала и облегчение вашего объекта. В результате удешевляется 3D-печать

.

Вы можете обратиться к нашему предыдущему сообщению в блоге «Инструменты онлайн-оптимизации для 3D-печати», чтобы узнать больше о том, как использовать эту функцию.

Чтобы создать идеальный объект для 3D-печати, мы рекомендуем вам ознакомиться с рекомендациями по дизайну на нашей специальной странице. Вы можете найти всю необходимую информацию о разной минимальной толщине стенок каждого из наших материалов для 3D-печати.Или просто загрузите свой файл и откройте для себя наши программные инструменты для 3D-печати, которые помогут вам улучшить вашу 3D-модель!

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *