Что такое керамзитобетонные блоки: Страница не найдена – Бетон

Содержание

Про керамзитобетонные блоки | Камнеград

Керамзитобетонный блок — строительный материал, изготовленный из цемента, песка, воды,  и наполнителя – керамзита. (Керамзит – обожжёная глина). 

Многие называют это материал как керамзитный блок, или шлакоблок. 

Шлакоблок — был предшественник керамзитобетону. В нём использовали опасный шлак, была более низкая морозостойкость и прочность. В керамзитобетоне шлака нет, а характеристики на порядок лучше.  

 

Как определить качество керамзитобетонного блока?

Блок хорошего качества должен быть темно-серым, а не бледным с “желтушным” оттенком.

Керамзитобетонные блоки производятся на современном оборудовании методом вибропрессования, что в сочетании с последующим тепловым воздействием позволяет достигнуть высокой прочности. Керамзитные блоки применяют керамзитовый гравий фракции 5-10 мм. Керамзит — это экологически чистый утеплитель. Керамзит в переводе с греческого — обожженная глина.

Керамзитные блоки стеновые — строительный материал для возведения стен, межквартирных и межкомнатных перегородок, применяются для заполнения каркаса при монолитном железобетонном домостроении, при строительстве хозяйственных построек, гаражей и коттеджей для индивидуального заказчика.

Применение керамзитобетонных блоков при возведении зданий и сооружений позволяет существенно усовершенствовать технологию и ускорить строительство.

Керамзитобетонные блоки по своим экологическим свойствам стоят в одном ряду с керамическим кирпичом. Одним из преимуществ материала являются его теплоизоляционные свойства, что делает его предпочтительным при использовании как в теплых, так и холодных климатических условиях.

Керамзитобетонные блоки «дышат», регулируя влажность воздуха в помещении. Строения из керамзитобетонных блоков вечны и не требуют ухода. Материал не гниет, не горит, в отличие от дерева, и не ржавеет, по сравнению с металлом, но обладает положительными свойствами дерева и камня одновременно. Керамзитобетонные блоки из-за особенностей своей структуры обеспечивает значительное улучшение звукоизоляционных свойств возводимых конструкций по сравнению с легкими бетонами. Керамзитобетонные блоки характеризуется более высокой влаго- и химической стойкостью, чем цементный бетон, при воздействии на него таких агрессивных сред, как растворы сульфатов, едких щелочей, углекислоты, мягкой воды и т.д. Отсутствие крупного фракционированного заполнителя приводит к значительному снижению веса возводимых конструкций из керамзитобетонных блоков. При всех равных физико-механических характеристиках (прочность, плотность и пр.) керамзитобетонные блоки по сравнению с блоками из ячеистого бетона обладают улучшенными показателями по теплопроводности и гвоздимости. Изделия из такого бетона используются в качестве несущих конструкций в жилищном, гражданском и промышленном строительстве.

Преимущества использования керамзитобетона:

  • высокая прочность;
  • высокая морозостойкость;
  • высокие показатели тепло- и звукоизоляции;
  • высокие пожаротехнические характеристики;
  • технологичность при строительстве;
  • полная экологическая и радиационная безопасность.

Доставка осуществляется машиной-манипулятором грузоподъемностью 5т, 10т и 15т, позволяющим разгрузить поддоны с блоками в любом удобном для Клиента месте в Нижнем Новгороде и других городах Нижегородской области: Дзержинск, Арзамас, Балахна, Богородск, Бор, Ветлуга, Володарск, Ворсма, Выкса, Горбатов, Городец, Заволжье, Княгинино, Кстово, Кулебаки, Лукоянов, Лысково, Навашино, Павлово, Первомайск, Перевоз, Саров, Семенов, Сергач, Урень, Чкаловск, Шахунья, а также Гороховец, Вязники.  

Полезные советы при кладке керамзитобетонных блоков

  • для  предотвращения  проникновение влаги из подвала на фундамент нужно уложить два слоя рубероида.
  • надземная часть здания должна быть защищенной от влаги, поэтому фундамент следует делать выше над отмостком не менее чем на 500 мм.
  • основание под первый ряд должно быть выравнено по горизонтали, чтобы не увеличивать отклонения в процессе кладки.
  • для высокой прочности необходимо применять растворы плотностью не менее 1600 кг на кубометр.
  • обычному летнему домику, гаражам и хозяйственным постройкам достаточно 190 мм, а вот для зимнего дома уже нужен блок в 390 мм.
  • блоки перед укладкой важно смачивать водой, это даст лучшее сцепление.
  • если используется пустотелый материал, то он кладется пустотами вниз.
  • блок верхнего ряда должен укладываться так, чтобы перекрыть стык между двумя аналогичными в нижнем ряду.
  • начинать кладку нужно с углов и продолжать рядами на всем периметре. Раствор следует наносить сразу на несколько блоков.
  • внутренние несущие стены возводятся одновременно с наружными. Сопрягаются они при помощи перевязки. Следует учесть, чтобы блок внутренней стены входил в наружную стену в каждом втором ряду. А блоки нечетных рядов соединяются с наружной стеной при помощи раствора. 

Вы сможете правильно осуществить кладку керамзитобетонных блоков, и построить домик намного быстрее, удобнее, и дешевле по сравнению с другими материалами.

в Компании Камнеград вы можете купить керамзитобетонные блоки в Нижнем Новгороде собственного производства.  

Стены из керамзитобетонных блоков – кладка, возведение, строительство

Среди видов высококачественного строительного материала для возведения стен особого внимания заслуживают керамзитобетонные блоки – доступный, легкий, прочный, долговечный и поддающийся обработке стройматериал. Возведением зданий различного назначения из керамзитобетонных блоков и занимается компания “Проект”. Мы оказываем профессиональные строительно-монтажные услуги по невысоким ценам жителям Москвы и Подмосковья.

Керамзитобетонные блоки: общие сведения и характеристики

Керамзитобетон относится к классу легких бетонов, хотя если сравнивать вес изделий из него с изделиями из газобетона, полистиролбетона или пенобетона, то он будет в 1,5 – 2,5 раза больше. Вес стандартного изделия 16 -17 кг.

Изготавливают стеновые блоки в соответствии с нормативами ГОСТ исключительно из природных материалов: керамзит, вода, наполнители, песок и цемент. Первый компонент в составе – это пористый материал, получаемый при помощи обжига глинистого сланца или глины.

Производятся керамзитобетонные блоки из цемента марки М 50 – М 500, щебня (гравия) самых различных фракций (от 5 мм до 40мм) по технологии вибропрессования. Смешенные с водой, песком и цементом щебневые шарики «склеиваются» друг с другом, образуя очень прочный, экологически безопасный и достаточно легкий стройматериал. В зависимости от того, какие виды компонентов были использованы при изготовлении керамзитобетонных блоков, проявляются и их физико-технические качества:

  • Плотность – от 350 до 1800 кг/м3.
  • Паропроницаемость (нормальные условия) – от 0,1 до 0,3 мг/мчПа.
  • Морозостойкость – от 25 до 500 (для перегородочных блоков не определяется).
  • Испытанная эксплуатационная влажность материала – от 5 до 7%.
  • Прочность на сжатие – от 0,5 до 15 мПа.
  • Огнестойкость: изделия сохраняют свои качества под воздействием открытого огня до 10 часов.
  • Теплопроводность (расчетная) кладки – от 0,11 до 0,7 Вт/м2.
  • Процент усадки стены керамзитобетонных блоков – 0%.
  • Процент водопоглощения – до 50%.
  • Время остывания стены – от 65 до 90 часов.

Применение керамзитобетонных блоков и их разновидности

Физико-технические качества определяются процентным содержанием керамзита и его фракцией в составе материала. Чем выше процент содержания, тем меньше характеристики теплопроводности и прочности. При этом свойства изделий подразделяют данный вид стройматериала на типы, от которых зависит область применения данного материала. Наши специалисты рекомендуют использовать керамзитобетонные блоки по назначению:

  • Теплоизоляционные. Наименее прочный и механически стойкий вид материала, плотность которого не превышает 700 кг/м
    3
    , а прочность – до 25 мПа. Используются в качестве надежного теплоизоляционного материала, для возведения межкомнатных перегородок.
  • Конструктивные. Наиболее прочный материал, имеющий плотность от 1200 до 1800 кг/м3 при прочности – от 10 до 15 мПа. Эти блоки имеют максимальный коэффициент морозостойкости и используются для возведения несущих стен.
  • Конструктивно-теплоизоляционные. Блоки используются для возведения однослойных стеновых панелей, перегородок, и прочего. Плотность этого материала составляет 800- 1200кг/м3 при прочности – до 10 мПа.

Также различают монолитные и пустотелые блоки. Пустотелые изделия позволяют строить теплые стены конструкций любого назначения, а монолитные применяют для кладки каминов, печей или дымоходов.

Стены из керамзитобетонных блоков: особенности

Для создания оптимально комфортного теплового режима в доме в условиях центрального региона необходимо возводить стены толщиной не менее 0,65 метров с обязательным утеплением. При этом фундамент для кладки стен из керамзитобетонных блоков не должен быть облегченным, как в случае с газобетоном или пенобетоном. Это обеспечит здание долговечность и надежность: его эксплуатационный срок составляет свыше 75 лет (при условии закупки качественных блоков).

Дом со стенами из керамзитобетонных блоков будет обладать:

  • значительными теплотехническими и звукоизоляционными качествами;
  • значительной воздухопроницаемостью. Способность стен сохранять в комнатах оптимальный температурный режим;
  • значительной влагостойкостью, сопротивляемостью агрессивным средам;
  • высокими показателями огнестойкости;
  • экологической безопасностью.

Строительство стен из керамзитобетонных блоков

Возведение стен из керамзитобетонных блоков требует некоторых специальных знаний и нередко принятия конструктивных решений. Эту работу лучше доверить профессионалам. Специалисты нашей компании оказывают доступные профессиональные услуги по строительству сооружений в Москве и Подмосковье.

Начинают кладку стен из керамзитобетонных блоков с углов и продолжают рядами по периметру. Однако прежде чем положить первый ряд, стоит позаботиться о качественной гидроизоляции. Для этого на фундамент укладывается двойной слой рубероида или других изоляционных материалов.

Также стоит помнить, что:

  • использовать обычный молоток каменщика при работе с керамзитобетонными блоками нельзя. Лучше приобрести специальный резиновый молоток;
  • армировать стены необходимо специальной арматурой. Ее укладывают на завершенный ряд по периметру во всю стеновую длину. Кладка следующего ряда осуществляется по арматуре, которую укладывают через каждые 3-5 рядов;
  • кладку каждого ряда из блоков необходимо проверять уровнем, поскольку для этого стройматериала свойственна незначительная конусность;
  • кладку наружных и внутренних стен стоит проводить одновременно, не забывая об арматуре;
  • осуществляя кладку, нельзя забывать о цепной перевязке швов по вертикали;
  • последний ряд завершает армопояс.

При четком соблюдении правил, учете особенностей работы с этим видом стенового материала, возведенная конструкция прослужит долгие годы.

 

Кирпич или керамзитобетонные блоки отдаём предпочтение | Комбинат керамзитобетонных блоков

Керамзитобетонные блоки – высокопористый строительный материал, состоящий из природных материалов: песка, керамзита( обожженной глины) и цемента.

Благодаря своим отличительным свойствам эти керамзитные блоки успешно используются для теплоизоляции строений любой этажности, а также в строительстве несущих и внутренних стен жилых и хозяйственных зданий, составляя в этом отношении ощутимую конкуренцию традиционному кирпичу и железобетонным плитам.

Преимущества и недостатки строительного кирпича

Достоинства кирпича:
  • высокий запас механической прочности, позволяющий использование кирпича в качестве основного материала в высотном и промышленном строительстве с критическими значениями нагрузок;
  • абсолютная пожарная безопасность;
  • экологическая и антисептическая чистота;
  • неуязвимость к атмосферным и негативным химическим воздействиям;
  • длительный срок эксплуатации.
Негативные качества кирпича:
  • относительно высокая цена;
  • недостаточный уровень теплоизоляции;
  • низкое качество звукопоглощения;
  • возможность механического разлома при ударном воздействии.
Плюсы и минусы керамзитобетонных блоков

Преимущества дома из керамзитобетонных блоков.
  • существенно меньший вес того же объема, чем у кирпича. На практике бетонный блок того же размера тяжелее керамзитобетонного почти на 100%, а габариты одного стандартного такого блока соответствуют кладке более 20 кирпичей;
  • благодаря вышеназванным свойствам рассматриваемые блоки отличаются сравнительно меньшими затратами на транспортировку, а их монтаж – меньшей трудоемкостью;
  • коэффициент теплоизоляции блоков на 300% выше, чем у стандартного кирпича и на 600% больше, чем у бетона. Стандартный керамзитобетонный блок толщиной 39 см удерживает тепло так же, как и 60 см кирпичной кладки;
  • улучшенные в 10 раз по сравнению с кирпичом показатели шумоподавления, то есть почти оптимальная в городских условиях звукоизоляция;
  • не меньшая, чем у кирпича, экологическая безопасность;
  • высокая огнестойкость и отсутствие опасности горения;
  • хорошая (почти как у деревянных построек) воздухопроницаемость и обеспечение оптимального микроклимата в помещении;
  • легкость механической обработки материала и придания блоку любой формы.
  • более низкая стоимость, чем у стандартного кирпича и обычных бетонных блоков, вследствие особенностей производства на вибростанках

Таким образом, при возведении строений до 3-х этажей анализируемые блоки будут оптимальным вариантом для наружных стен зданий преимущественно на территориях с небольшим количеством ежегодных осадков; на любых территориях и для любых строений этот материал оптимален для внутренней теплоизоляции наружных и возведения внутренних стен.

Наконец, еще один весьма существенный, а нередко и приоритетный плюс использования блоков – возможность и сравнительная простота самостоятельного строительства зданий и сооружений.

Особенности самостоятельного монтажа керамзитобетонного блока и кирпича

Несмотря на легкий вес блоков по сравнению с традиционным строительным материалом, фундамент для строения должен быть капитальным и надежным, преимуществоенно ленточный фундамент. Поэтому, как и при возведении зданий из кирпича, фундамент может быть монолитным железобетонным, а также ленточным или столбчатым на соответствующих основаниях.

Керамзитобетонные блоки кладутся на традиционную цементно-песчаную смесь. Важно, чтобы каждый следующий блок был проверен на плотность прилегания по сухой поверхности: выявленные неровности можно тут же удалить обычной ножовкой с накладками из легированного металла.

В остальном возведение строения осуществляется по обычным технологиям с применением традиционного строительного измерительного инструмента.

Что такое керамзитобетон?

Что такое керамзитобетон?
Основные виды керамзитобетонных блоков и их главные особенности.
Керамзитобетонные блоки – достоинства.
Керамзитобетонные блоки – преимущества.

 

Что такое керамзитобетон?

Что такое керамзитобетон? Это качественный строительный материал, который содержит в своем составе кроме цемента керамзит. Получают его способом смешивания в воде песка, цемента, а также наполнителя. В качестве наполнителя здесь выступает керамзит. Итак, керамзитобетон относят к категории прочных и легких бетонов. Потому как наполнителем в данном материале является керамзит, а вот в качестве надежного вяжущего средства используется успешно цемент. Но иногда для таких целей применяют и качественный строительный гипс. Также в составе керамзитобетона имеется некоторое количество песка. По своей плотности его можно разделить на тяжелый, а также беспесчаный. Кроме того, по назначению керамзитобетон бывает конструкционно-теплоизоляционным, конструкционным, а также просто теплоизоляционным. Каждый из перечисленных видов применяется в своих целях, а также имеет свои отличительные признаки. Все керамзитобетонные блоки отличаются надежностью, качеством, современностью, легкостью и экологичностью, а также вполне бюджетной стоимостью.

Основные виды керамзитобетонных блоков и их главные особенности.

Основные виды керамзитобетонных блоков и их главные особенности. Итак, сейчас мы поговорим о том, какие бывают керамзитобетонные блоки и чем они отличаются друг от друга. Большой популярностью пользуются пескобетонные блоки. Они достаточно прочные, а также отличаются хорошими эксплуатационными характеристиками. Например, стеновые блоки из керамзитобетона применяются для качественного устройства всех наружных несущих конструкций, также перегородок нежилых и жилых помещений. Применяются они и для возведения различных сооружений с влажностью не больше 78 процентов. Кроме того, такие блоки применяются и в архитектурных элементах, а также малых формах. Этот тип блоков относится к группе негорючих. Само же производство таких изделий осуществляется современным метолом вибропрессования. Внедрение самых новых технологий позволяет обеспечивать автоматизацию самого процесса изготовления. Именно благодаря этому достигается превосходная точность всех геометрических параметров и размеров, что позволяет расходовать смесь во время проведения работ самым оптимальным образом.

Керамзитобетонные блоки – достоинства.

Качественные перегородочные блоки из керамзитобетона отличаются рядом достоинств. Это:

  • легкость;
  • невысокая тепловая проводность;
  • также современность;
  • надежность;
  • экологичность;
  • устойчивость к разным перепадам температур;
  • простота укладки;
  • прочность;
  • бюджетная стоимость.

Керамзитобетонные блоки – преимущества.

Благодаря наличию всех перечисленных преимуществ, такая продукция становится все более востребованной среди покупателей самого широкого круга. А как насчет такой проверенной продукции, как фундаментные блоки из керамзитобетона? Ведь такие блоки представляют собой часть фундамента и также передают все нагрузки на искусственное или де естественное основание. Выбор желаемого фундаментного блока определяется непосредственно величиной нагрузки, а также назначением здания. Применение керамзитобетона в таких конструкциях позволяет заметно снизить стоимость и массу такой продукции. Как правило, все фундаментные блоки из данного материала отличаются хорошими показателями прочности, надежности, экологичности и качества. Кроме того, это и более высокая химическая стойкость. Отсутствие так называемого фракционированного заполнителя приводит к существенному сокращению веса всех конструкций. По своим экологическим показателям керамзитобетон находится в одном ряду с кирпичом, а вот по другим параметрам он превосходит его. Эти блоки также обладает превосходными теплоизоляционными показателями. Это позволяет применять их в любых климатических зонах. Строения из них прочные и устойчивые. В общем, если у Вас есть желание купить лучший и, главное, бюджетный строительный материал, тогда можете смело остановить свой выбор на таких товарах. Удачи всем.

Что такое керамзитобетонные блоки?

Керамзит – легкий и эффективный минеральный утеплитель, который производится посредством высокотемпературной обработки специальной глины.
Гранулы сырья, в несколько раз увеличиваются в объеме и затвердевают, приобретая, таким образом, прочность, низкую теплопроводность, небольшой вес, влагостойкость и другие свойства, предъявляемые к наполнителям легких бетонов.

Материал востребован для производства керамзитобетонных блоков, обладающих доступной стоимостью, и свойствами, определяющих пригодность блоков для бюджетного, малоэтажного строительства. Замена монолитного бетона керамзитовыми блоками, характеризуется высокой экономичностью монтажа и последующей эксплуатации дома.

  • Прежде всего, это меньший вес строения, позволяющего снизить требования к сложности и материалоемкости фундаментного основания.
  •  Керамзитобетонные дома в умеренном климате практически не нуждаются в дополнительной теплоизоляции.
  • При эксплуатации дома в северном регионе, для поддержания комфортного микроклимата в доме, потребуется утепление, выполненное с оптимальными расходами времени и средств.

Объем блоков обеспечивает производительный, 4-5 раз, монтаж, доступный для переноски вес, предоставляет возможность доставки расходного материала на рабочее место вручную, таким образом, применение дорогой аренды подъемной техники становится необязательным.

К сожалению, клеевая кладка для материала невозможна, тем не менее, в отличие от кирпичных технологий, керамзитобетон экономней расходуют кладочный раствор.

Качественный керамзитобетон обладает достаточно эффективным природным паро-газообменом, поэтому комфортность микроклимата в доме достаточная. По уровню теплосохранения, шумопоглощению, стойкости к внешним воздействиям и эксплуатационному ресурсу, материал не уступает многим видам легких бетонов, с минеральными и полимерными наполнителями.

Керамзитобетонные блоки это выгодно

Имеются все основания, для перевода керамзитобетонных блоков в категорию экономически выгодных строительных материалов. По сравнению с кирпичными технологиями, стоимость керамзитобетонного дома в среднем на 40% меньше. Этот показатель можно увеличить за счет оптимальных расходов на теплоизоляцию, экономичное расходование энергоносителей, используемых для обогрева и кондиционирования дома.

Все компоненты блоков экологически безупречны. Даже при продолжительных высокотемпературных воздействиях, материал не загрязняет окружающую среду токсическими соединениями.
Производственные технологии керамзитобетонных блоков, модернизированы за счет улучшения структуры материала виброобработкой и последующим высокотемпературным пропариванием в автоклавном оборудовании.

Однородность структуры и повышение качественных характеристик керамзитобетона – следствие применения мелкофракционного наполнителя. Действующий ассортимент предлагает широкий выбор пустотелых и монолитных изделий нескольких типоразмеров, что положительно сказывается на производительности монтажа сложных участков, способствует уменьшению объема неделовых отходов.
  • Газобетонные блоки полнотелые востребованы для возведения нагруженных ограждающих стен, закладки фундаментов для легких, каркас панельных домов дачного типа.
  • Пустотелые изделия обладают эффективной тепло – звукоизоляцией, поэтому на проблемных участках, оправдано применение обоих видов.
При этом прочностные параметры более дешевых, облегченных изделий, практически не уступают свойствам полнотелых пеноблоков. Более того, внутренние полости могут успешно использоваться для размещения элементов силового каркаса, кабельных и трубопроводных коммуникаций, долговечной, минеральной или стекловолоконной теплоизоляции.


Кладка стен из керамзитобетонных блоков: пошаговая инструкция

Керамзитобетонные блоки – материал относительно новый, но уже успевший завоевать у строителей некоторую популярность. Его преимуществами являются небольшой вес, неплохие теплоизоляционные качества и простота в укладке.

Проектирование

Перед началом сборки стен из стандартных керамзитобетонных блоков, разумеется, нужно разработать чертежи здания и подсчитать количество необходимого материала. Размер блока этого типа – 40*20*20см. Зная общую площадь стен, подсчитать нужное их количество будет несложно. Толщина горизонтального и вертикального швов должна составлять 10мм или – поскольку керамзитные блоки зачастую имеют невыдержанные размеры – даже чуть больше.

Помимо блоков нужно приобрести:

Материал Параметры Для чего нужен
Клей Цементный Фиксация блоков в рядах/td>
Арматурная сетка   Армирование кладки
Бетонный раствор М300-350 Заливка армопояса

 

Основные правила кладки керамзитобетона

Производится кладка стен из керамзитобетонных блоков примерно так же, как и из кирпича. При выполнении этой процедуры следует соблюдать такие правила:

  • Выстоявшийся фундамент выравнивается тонким слоем бетонной стяжки и изолируется от влаги.
  • Кладка начинается от углов.
  • Для распилки блоков используется болгарка.
  • Положения каждого блока проверяется коротким уровнем во всех направлениях.
  • Армируется кладка через четыре ряда сеткой. Вместо нее допускается взять металлический прут 10мм или стеклопластиковый. Последний вариант более предпочтителен, так как такая арматура снижает уровень теплопотерь в стенах.
  • Перевязка швов при методе «в полблока» производится со смещением наполовину. При способе «в блок» – на 10см.
  • Кладка внешних, внутренних стен и перегородок ведется одновременно.
  • После окончания кладки устраивается армопояс в 20см.

Важно: Керамзитобетонные блоки отличаются небольшой конусностью. Следовательно проверять ровность кладки нужно тщательно.

Возведение стен из керамзитобетона

Paste a VALID AdSense code in Ads Elite Plugin options before activating it.

class=”eliad”>

Кладка своими руками должна вестись по шнуру-причалке. Связываются ряды из керамзитобетонных блоков цементным клеем. Разводится он согласно инструкции. Обычно его наносят, захватывая примерно полтора блока. При этом как обычно пользуются кельмой. Промазывать клеем нужно и вертикальную поверхность предыдущего блока. Следующий блок устанавливают на расстоянии 5см и подвигают, захватывая раствор. После монтажа элемент кладки проверяют на ровность и снимают излишки клея кельмой. Для выравнивания блоки простукивают резиновой киянкой. Обычный молоток использовать нельзя. Блоки внутри пустотелые. Немного не рассчитав удар, блок можно просто напросто разбить.

Расшивку или не производят или выполняют методом «вогнутый шов» после укладки максимум двух блоков. При таком способе штукатурка в последующим к стенам будет приставать лучше.

Совет: Вместо клея допускается использование обычного цементного раствора. Пропорции его такие: 1ч цемента на 1ч речного песка и на 2ч карьерного. Некоторые профессиональные строители считают этот метод крепления более предпочтительным.

Заканчивается кладка стен здания из керамзитобетонных блоков устройством армопояса. Сделать его своими руками проще всего из бетона. Для этого по краям стен крепят опалубку из досок. Внутрь устанавливают каркас из прута 10-12мм. При выполнении заливки смесь время от времени протыкают колом для удаления пузырей. Вместо бетонного можно выложить кирпичный армопояс. Материал для его кладки используется только полнотелый. Армопояс не позволит не слишком прочным керамзитобетонным стенам деформироваться или растрескаться под тяжестью кровли. При его заливке или укладке следует оставить место для утепления пенополистиролом. Теплопроводность бетона и кирпича намного выше теплопроводности керамзитобетона.

О чем еще нужно знать?

Несмотря на то, что керамзитобетон – материал, довольно-таки плохо проводящий тепло, минеральную вату или пенополистирол для дополнительной изоляции стен использовать стоит. Вентилируемый фасад в данном случае устраивается в обычном порядке. Иногда кладка стен домов из керамзитобетонных блоков ведется своими руками параллельно в полблока. Между получившимися стенами в процессе возведения укладывается утеплитель. В этом случае используются армирующие П-образные перемычки.

Видео:

Paste a VALID AdSense code in Ads Elite Plugin options before activating it.

class=”eliad”>

отзывы, плюсы и минусы, размеры, цена

Керамзитобетонные плиты и блоки являются достойной альтернативой бетониту. Они обладают такой же прочностью и морозостойкостью, как кирпич. По крупным размерам, малому весу и низкой теплопроводности имеет сходство с пористыми материалами из пено- и газобетона.

Оглавление:

  1. Разновидности и описание
  2. Технические параметры керамзитобетона
  3. Маркировка изделий
  4. Отзывы владельцев домов и специалистов
  5. Преимущества и недостатки
  6. Расценки

Виды блоков

Классификация строительного материала производится по нескольким признакам:

  • масса и размер;
  • качественный уровень поверхностей боковых граней;
  • наличие пустот.

Стандартами предусмотрены такие размеры:

  • 188×190×390 мм – стеновые элементы;
  • 188×90×390 мм – перегородочные блоки.

Эти габариты считаются идеальными для быстрого строительства. Скорость возведения сооружений из керамзитобетона в 4-5 раз выше, чем из кирпича. Для кладки требуется в 2-2,2 раза меньше раствора. Это снижает вес 1 м2 стены в 1,5 раза. Масса стеновых блоков составляет 14-26 кг. Перегородочные элементы весят от 8 до 23 кг.

По качеству поверхностей боковых граней делятся на 2 группы:

  • Рядовые – применяются для кладки стен, с последующим наружным оформлением.
  • Лицевые – строительные керамзитоблоки с одной декоративной поверхностью.

По наличию и расположению пустот различают 2 вида керамзитобетонных камней:

1. Полнотелые – прочные элементы со структурой повышенной плотности.

2. Пустотелые (щелевые) – блоки со сквозными отверстиями или герметичными пустотами. Обладают низкой теплопроводностью, поэтому могут использоваться в условиях холодного климата. Пустоты уменьшают вес изделий и улучшают звукоизоляцию стен. Расходуется меньше сырья, соответственно, снижается их цена. Из-за слабой прочности пустотелые элементы применяются преимущественно в малоэтажном строительстве, например, для частного керамзитобетонного дома, дачи или бани.

Технические характеристики керамзитобетонных блоков

1. Плотность и прочность.

Это главные качества изделий, влияющие на энергосбережение, звукоизоляцию и надежность несущих стен дома. Плотность находится в диапазоне 500-1800 кг/м3, она зависит от размеров наполнителя.

Для достижения оптимального соотношения теплопроводности и прочности при производстве керамзитоблоков используют керамзит разной фракции и свежий марочный цемент. Показатели прочности находятся в пределах 35-250 кг/см2. Срок эксплуатации керамзитобетонных элементов достигает 55-60 лет.

2. Паропроницаемость.

Хорошая пропускная способность материала препятствует образованию конденсата. Керамзитоблок является идеальной основой для строительства бани, сауны, бассейна или зимнего сада.

3. Термоустойчивость.

Совокупность качественных показателей обусловливает хорошую сопротивляемость горению. Керамзитобетонные кладочные блоки активно используют в индустриальном и частном строительстве любой категории сложности.

4. Морозостойкость.

До 50 циклов последовательной заморозки и оттаивания.

5. Энергосбережение.

Чем больше размеры наполнителя в формовочной массе, тем выше теплосберегающие характеристики. Блоки обладают способностью постепенно накапливать солнечную энергию, а затем равномерно отдавать тепло в окружающее пространство. Благодаря этому в доме зимой не холодно, а в летнюю жару комфортно.

Маркировка

Основные технические параметры можно выяснить из клейма на боковой поверхности. Первая литера «К» означает, что это искусственный камень. 2 и 3 буквы содержат информацию о назначении и области применения:

  • С – стеновой;
  • П – перегородочный;
  • Л – лицевой;
  • Р – рядовой (с наружной отделкой).

Следующие 2 буквы уточняют место расположения блока в кладке:

  • УГ – угловой;
  • ПР – порядовочный;
  • ПЗ – перевязка швов;
  • ПС – пустотелый.

Затем стоит число 39 – длина в см. После указаны марки прочности, морозостойкости, плотности.

Отзывы о материале

«Керамзитоблок – отличный вариант для частного строительства. Мне не раз приходилось возводить из него загородные дома, гаражи, бани. Размеры крупные, поэтому кладка делается быстро, вертикальные поверхности получаются ровными и гладкими. В этом главный плюс материала. Керамзитобетонные стены хорошо сохраняют тепло, но их лучше дополнительно утеплить, например, экструдированным пенополистиролом. Сверху можно облицевать кирпичом или штукатуркой. Из минусов отмечу повышенную ломкость, из-за чего приходится покупать блоки с большим запасом».

Александр, Москва.

«Мой многолетний опыт подтверждает, что хрупкость керамзитобетона действительно намного выше шлакоблоков. Но при строительстве домов в 2 и даже 3 этажа этот недостаток не создает больших проблем. Запаса прочности на такие невысокие сооружения вполне достаточно. Характеристики морозостойкости и звукоизоляции соответствуют нормативам СНиП для наружных стен. Для фундамента керамзитобетон никогда не используется».

Евгений, Московская область.

Отзывы владельцев домов

«В прошлом году выстроил на дачном участке баню из керамзитобетона. Долго не решался купить этот материал, смущали отзывы про появление трещин от холода или забитых дюбелей. Однако положительные характеристики и выгодные цены подтолкнули меня к решительным действиям. Баню вместе с помощником сложил за 2 дня. Изнутри облицевал стены керамической плиткой, снаружи отделал сэндвич панелями. Парилка отлично держит тепло даже в сильный мороз».

Владислав, Нижний Новгород.

«Мне пришлось много думать, из чего сложить загородный дом. Сначала почитал разные отзывы, изучил технические и эксплуатационные характеристики всех современных стройматериалов, потом делал расчеты их количества и стоимости. В итоге, взвесив все плюсы и минусы, сделал выбор в пользу керамзитобетона. Теперь после пяти лет проживания могу сказать, что нисколько об этом не жалею. Наружные стены строил из широких блоков с 4 пустотами, для простенков использовал узкие с двумя отверстиями. Перекрытие из деревянных балок. К достоинствам отношу прочность, хорошее шумопоглощение, выгодную цену. Из недостатков отмечу необходимость дополнительного утепления. Через 2 года после стройки отделал фасад облицовочным кирпичом, в доме стало намного теплее и комфортнее».

Алексей, Самара.

Добавить отзыв

Плюсы и минусы

Достоинства:

  • экологическая безопасность;
  • долговечность;
  • прочность;
  • малый вес конструкций;
  • низкая теплопроводность;
  • отличная звукоизоляция;
  • экономичность кладочных работ;
  • огнестойкость и отсутствие токсичных продуктов горения при термораспаде;
  • адаптированность к любым климатическим условиям;
  • сочетаемость со всеми видами облицовочной отделки: плиткой, декоративной штукатуркой.

Низкая плотность керамзитоблоков позволяет использовать их для сооружений с неукрепленным фундаментом. К плюсам материала относится поддержание оптимального уровня влажности в помещении. Эта характеристика имеет большое значение при строительстве жилого дома, бани, бассейна. Стены хорошо «дышат», поэтому не оставляют никаких шансов для грибка и плесени. Еще одним плюсом является низкая стоимость строений. Многообразие размеров, форм и фактур блоков предоставляет застройщикам неограниченный простор для творчества.

К минусам относится плохая переносимость механических и ударных нагрузок. Абразивная поверхность создает сложности при распиливании или разрезании. Края получаются неровными с множеством трещин.

Стоимость керамзитоблоков

Некоторые застройщики испытывают затруднения, когда собираются купить материал для строительства. Производители указывают разную стоимость за единицу и кубометр стеновых блоков. Чтобы разобраться с ценой, нужно усвоить алгоритм перевода: в 1 м3 содержится 72 элемента размером 188×190×390 мм. Измерение перегородочных пустотелых блоков производят в квадратных метрах. Перевод для них выглядит так: 1 м2 = 13 шт.

Вид керамзитобетонного блокаРазмер, ммЦена, руб/штЦена
Пустотелый стеновой188×190×39040-542900-3800 руб/м3
Полнотелый стеновой188×190×39052-653700-4600 руб/м3
Пустотелый перегородочный188×90×39032-34416-450 руб/м2

Общее описание | EXCA

Легкий керамзитовый заполнитель может использоваться в качестве основного материала при проектировании смесей строительных блоков и панелей с низкой плотностью, в процессе производства элементов может использоваться керамзит с просеиванием от 20 до 0 мм. На рынке нет альтернативного материала, который обеспечивает структурную целостность и имеет плотность около 350 кг / м³, что помогает создать очень устойчивый легкий гибкий строительный материал. Стены из керамзитовых блоков и панелей обеспечивают легкие и прочные строительные решения, которые подходят для нанесения штукатурки, возведения стен для вечеринок, акустических перегородок, подвалов и внутренних блоков листовых наружных стен, предлагая очень простые присущие технические преимущества, такие как:

• Легкий
• Огнестойкий
• Тепловая масса
• Тепловой комфорт
• Звукоизоляция и звукопоглощение

Производственные стандарты на материал включают:

• EN 771 Спецификация каменной кладки «Спецификация каменных блоков – Часть 3: Каменные блоки из заполненного бетона (плотные и легкие заполнители)»

• EN 1520 Спецификация для панелей «Сборные железобетонные элементы из легкого бетона с открытой структурой со структурным или неструктурным армированием»

• EN 14992 Спецификация на сборные железобетонные изделия «Сборные железобетонные изделия – элементы стен»

• EN 13055-1 Спецификация для керамзитовых заполнителей «Легкие заполнители. Легкие заполнители для бетона, раствора и раствора »

.

Гибкость и долговечность стеновых элементов из керамзита делает этот продукт широко используемым на рынке в огромных объемах. Одна из стран-членов ЕС поставляет до 90% всех жилых домов из строительных блоков в качестве основного структурного элемента, он работает, испытан и испытан, и он построен на долгий срок.

Основной формат продукта, поставляемого на рынок, зависит от местных географических условий

• Панели
• Сплошные блоки
• Пустотные блоки
• Сэндвич-блоки

Некоторые из основных преимуществ использования стеновых элементов из керамзита – это баланс между получением продукта с низкой плотностью и высокой прочностью, легким весом и, в большинстве случаев, совместимым со здоровьем и безопасностью, высоким термическим сопротивлением и естественным преимуществом «Инерция» или тепловая масса для комфорта человека и комфортного охлаждения.

Общая механика готового продукта позволяет использовать их в качестве несущих и ненесущих элементов зданий, подходящих для:

• Партийные стены
• Внутренние стены
• Внешние стены
• Подвальные стены
• Акустические перегородки

Обладая указанными техническими преимуществами, продукт является огнестойким и негорючим без необходимости какой-либо вторичной обработки.

Влияние облицовочного материала на паропроницаемость легкого пенобетона (LECA)

[1] Каприелов, С.С., Батраков В.Г., Шейнфельд А.В. Модифицированные бетоны нового поколения: реальность и перспективы (1999) Бетон и железобетон, 6 (501), с.6-10. (рус).

[2] Ин Бо Цзян, Сяо Жун Ван. Исследование термических и структурных характеристик сланцевого керамзитобетона (2010) Advanced Materials Research, 168-170, pp.885-888.

DOI: 10.4028 / www.scientific.net / amr.168-170.885

[3] Нкансаха, М.А., Альфред, А., Бартб, Т., Фрэнсисб, Г.В. Использование легкого керамзитового заполнителя (LECA) в качестве сорбента для удаления ПАУ из воды (2012) Journal of Hazardous Materials, 217–218, pp.360-365.

DOI: 10. 1016 / j.jhazmat.2012.03.038

[4] Ардакани, А., Яздани, М. Связь между плотностью частиц и статическими модулями упругости легких керамзитовых заполнителей (2014) Applied Clay Science, 6 (25), стр.28-34.

DOI: 10.1016 / j.clay.2014.02.017

[5] Губертова, М. , Хела, Р. Долговечность легкого пенобетонного заполнителя (2013 г.) Procedure Engineering, 65, стр. 2–6.

DOI: 10.1016 / j.proeng.2013.09.002

[6] Бахаре, Д., Корякинс, А., Казжонов, Дж., Розенстрауха, И. Пористая структура легкого глиняного заполнителя, объединенного с неметаллическими продуктами, поступающими из промышленности по переработке алюминиевого лома (2012).

DOI: 10. 1016 / j.jeurceramsoc.2011.07.039

[7] Дюкман, В., Миртич, Б. Паропроницаемость легкого бетона, приготовленного с использованием различных типов легких заполнителей (2014), Строительные и строительные материалы, 68, стр. 314-319.

DOI: 10.1016 / j.conbuildmat.2014.06.083

[8] Мортазави, М. , Маджлесси, М. Оценка влияния микрокремнезема на прочность на сжатие конструкционного легкого бетона, содержащего LECA в качестве легкого заполнителя (2012) Advanced Materials Research, 626, pp.344-349.

DOI: 10.4028 / www.scientific.net / amr.626.344

[9] Хаго, А.W., Al-Nuaimi, A.S., Al-Saidy, A.H. Бетонные блоки для теплоизоляции в жарком климате (2005) Исследование цемента и бетона, 35, стр. 1472-1479.

DOI: 10. 1016 / j.cemconres.2004.08.018

[10] Ватин, Н.И., Горшков А.С., Немова Д.В., Гамаюнова О.С., Тарасова Д.С. Влажность однородной стены из газобетонных блоков с финишными штукатурными составами (2014) Прикладная механика и материалы, 670-671, с. 349-354.

DOI: 10.4028 / www.scientific.net / amm.670-671.349

[11] Граубнер, C-A. , Похи, С. Связанное с устойчивостью качество кирпичной кладки из легкого бетона (2014) Concrete Plant and Precast Technology, 80, pp.122-124.

[12] СП 23-101-2004 (Свод правил).Проектирование тепловой защиты зданий. (рус).

[13] Вавилин, В. Ф., Коротаев С.А., Кузнецов Н.М. Строительная физика: Третье издание (2002) Издательство Мордовского университета: Третье издание, 58 с. (рус).

[14] [Процессы теплообмена и тепловая изоляция] [веб-источник] URL: http: / www.стартовая база. ru / knowledge / article / 136 / (дата обращения: 20.09.2014). (рус).

[15] Николаев, С. В., Беляев В.С., Зырянов В.С., Шалыгина Е.Ю., Штейман Б.И. Нормы на проектирование и строительство теплоэффективных наружных стен жилых и общественных зданий из облегченных керамзитобетонных блоков: Издание первое (2000).

[16] Кнатько, М.В., Ефименко М.Н., Горшков А.С. К вопросу о долговечности и энергоэффективности современных ограждающих стеновых конструкций жилых, административных и производственных зданий.

[17] Баженов, Ю. М. Технология бетона: Издание первое (2002) Издательство АСВ: Издание первое, 455 с. (рус).

[18] Бескоровая, О.Н., Бычков Д.С., Гаевская З.А. [Быстромонтируемые здания из легкого наномодифицированного бетона] (2014).

[19] Солощенко, С. С. Влажный режим конструкции вентилируемого штукатурного фасада (2010) Инженерно-строительный журнал, 8, с.10-15. (рус).

[20] Горшков, А.С., Ватин Н.И., Глумов А.В. Влияние физико-технических и геометрических характеристик штукатурных покрытий на влажный режим однородных стен из газобетонных блоков. 2011. Влияние влажности бетонных блоков однородных стен.

[21] ГОСТ 25898-83 (Российский библиографический стандарт). Материалы и изделия строительные. Методы определения сопротивления паропрониканию. [Строительные материалы и изделия. Методы определения сопротивления пропусканию водяного пара. (рус).

[22] Клесс, П.А., Эльсаяд, Х. И., Ганджян, Э. Измерения проницаемости для водяного пара и жидкости в цементных образцах (2009), Успехи в исследованиях цемента, 2 (21), стр.83-89.

DOI: 10.1680 / adcr.8.00046

[23] Научно-позновательный интернет-журнал «Все про воду», Что такое «Точка роза» и для чего она нужна? для,] [веб-источник] URL: http: / pro8odu. ru / виды-воды / роза / точка-розы-определение. html (дата обращения: 25.09.2014). (рус).

[24] Джради, М., Риффат, С. Экспериментальное и численное исследование системы охлаждения точки росы для теплового комфорта в зданиях (2014) Applied Energy, 132, стр. 524-535.

DOI: 10.1016 / j.apenergy.2014.07.040

[25] Питер А. Клесс. Измерения проницаемости для водяного пара и жидкости в бетоне (2014) Транспортные свойства бетона, 25, стр. 234-235.

DOI: 10.1533 / 9781782423195.107

[26] СНиП 23-02-2003 (СНиП).Тепловая защита зданий. (рус).

Влияние летучей золы, золы и легкого керамзитобетона на бетон

Разработка новых методов упрочнения бетона ведется десятилетиями. Развивающиеся страны, такие как Индия, используют обширные армированные строительные материалы, такие как летучая зола, зольный остаток и другие ингредиенты при строительстве RCC.В строительной отрасли большое внимание уделяется использованию летучей золы и зольного остатка в качестве заменителя цемента и мелкого заполнителя. Кроме того, для облегчения веса бетона был введен легкий керамзит вместо крупного заполнителя. В данной статье представлены результаты работ, проведенных в режиме реального времени для формирования легкого бетона из летучей золы, зольного остатка и легкого керамзитового заполнителя в качестве минеральных добавок. Экспериментальные исследования бетонной смеси М 20 проводят путем замены цемента летучей золой, мелкого заполнителя шлаком и крупного заполнителя легким керамзитом из расчета 5%, 10%, 15%, 20%, 25 %, 30% и 35% в каждой смеси, их прочность на сжатие и прочность на разрыв бетона обсуждались в течение 7, 28 и 56 дней, а прочность на изгиб обсуждалась в течение 7, 28 и 56 дней в зависимости от оптимальной дозировки. замены прочности на сжатие и прочности бетона на разрыв.

1. Введение

Бетон с высокими эксплуатационными характеристиками указывает на исключительную форму бетона, наделенную удивительной производительностью и прочностью, которые не требуют периодической оценки на регулярной основе с использованием традиционных материалов и стандартных методов смешивания, укладки и отверждения [1] . Обычный портландцемент (OPC) занял незавидную и непобедимую позицию в качестве важного материала при производстве бетона и тщательно выполняет свои задуманные обязательства в качестве необычного связующего для соединения всех собранных материалов.Для достижения этой цели остро необходимо сжигание гигантской меры топлива и гниение известняка [2]. Некоторые марки обычного портландцемента (OPC) доступны по индивидуальному заказу, чтобы соответствовать классификации конкретного национального кода. В этом отношении Бюро индийских стандартов (BIS) прекрасно справляется с задачей классификации трех отдельных классов OPC, например, 33, 43 и 53, которые всегда широко использовались в строительной отрасли [3]. Прочность, прочность и различные характеристики бетона зависят от свойств его ингредиентов, пропорции смеси, стратегии уплотнения и различных мер контроля при укладке, уплотнении и отверждении [4].Бетон, содержащий отходы, может способствовать управляемому качеству строительства и способствовать развитию области гражданского строительства за счет использования промышленных отходов, минимизации использования природных ресурсов и производства более эффективных материалов [5]. В портландцементном бетоне используется летучая зола, когда потери при возгорании (LOI) находятся в пределах 6%. Летучая зола содержит кристаллические и аморфные компоненты вместе с несгоревшим углеродом. Он охватывает различные размеры несгоревшего углерода, который может достигать 17% [6].Летучая зола часто упоминается как прудовая зола, и в течение длительного времени вода может стекать. Обе методики позволяют сбрасывать летучую золу на свалки в открытом грунте. Химический состав летучей золы продолжает меняться в зависимости от типа угля, используемого для сжигания, условий горения и производительности откачки устройства контроля загрязнения воздуха [7]. Для воздействия летучей золы и замены всего вытоптанного песчаника на бетонные и мраморные разбрасыватели использовались сборные бетонные блокирующие квадраты [8].Принимая во внимание мощность бетонных зданий, современная бетонная методология устанавливает экстраординарные меры по снижению температуры на вершине и перепадам температур путем использования материалов с минимальным уровнем выделения тепла, чтобы избежать или снова уменьшить тепловое расщепление, что приведет к предотвращению разложение бетона [9]. Производство бетона осуществляется при чрезвычайно высоких и незаметно низких температурах бетона, чтобы понять удобоукладываемость и качество сжатия [10].Статистическая модель и кинетические свойства при изгибе, разрушающем растяжении, а также модуль гибкости по устойчивости к сжатию проистекают из необоснованного коэффициента корреляции [11]. Известно, что бетон, созданный из мельчайших общих и превосходных пустот, обогащен блестящими знаниями по исключению материалов [12]. В Индии энергетическое подразделение, сосредоточенное на угольных тепловых электростанциях, производит колоссальное количество летучей золы, оцениваемое примерно в 11 крор тонн в год. Расход летучей золы оценивается примерно в 30% для обеспечения различных инженерных свойств [13]. При зажигании угля для выработки энергии в котле выделяется около 80% несгоревшего материала или золы, которая уносится с дымовыми газами и улавливается и утилизируется в виде летучей золы. Остаточные 20% золы помогают высушить базовую золу [14]. В момент сжигания пылевидного угля в котле с сухим днищем от 80 до 90% несгоревшего материала или золы уносится с дымовыми газами, улавливается и восстанавливается в виде летучей золы.Остаточные 10–20% золы предназначены для сушки шлаков, песка, материала, который собирается в заполненных водой контейнерах у основания печи [15]. Зольный шлак в бетоне создается методом фракционного, почти агрегатного и полного замещения в бетоне мелких заполнителей [16]. С другой стороны, из легкого бетона неудобно относить корпус к уникальной категории материалов. Однако у LWC (легкого бетона) четкие края, и падение общих расходов, вызванное более низкими статическими нагрузками, постоянно перекрывается повышенными производственными затратами [17]. Фактически, легкий бетон стал приятным фаворитом по сравнению со стандартным бетоном с точки зрения множества непревзойденных свойств. Снижение собственного веса обычно приводит к сокращению производственных затрат [18]. Самоуплотняющийся бетон на заполнителях с нормальным весом (SCNC) должен стать фаворитом при разработке. Рост затрат на строительство SCLC положительно согласуется с ростом расходов на SCNC [19]. Собственный вес бетона из легкого заполнителя оценивается примерно на 15% ~ 30% легче, чем у стандартного бетона, что в достаточной степени соответствует механическим характеристикам, которые требуются для дорожной опоры при указанной степени плотности [20].Растущее использование легкого бетона (LWC) привело к необходимости производства искусственного легкого бетона в целом, что может быть выполнено с помощью методики сборки холодным склеиванием. Производство искусственных легковесных заполнителей методом холодного склеивания требует гораздо меньших затрат энергии по сравнению со спеканием [21]. Легкий бетон, изготовленный из натуральных или искусственных легких заполнителей, доступен во многих частях мира. Его можно использовать в составе бетона с широким диапазоном удельного веса и подходящего качества для различных применений [22].Бетон из легких заполнителей повышает его эффективность, предотвращая близлежащие повреждения, вызванные баллистической нагрузкой. Более низкий модуль упругости и более высокий предел деформации при растяжении обеспечивает легкий бетон, противоположный стандартному бетону, с превосходной ударопрочностью [23]. Строители все чаще рекомендуют легкий бетонный материал для достижения приемлемого улучшения из-за его высоких прочностных и термических свойств [24]. Сила адгезии достигается за счет прочности связующего и сцепления агрегатов, которые постоянно сосредоточены на угловатости, ровности и растяжении [25].Легкий керамзитовый заполнитель (LECA), как правило, включает крошечные, легкие, вздутые частицы обожженной глины. Сотни и тысячи крошечных заполненных воздухом углублений успешно придают LECA безупречную прочность и теплоизоляционные качества. Считается, что среднее водопоглощение LECA total (0–25 мм) связано с 18 процентами объема в состоянии насыщения в течение 3 дней. Обычный портландцемент (OPC) частично заменяется летучей золой, мелкий заполнитель заменяется зольным остатком, а крупный заполнитель заменяется легким керамзитом (LECA) по весу 5%, 10%, 15%, 20%, 25 %, 30% и 35% по отдельности.Прочность на сжатие, прочность на разрыв и прочность на изгиб успешно оцениваются с помощью определенных входных значений при одновременном исследовании.

2. Экспериментальная программа

Целью работы является оценка прочности на сжатие (CS), прочности на разрыв (STS) и прочности на изгиб (FS) бетона. В этой бетонной смеси обычный портландцемент () заменяется летучей золой, мелкий заполнитель заменяется зольным остатком, а крупный заполнитель заменяется легким керамзитом (LECA) массой 5%, 10%, 15%. , 20%, 25%, 30% и 35% соответственно.Эти материалы необходимо добавлять для увеличения прочности цемента. В экспериментальном исследовании бетонный куб или цилиндр используется для анализа свойств бетона со всеми материалами. Каждый вес (5%, 10%, 15%, 20%, 25%, 30% или 35%) материала проводил испытание в течение 7 дней, 28 дней и 56 дней. Параметрами, участвующими в оценке характеристик бетона, являются прочность на сжатие (CS), прочность на разрыв (STS) и прочность на изгиб (FS), которые достигаются в ходе экспериментов в реальном времени.Затем определение прочности на изгиб обсуждалось в течение 7, 28 и 56 дней в зависимости от нагрузки для оптимальной дозировки замены по прочности на сжатие и разделенной прочности бетона на растяжение.

2.1. Используемые материалы

В этом разделе перечислены названия материалов, использованных в данном исследовании, и их характеристики. Ресурсы: обычный портландцемент, летучая зола, зольный остаток, мелкий заполнитель, крупный заполнитель и легкий керамзитовый заполнитель (LECA).

2.1.1. Обычный портландцемент

Обычный портландцемент – это основная форма цемента, где 95% клинкера и 5% гипса, который добавляется в качестве добавки для увеличения времени схватывания цемента до 30 минут или около того. Гипс контролирует время начального схватывания цемента. Если гипс не добавлен, цемент затвердеет, как только вода будет добавлена ​​в цемент. Различные сорта (33, 43,53) OPC были классифицированы Бюро индийских стандартов (BIS). Его производят в больших количествах по сравнению с другими типами цемента, и он превосходно подходит для использования в обычных бетонных конструкциях, где отсутствует воздействие сульфатов в почве или грунтовых водах. В этом исследовании цемент () имеет удельный вес 3.15 и время начального и окончательного схватывания цемента 50 и 450 минут.

2.1.2. Зола-унос

Самый распространенный тип угольных печей в электроэнергетике, около 80% несгоревшего материала или золы уносится с дымовыми газами, улавливается и восстанавливается в виде летучей золы. Летучая зола была собрана на теплоэлектростанции Тотукуди, Тамил Наду, Индия. Растущая нехватка сырья и насущная необходимость защиты окружающей среды от загрязнения подчеркнули важность разработки новых строительных материалов на основе промышленных отходов, образующихся на угольных ТЭЦ, которые создают неуправляемые проблемы утилизации из-за их потенциального загрязнения окружающей среды. .Поскольку стоимость утилизации летучей золы продолжает расти, стратегии утилизации летучей золы имеют решающее значение с экологической и экономической точек зрения. В качестве исходных материалов используются две новые области переработки угольной летучей золы, как показано на Рисунке 1 (а).

2.1.3. Нижняя зола

Оставшиеся 20% несгоревшего материала собираются на дне камеры сгорания в бункере, заполненном водой, и удаляются с помощью водяных струй под высоким давлением в декантирующий резервуар для обезвоживания и восстанавливаются в виде зольного остатка. как показано на рисунке 1 (b).Зольный остаток угля был получен с тепловой электростанции Тоотукуди, Тамил Наду, Индия. Летучая зола была получена непосредственно со дна электрофильтра в мешок из-за ее порошкообразной и пыльной природы, в то время как зола угольного остатка транспортируется со дна котла в зольный бассейн в виде жидкой суспензии, где была собрана проба. Зола более светлая и хрупкая, это темно-серый материал с размером зерна, аналогичным песчанику.

2.1.4. Мелкозернистый заполнитель

В соответствии с индийскими стандартами природный песок представляет собой форму кремнезема () с максимальным размером частиц 4.75 мм и использовался как мелкий заполнитель. Минимальный размер частиц мелкого заполнителя составляет 0,075 мм. Он образуется при разложении песчаников в результате различных атмосферных воздействий. Мелкозернистый заполнитель предотвращает усадку раствора и бетона. Удельный вес и модуль крупности крупного заполнителя составляли 2,67 и 2,3.

Мелкий заполнитель – это инертный или химически неактивный материал, большая часть которого проходит через сито 4,75 мм и содержит не более 5 процентов более крупного материала. Его можно классифицировать следующим образом: (а) природный песок: мелкий заполнитель, который является результатом естественного разрушения горных пород и отложился ручьями или ледниками; (б) щебневый песок: мелкий заполнитель, полученный при дроблении твердого камня; (в) ) щебень из гравийного песка: мелкий заполнитель, полученный путем измельчения природного гравия.

Уменьшает пористость конечной массы и значительно увеличивает ее прочность. Обычно в качестве мелкого заполнителя используется натуральный речной песок. Однако там, где природный песок недоступен с экономической точки зрения, в качестве мелкого заполнителя можно использовать мелкий щебень.

2.1.5. Грубый заполнитель

Грубый заполнитель состоит из материалов природного происхождения, таких как гравий, или является результатом дробления материнской породы, включая природную породу, шлаки, вспученные глины и сланцы (легкие заполнители) и другие одобренные инертные материалы с аналогичными характеристиками. с твердыми, прочными и прочными частицами, соответствующими особым требованиям этого раздела.

В соответствии с индийскими стандартами измельченный угловой заполнитель проходит через сито IS 20 мм и целиком удерживает сито IS 10 мм. Удельный вес и модуль крупности крупнозернистого заполнителя составляли 2,60 и 5,95.

2.1.6. Легкий наполнитель из вспененной глины (LECA)

LECA показан на Рисунке 1 (c). он обладает высокой устойчивостью к щелочным и кислотным веществам, а pH почти 7 делает его нейтральным в химической реакции с бетоном. Легкость, изоляция, долговечность, неразложимость, структурная стабильность и химическая нейтральность собраны в LECA как лучшем легком заполнителе для полов и кровли.Размер заполнителя составляет 10 мм, а максимальная плотность меньше или равна 480 кг / м 3 . LECA состоит из мелких, прочных, легких и теплоизолирующих частиц обожженной глины. LECA, который является экологически чистым и полностью натуральным продуктом, не поддается разрушению, негорючий и невосприимчив к воздействию сухой, влажной гнили и насекомых. Легкий бетон обычно делится на два типа: газобетон (или пенобетон) и бетон на легких заполнителях.Газобетон имеет очень легкий вес и низкую теплопроводность. Однако процесс автоклавирования необходим для получения определенного уровня прочности, что требует специального производственного оборудования и требует очень большого количества энергии. Напротив, бетон из легких заполнителей, который производится без автоклавирования, имеет более высокую прочность, но показывает более высокую плотность и более низкую теплопроводность бетона.

2.1.7. Conplast Admixture SP430 (G)

Conplast SP430 (G) используется там, где требуется высокая степень удобоукладываемости и ее удержания, когда вероятны задержки в транспортировке или укладке, или когда высокие температуры окружающей среды вызывают быстрое снижение осадки.Это облегчает производство бетона высокого качества. Conplast SP430 (G) соответствует тому факту, что он был специально разработан для обеспечения высокого снижения содержания воды до 25% без потери удобоукладываемости или для производства высококачественного бетона с пониженной проницаемостью. Когезия улучшается за счет диспергирования частиц цемента, что сводит к минимуму сегрегацию и улучшает качество поверхности. Оптимальная дозировка лучше всего определяется испытаниями бетонной смеси на месте, что позволяет измерить эффекты удобоукладываемости, увеличения прочности или уменьшения цемента. Этот тип ингредиентов добавляется в бетон для придания ему определенных улучшенных качеств или для изменения различных физических свойств в его свежем и затвердевшем состоянии. Оптимальная дозировка цемента 0,6–1,5 л / 100 кг. Добавление добавки может улучшить бетон в отношении его прочности, твердости, удобоукладываемости, водостойкости и так далее.

2.1.8. Структурные характеристики балки

Структурные характеристики балки – это диаметр верхней арматуры 8 мм, диаметр нижней арматуры 12 мм и хомуты 6 мм (рис. 2).Общая длина балки, используемой для отклонения, составляет 1 метр. Эта спецификация используется в бетонной конструкции, и весь процесс выполняется в спецификации бетона.


2.1.9. Конструкционный легкий бетон

Бетон изготовлен из легкого крупного заполнителя. Легкие заполнители обычно требуют смачивания перед использованием для достижения высокой степени насыщения. Основное использование конструкционного легкого бетона заключается в уменьшении статической нагрузки бетонной конструкции. В обычном бетоне различная градация заполнителей влияет на необходимое количество воды. Добавление некоторых мелких заполнителей приводит к увеличению необходимого количества воды. Это увеличение количества воды снижает прочность бетона, если одновременно не увеличивается количество цемента. Количество крупного заполнителя и его наибольший размер зависят от требуемой удобоукладываемости бетонной смеси. Также в легком бетоне этот результат существует среди градации, требуемого количества воды и полученной прочности бетона, но есть и другие факторы, на которые следует обратить внимание.В большинстве легких заполнителей по мере увеличения размера заполнителя прочность и объемная плотность заполнителя уменьшаются. Использование легкого заполнителя очень большого размера с более низкой прочностью приводит к снижению прочности легкого бетона; следовательно, самый большой размер легкого заполнителя должен быть ограничен максимум 25 мм.

3. Методология

Пропорция бетонной смеси для марки M 20 была получена на основе рекомендаций согласно индийским стандартным спецификациям (IS: 456-2000 и IS: 10262-1982). В данном исследовании экспериментальное исследование бетонной смеси M 20 проводится путем замены цемента летучей золой, мелкого заполнителя на зольный остаток и крупного заполнителя легким керамзитом (LECA) в дозах 5%, 10%, 15%, 20%, 25%, 30% и 35% соответственно. Эти материалы необходимо добавлять для увеличения прочности цемента. В экспериментальном исследовании бетонный куб или цилиндр используется для анализа свойств OPC со всеми материалами. Их прочность на сжатие и прочность на разрыв бетона обсуждались в течение 7 дней, 28 дней, 56 дней, а прочность на изгиб балки обсуждалась в течение 7, 28 и 56 дней в зависимости от оптимальной дозировки замены по прочности на сжатие и разделенному растяжению. прочность бетона.Как правило, летучая зола и зольный остаток имеют аналогичные физические и химические свойства по сравнению с обычным портландцементом (OPC) и мелким заполнителем, и здесь не так много отклонений для замены друг друга. В этом сценарии легкий керамзитовый заполнитель (LECA) был заменен на крупный заполнитель на основе его объема, поскольку плотность каждого материала не такая же, как у другого материала, и его невозможно заменить на основе его массы. Для повышения удобоукладываемости бетона добавлен суперпластификатор.

Соотношение бетонной смеси марки М 20 составило 1: 1,42: 3,3. Контролируемый бетон марки M 20 был изготовлен с заменой 0% летучей золы, зольного остатка и легкого керамзитового заполнителя (LECA) в каждой смеси, а их прочность на сжатие и прочность на разрыв бетона обсуждались для 7, 28, и 56 дней, а прочность бетона на изгиб обсуждалась в течение 7, 28 и 56 дней. В связи с этим замена цемента зольной пылью, мелкого заполнителя зольным остатком и крупного заполнителя легким керамзитом (LECA) из расчета 5%, 10%, 15%, 20%, 25%, 30% и В каждой смеси было проведено 35% испытаний, и их прочность на сжатие и прочность на разрыв бетона обсуждались в течение 7 дней, 28, дней, 56 дней, а прочность на изгиб балки в течение 7, 28 и 56 дней зависит от оптимальной дозировки замены при сжатии. прочность и разделенная прочность бетона на растяжение.

Водопоглощение легкого заполнителя со слишком большим количеством пор намного больше, чем у обычных заполнителей (речных заполнителей). Определение степени водопоглощения в агрегатах такого типа затруднительно из-за различного количества поглощенной воды. Агрегат LECA производит вращающуюся печь, и из-за его гладкой поверхности водопоглощение заполнителя LECA почти равно или несколько больше, чем у обычного заполнителя; поэтому создание легкой бетонной смеси с заполнителем LECA так же сложно, как и с обычным заполнителем.Для определения количества каждого ингредиента в легкой бетонной смеси (наряду с количеством абсорбированной воды в легких заполнителях, особенно со слишком большими порами с шероховатой и угловатой поверхностью, путем приготовления различных смесей) можно использовать общие методы проектирования: обычная бетонная смесь.

4. Результаты и обсуждение

Из таблицы 1 видно, что для контрольных образцов прочность бетона увеличивается с возрастом. При замене 5% цемента летучей золой, мелкого заполнителя золой и крупного заполнителя LECA прочность бетона на сжатие такая же, как у контрольного бетона. Прочность на растяжение при разделении немного снижается в раннем возрасте и достигает той же прочности контрольного бетона через 56 дней.

0


Замена в процентах Сухой вес образца (куб) в кг / м 3 Прочность на сжатие бетона (Н / мм 2 ) Сухой вес образца (цилиндр) в кг Разделенная прочность на разрыв бетона (Н / мм 2 )
7 дней 28 дней 56 дней 7 дней 28 дней 56 дней

045 17,96 26,93 26,95 14,35 1,60 2,54 2,57
5 9,180 14,94 26823 17,94 268102 2,59
10 8,89 17,17 25,73 25,76 13,85 1,5 2,32 2,33
15. 54 16.06 24.09 24,11 13,60 1,44 2,17 2,18
20 8,41 13,41 20,10 2,12
25 8,31 11,32 16,96 16,97 13,15 1,35 2,05 2,06
8 10,19 15,26 15,23 12,72 1,31 1,96 1,98
35 8,13 9,73

14210

9,73

12231
9,73

12231
1,92

Также наблюдается, что при увеличении замены материала прочность на сжатие и прочность на разрыв при разделении снижаются. Сухой вес образцов куба и цилиндра уменьшается по мере увеличения количества замен материалов.

4.1. Анализ прочности в зависимости от возраста бетона

В таблице 1 прочность бетона на сжатие и прочность на разрыв бетона при разделении оцениваются с помощью различных процентных соотношений смешивания, применяемых для формирования кубического образца сухой массы и цилиндрического образца сухой массы, соответственно, по отношению к разным дней.

Для бетона марки M 20 учитывается следующее предложенное процентное смешивание для различных образцов сухой массы, примененных к кубической форме, для определения прочности на сжатие по отношению к 7, 28 и 56 дням, таким образом, чтобы образец сухой массы применяли к цилиндрической формы по отношению к вышеупомянутым дням для определения прочности на разрыв.Для обоих анализов прочности используется бетон марки М 20 . Из Таблицы 1 заявленные результаты показывают, что процент смешивания увеличивается с уменьшением веса образца, но с точки зрения прочности увеличение процента смешивания, безусловно, снизит достигаемую прочность как на сжатие, так и на разрыв при разделении, или, с другой стороны, когда смешивание пропорция не участвует в этом (т. е. когда она равна «нулю»), тогда вес образца высок по сравнению с тем, что весит пропорция смешивания, которая смешивается.В обоих случаях для анализа прочности продление дней, безусловно, будет соответствовать прогнозируемой прочности этих анализов, как четко указано в таблице 1.

На рисунке 3 показан анализ прочности на сжатие куба, который проводится в трех этапах последовательных дней 7, 28 и 56. на основе различных предложений о смешивании. Достигнутые результаты показывают, что процесс, выполненный для последовательных результатов 56-дневных испытаний, показывает лучшую прочность на сжатие при несмешивании, тогда как постепенное увеличение процента смешивания, безусловно, снизит прочность на сжатие образцов во все дни испытаний.В случае веса увеличение процента смешивания снизит вес.


(a) Испытание на сжатие на кубе
(b) Прочность на сжатие
(a) Испытание на сжатие на кубе
(b) Прочность на сжатие

На рис. дней. Более того, в этом анализе прочности на разрыв при раздельном растяжении увеличение процента смешивания, безусловно, снизит вес, а также снизит факторы упрочнения.


(a) Прочность на разрыв при разделении на цилиндре
(b) Прочность на разрыв при разделении
(a) Прочность на разрыв при разделении на цилиндре
(b) Прочность на разрыв при разделении

Из двух вышеупомянутых форм (кубической и цилиндрические формы) прогнозируемые результаты анализа прочности на сжатие и анализа прочности на разрыв при растяжении практически аналогичны. Давайте посмотрим на экспоненциальное поведение и его уравнение регрессии для прочности на сжатие и прочности на разрыв.

Экспоненциальный график на основе процента смешивания для прочности на сжатие. На рис. 5 имитируется экспоненциальная кривая на основе регрессии для анализа прочности на сжатие для различных процентных соотношений смешивания. Из рисунка 5 последовательные испытания образцов в течение 28 и 56 дней дали почти одинаковые значения, тогда как экспоненциальное уравнение прочности на сжатие в таблице 2 находится в диапазоне от 0 до 35 Н / мм 2 во всех четырех оценочных уравнениях, вызывая увеличение процента смешивания, снизить все четыре параметра сухой массы на 7, 28 и 56 дней.В четырех случаях, кроме сухого веса, производительность снижается, тогда как в случае увеличения сухого веса процент смешивания, безусловно, снижает вес.

9023

902 902 902 902 902

Характеристики Экспоненциальная регрессия для прочности на сжатие Экспоненциальная регрессия для разделенной прочности на растяжение

28 дней
56 дней


9000 с расщеплением в зависимости от процентной прочности. На фиг. 6 график показывает экспоненциальное изменение сухой массы и для различных последовательных дней, таких как 7, 28 и 56. В этой сухой массе, имеющей предел прочности на разрыв почти, обозначает процент смешивания; в дополнение к этому, экспоненциальная кривая на основе всех других последовательных дней уменьшается, и они почти похожи друг на друга, имея диапазон (0–15) Н / мм 2 .


Таблица 2 включает данные о сухом весе и образце для последовательных дней, таких как 7, 28 и 56 дней, начиная с сухого веса в прочности на сжатие, которая начинается с более низких значений регрессии и продолжает увеличиваться в течение 7, 28 и 56 дней. , тогда как в случае разделения прочности на разрыв значение регрессии сухого веса больше, чем значение регрессии прочности на сжатие.В случае анализа по дням значения регрессии увеличиваются с увеличением количества дней в модели регрессионного анализа прочности на разрыв.

4.2. Анализ прочности на изгиб

Одним из показателей прочности бетона на растяжение является прочность на изгиб. Это расчет неармированной бетонной балки или плиты на устойчивость к разрушению при изгибе (рис. 7). Проектировщики дорожных покрытий используют теорию, основанную на прочности на изгиб; поэтому может потребоваться разработка лабораторной смеси, основанная на испытании на прочность на изгиб.В Таблице 3 использованы процентные доли замены цемента летучей золой, мелкого заполнителя золой и крупного заполнителя легким керамзитом (LECA) с коэффициентами 0% и 5%.

процент замены цемента летучей золой, мелкого заполнителя золой и крупного заполнителя легким керамзитом (LECA) в размере 5% лучше, чем 0%. Сухой вес образца снижается до 5%, а прочность балки на изгиб в течение 7 дней составляет 1.67% больше 0%, а через 28 дней это 1,52% больше 0%, а через 56 дней 1,46% больше 0%.

В таблице 4 испытательная нагрузка прикладывается от 0 до 86,32 кН с различными интервалами, и мы попытались найти прогиб M 20 в левой, средней и правой части балки. Прогибы на всех уровнях постепенно увеличиваются при увеличении приложенной нагрузки. Среднее отклонение в левой части балки составляет около 1,71 мм, в то время как при среднем отклонении оно составляет около 2,961 мм, а в правой части отклонение составляет около 1. 810 мм.


Тип образца Сухой вес образца в кг Предел прочности при изгибе балки (Н / мм 2 )
7 дней 28 дней 56 дней

Control 56. 25 16,65 24,7 25,83
5% замена 55,13 17,58 26,03 27,13

Нагрузка (кН) Отклонение (мм)
(0% замена летучей золы, золы и LECA)
Левый Средний Правый

0 0 0
3,92 0,21 0,252 0,194
7.84 0,284 0,324 0,284
11,77 0,42 0,54 0,5
15,69 0,58 90100 0,756 902 0,580 0,756 902 902 0,756 902 902 0,785
23,54 1,031 1,234 1,016
27,46 1,202 1,512 1. 198
31,39 1,382 1,962 1,391
35,32 1,594 2,264 1,624
3910 9023 9023 9023 902 902 902 902 3910 9023 902 902 1,972 2,936 1,986
47,03 2,052 3,142 2,034
51,01 2.21 3,364 2,198
54,94 2,352 3,724 2,346
58,86 2,41 4,12501

902,52
66,71 2,625 4,96 2,618
70,63 2,715 5,146 2,708
74. 56 2,86 5,476 2,846
78,48 3,14 5,742 3,008
82,41 3,46 3,46 3,46 902 9 4,07

В таблице 5 испытательная нагрузка приложена к M 20 от 0 до 86,32 кН с различными интервалами, а прогибы были измерены в левой, средней и правой части балки. .Прогибы на всех уровнях постепенно увеличиваются при увеличении приложенной нагрузки. Среднее отклонение в левой части балки составляет примерно 1,782 мм, в то время как в средней части отклонение составляет примерно 2,960 мм, а в правой части отклонение составляет примерно 1,78 мм. Из Таблицы 5 доказано, что прогиб 5% замены прочности на изгиб выше, чем 0% замены.

10 90.92 6210 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902

Нагрузка (кН) Прогиб (мм)
(5% замена летучей золы, зольного остатка и LECA)
Левый Средний Правый

0 0 0 3
0,205 0,25 0,207
7,84 0,29 0,321 0,285
11,77 0,45 0,502 902 902 0,45 902 0,535
19,62 0,81 1,02 0,793
23,54 1,037 1,231 1,037
27. 46 1,198 1,507 1,20
31,39 1,375 1,96 1,379
35,32 1,584 35,32 1,584 2,2652 902 902 9010 2,2652

902 902
1,816
43,16 2,05 2,937 2,02
47,03 2,07 3,14 2,05
51.01 2,15 3,361 2,17
54,94 2,38 3,72 2,38
58,86 2. .46 4,118 2..46 4,118 2..46 4,118 2,56 4,587 2,54
66,71 2,61 4,95 2,615
70,63 2,69 5,143 74202 5,143 7420256 2,84 5,472 2,838
78,48 3,11 5,74 3,115
82,41 3,4 4,05

На рисунке 8, M 20 сорт 0% и 5% замена летучей золы, шлака и LECA проанализированы для проверки их прочности на изгиб. На графике четко указано, что при увеличении нагрузки прогиб также увеличивается на 0% и 5% среди (23), а средние значения прогиба аналогичны как 0%, так и 5%, но при 0% они немного выше 5%. , тогда как на этом графике есть сумма всех уровней прогиба в 1 единице. Например, здесь тот факт, что рассматриваемая длина балки составляет 1 метр для экспериментального исследования путем приложения «» единицы нагрузки, вызовет величину отклонения в обоих случаях (0% и 5%) в отношении увеличения нагрузка, чтобы обязательно увеличить прогиб.


5. Заключение

В статье достигается максимально возможная прочность бетона LECA, отмечена передовая технология производства легкого бетона. Результаты показывают, что замена 5% цемента летучей золой, мелкого заполнителя золой и крупного заполнителя легким керамзитом (LECA) показала хорошие показатели прочности на сжатие, прочности на разрыв и прочности балки на изгиб. 56 дней по сравнению с 28 днями силы.При этом прочность 28 суток также примерно равна нормальному обычному бетону; то есть замена на 0% и уменьшение сухого веса образца. В будущем методы мягких вычислений приведут к тому, что в основных областях мы сможем достичь лучшей производительности за короткий промежуток времени, поскольку время является основным фактором, участвующим в этой исследовательской работе.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов в отношении публикации этой статьи.

Строительство дома из керамзитобетонных блоков.Стр. 1

Бетон – относительно новый материал, используемый для строительства домов. Состоит из керамзита и цементно-песчаного раствора. Основные преимущества – экологическая безопасность, легкость, доступность. Сегодня, построив дом или любое другое здание из бетона, можно самостоятельно реализовать, как построить из него, просто по добротным размерам блоков. К недостаткам можно отнести хрупкость, неприглядный внешний вид, подверженность перепадам температур.


Для расчета необходимого количества блоков необходимо определиться с общими размерами дома. Далее рассчитываем длину всех стен. Сумма прибавляется к длине несущих стен. Итак, общая длина дома, которая умножается на высоту потолков. Дальнейший расчет зависит от размеров блоков и выбора толщины стен, в один ряд, два и более. Сумма, полученная в результате умножения длины на высоту, умноженного на ожидаемую толщину, и мы получаем общий объем стен. Блоки надо покупать больше в расчете на повреждение элементов.

Благодаря эффективности и простоте проекты частных домов из легких заполнителей бетонных блоков пользуются большой популярностью. Специалисты советуют покупать дом, который был без экстерьера не более 2 лет. Тогда влияние атмосферных осадков и низких температур проявляется в виде сколов и трещин. Особенности конструкции соответствуют требованиям кладки – в кладке должна быть арматура, а полы – из железобетона, используемого в установке. из массивных блоков, если они пустотелые, нужны паркетные полы.Поэтому, чтобы построить прочный дом из блоков, нужно читать: каждый последующий ряд боковых граней должен быть перпендикулярен предыдущему.

Технологии Фундамент

Материал выдерживает высокие нагрузки, если из бетона, ввиду неустойчивого грунта, сделать прочный фундамент, установить монолитную бетонную площадку, для бетона в этом не будет необходимости. Однако не стоит пренебрегать фундаментом. Ленточный фундамент, для которого рытье траншеи, впоследствии забетонированной, прост и долговечен.Для ленточных фундаментов можно установить цокольный этаж из бетонных плит. Для защиты подвала от влаги необходимо обеспечить гидроизоляцию. Стены подвала должны быть на 500 мм выше уровня земли.


Монолитные монолитные блоки из бетона включают фундамент и плиту из связанных с ним залитых железобетонным каркасом и стенами. Для устройства заглушки лучше всего подойдет блок размером 590х290х200, снабженный желобами для укладки арматуры. В сочетании с отличной теплоизоляцией и гидрофобными характеристиками блоки получают сухой и теплый подвал, что немаловажно для комфортного климата в помещениях.

Кладочные блоки

Кладка типа кирпича, а по ГОСТу размеры блоков могут использоваться во многих строительных материалах: металлоконструкциях, деревянных балках, бетоне. Пустота заполняется металлической арматурой, благодаря чему увеличивается прочность несущих стен.

Кладку начинают с углов здания, далее по периметру. Кладка ведется на цементно-песчаный раствор толщиной 30 мм. Можно попробовать выложить в три слоя, однако о целесообразности такой кладки ведутся споры.Дело в том, что срок службы утеплителя между внутренней и внешней стеной не более 10 лет. Можно использовать такой материал, как пеноизол, он устойчив к влаге.

Внешняя и окончательная отделка Варианты утеплителя

Перед облицовкой нужно определиться с утеплителем. Утеплитель минеральной ватой, керамзитом в домашних условиях лучше всего. Минеральная вата хорошо сохраняет тепло, а если добавить слой алюминиевой фольги, то дому не страшна даже сибирская зима.

Можно держаться на стекловолокне, которое кладется под гипсокартон изнутри, с внешнего слоя пенопласта. Полистирол не такой дорогой, как минеральная вата, а по свойствам практически не отличается.

Внутренний слой

Размер несущей стены (мм)

Изоляционный слой

1. Штукатурка на внутренней поверхности (без армирования) 450х190х240 полистирол или минеральная вата (100 мм, теплопроводность 0,035 Вт / м ° C ) 2. штукатурка на внутренней поверхности (без армирования) 450х190х240 (укладка в перевязку) пенополистирол или минеральная вата (50 мм, теплопроводность 0.05 Вт / м ° C) 3. штукатурка на внутренней поверхности (без армирования) 450х300х240 (толщина 610 мм) любая (стружка полистирола)

Фасадные материалы

Облицовка дома из нее непривлекательных блоков керамзита несет не только эстетический вид. но и практическая функция. Несмотря на то, что материал отлично выдерживает воздействие влаги, резкие перепады температур могут вызвать повреждение конструкции. Бетонный блок выдерживает большие нагрузки, но необходим перед облицовкой для укрепления стеновой арматуры.Возводя фундамент, оставьте для будущего фасада расстояние около кирпича.

Песочно-цементная штукатурка, кирпич, натуральный камень, сайдинг, термопанели, мрамор – это лишь небольшой перечень того, чем можно облицевать дом.


Самый распространенный способ облицовки кирпичом, керамикой или клинкером. Самый дешевый способ цементно-песчаной штукатурки. Цементно-песчаные и декоративные штукатурки, фасадные краски позволяют создать фактурную поверхность и привлекательный внешний вид. Штукатурка подходит для бетона, так как наносится на поверхности, подверженные повреждениям от перепадов температур.

  • Натуральный камень в фасадах смотрится эстетично и благородно. Выбирая натуральный камень, стоит обратить внимание на его морозостойкость. Искусственный камень (кирпич) по своим функциональным и эстетическим свойствам не уступает натуральному и стоит намного дешевле.
  • Отделка фасадных термопанелей из пенополиуретана и керамической плитки относится к экономичным способам облицовки. Термопанели легкие, успешно применяются в ленточном фундаменте дома.Они прочные, экологически чистые, благодаря полистиролу выдерживают тепло в холодную погоду, обеспечивают тень в жаркую погоду. С установкой термопанелей даже под непрофессиональную плитку.
  • Вентилируемые фасады удачно скрывают все недостатки стены. За счет воздушного пространства между внутренней стеной и вагонкой впитывают влагу, предотвращая ее разрушение. Наконец, сайдинг – один из самых дешевых способов отделки. Панели сайдинга хрупкие и повреждения при эксплуатации негативно сказываются на керамзитобетонной стене.опубликовано

Источник: hardstones.ru/stroitelstvo-doma-iz-keramzitobetonnyx-blokov.html

Leca – Легкий керамзит

Легкий керамзит (Leca) выдержал испытание временем в производстве стеновых панелей Acotec. Leca заменила древесную стружку в качестве сырья для бетона в начале 80-х годов прошлого века Acotec. С тех пор эта экономичная технология перегородок успешно проникла на азиатские строительные рынки.

Истоки Acotec, Advanced Construction Technology, восходят к результатам лабораторных испытаний, проведенных финским техническим студентом Петтери Лайтиненом в 1990–1991 годах. В то время Лайтинен заканчивал магистерскую диссертацию на техническом факультете Университета Оулу, где он разработал новый рецепт легкого бетона по контракту с Acotec Ltd.

Основанная в 1988 году компания Acotec Ltd нуждалась в новой бетонной смеси для своих легких ненесущих перегородок. Первая линия Acotec уже была доставлена ​​в Сингапур в 1987 году от имени предшественника Acotec с использованием древесно-стружечного бетона в качестве материала.

Петтери Лайтинен, директор по продажам Elematic, разработал рецепт легкого бетона для Acotec в начале 90-х годов.

«Перегородки из легкого бетона предназначались для развивающихся рынков, где быстро росла потребность в недорогих и рентабельных строительных технологиях. Однако древесно-стружечный бетон не отвечал требованиям рынка», – отмечает Петтери Лайтинен, который сейчас работает в директор по продажам компании Elematic о ранних стадиях производства Acotec.Компания Elematic приобрела бизнес-подразделение Acotec в 2001 году.

На основе исследований Лайтинена и в связи с этими потребностями клиентов бетон был заменен более качественным и легким сырьем.

«Легкий керамзит Leca значительно повысил качество стены», – поясняет Лайтинен.

Leca состоит из мелких, легких, вспученных частиц обожженной глины. Тысячи небольших заполненных воздухом полостей придают Leca прочность и теплоизоляционные свойства.

«Благодаря Leca стало возможным избавиться от добавок и химических процессов, используемых с древесно-стружечным бетоном. Весь производственный процесс стал более простым и экономичным».

Успешный дизайн линии

Наряду с новым бетонным материалом линия Acotec была переработана в соответствии с новыми требованиями. Высокий уровень автоматизации, удобство использования и небольшие масштабы были среди приоритетов в процессе планирования, имевшего место на рубеже десятилетия.

«Процесс проектирования линии прошел успешно, – говорит технический консультант Elematic Хейкки Миккола . Миккола и его команда разработали современную производственную линию в конце 1980-х годов. За десятилетия он был установлен примерно в 60 местах с очень небольшими изменениями. Миккола начал работать в Acotec Ltd в 1989 году и продолжил работу в Elematic с 2001 года. Он принимал участие во всех установках и развертывании линий.

“Линия компактна, и поэтому ее легко установить в существующие помещения.Высокий уровень автоматизации обеспечивает хорошее и постоянное качество и позволяет выполнять производство с помощью небольшого количества рабочих », – объясняет Миккола о свойствах линии, которые хорошо выдержали испытание временем.

Завоевание азиатского рынка

Современное Acotec Technology отмечает свое официальное начало в 1991 году, когда первая линия была продана финскому поставщику бетона Rakennusbetoni ja Elementti Oy . Они начали производить легкие ненесущие перегородки под собственной торговой маркой ACO.Затем Петтери Лайтинен перешел на технологию Rakennusbetoni, где продолжил развивать использование стен Acotec, а также продвигать новые и инновационные легкие ненесущие перегородки, сочетающие в себе высокое качество и экономическую эффективность.

Хейкки Миккола установил панели Acotec в 90-е годы

Следующая линия Acotec была вскоре продана в Малайзию, где компания PJDMALTA начала производство стеновых панелей Acotec в 1994 году. Малайзия, а затем Филиппины, Корея, Тайвань и Китай в течение следующих нескольких годы с тех пор стали важными областями развития технологий.Строительный бум в Азии в 1990-х годах сыграл важную роль в развитии технологий.

«Традиции кирпичного строительства в азиатских странах благоприятствуют легкому бетону. По сравнению с кирпичом, стены Acotec обладают гораздо более предпочтительными характеристиками с точки зрения скорости монтажа, экономической эффективности, качества и надежности поставок», – поясняет Лайтинен. . «Линия также может использоваться со стандартным бетоном, что важно для Азии».

Полный сервис окупается

По словам Петтери Лайтинена, полный сервис был ключом к успеху технологии.

«Не стоит продавать только линию и стены, а целую услугу, включая обучение местных рабочих использованию линии и правильной установке стен. Это был важный урок, который нужно усвоить в первые годы», – говорит Лайтинен .

«Начало комплексного обслуживания в начале 1990-х годов было для нас решающим шагом вперед. Наша собственная сервисная команда смогла обеспечить правильные процедуры и высокое качество на месте, что было высоко оценено нашими клиентами».

Петтери Лайтинен, как и Хейкки Миккола, продолжал работать с технологией Acotec на полной скорости после того, как Elematic приобрела компанию в 2001 году.Он рассматривает сделку как благоприятный сдвиг для обеих сторон.

«Это была беспроигрышная ситуация: легкие перегородки Acotec дополнили портфолио Elematic и, в той же степени, преимущества технологии глобальной маркетинговой сети Elematic».

Лайтинен доволен новым этапом развития технологии, отмеченным тремя новыми уровнями автоматизации и производительности.

«После долгой карьеры в этой области я все еще очень рад новым разработкам. Они двигают технологии в правильном направлении.”

Талленна

Легкий бетонный блок; керамзит в качестве основного материала; производственная смесь на заводе (местонахождение: RER)

Описание

Набор данных представляет собой прикладную смесь из легких бетонных блоков, которую можно использовать в качестве перегородки, внутренней стены и внешней стены.Он охватывает все соответствующие этапы процесса / технологии в цепочке поставок представленной подставки для управления запасами с хорошим общим качеством данных. Инвентаризация в основном основана на отраслевых данных и при необходимости дополняется вторичными данными.

Техническое назначение: Стандартный минеральный продукт, используемый в качестве стенового материала в строительной отрасли в зависимости от применяемого технологии.

Географическое представительство: RER

URI
http: // данные.europa.eu/88u/dataset/jrc-eplca-898618b6-3306-11dd-bd11-0800200c9a66
Идентификатор
jrc-eplca-898618b6-3306-11dd-bd11-0800200c9a66
Целевая страница
http://data. europa.eu/89h/jrc-eplca-898618b6-3306-11dd-bd11-0800200c9a66
Дата выпуска
2004-01-01
География
Португалия, Словакия, Румыния, Словения, Ватикан, Венгрия, остров Мэн, Ирландия, Исландия, Гернси, Гибралтар, Греция, Хорватия, Сан-Марино, Сербия, Россия, Свальбард и Ян-Майен, Италия, Джерси, Норвегия, Польша, Аландские острова, Косово, Андорра, Албания, Бельгия, Австрия, Босния и Герцеговина, Болгария, Швейцария, Беларусь, Украина, Дания, Германия, Чехия, Кипр, Нидерланды, Черногория, Эстония, Испания, Франция, Финляндия, Великобритания, Люксембург, Литва, Лихтенштейн, Мальта, Северная Македония, Молдова, Монако, Латвия, Фарерские острова, Швеция
Язык
Английский
Каталог
Портал открытых данных Европейского Союза

ПОРТАЛ ОТКРЫТЫХ ДАННЫХ ЕС ЗАБОТИТСЯ О ВАШЕМ МНЕНИИ. УДЕРЖИТЕ НЕСКОЛЬКО МИНУТ НА ЗАПОЛНЕНИЕ ОПРОСА И ПОМОГИТЕ НАМ УЛУЧШИТЬ НАШИ УСЛУГИ.

Международный журнал инженерного менеджмента и прикладных наук

Международный журнал новейших технологий в инженерии, менеджменте и прикладных науках – IJLTEMAS

Международный журнал новейших технологий в машиностроении, менеджменте и прикладных науках (IJLTEMAS) – это ежемесячный рецензируемый международный журнал по инженерным наукам, менеджменту и прикладным наукам с минимальными затратами на обработку, открытый доступ и полные ссылки.Мы обеспечиваем отличную платформу для обмена мнениями между исследователями, широко заинтересованными в области инженерии, менеджмента и прикладных наук.

Научно-исследовательское и инновационное общество

Общество исследований и научных инноваций (RSIS International) – ведущее международное профессиональное некоммерческое общество, которое способствует прогрессу исследований и инноваций посредством международных конференций, дискуссий, семинаров и публикации профессиональных международных онлайн-журналов, информационных бюллетеней и проведения исследований и инноваций. на международном уровне.

Прием статей Февраль 2021 г.

Международный журнал новейших технологий в инженерии, менеджменте и прикладных науках -IJLTEMAS приглашает авторов / исследователей предложить свои исследовательские работы в области инженерии, менеджмента и прикладных наук. Все заявки должны быть оригинальными и содержать соответствующие результаты исследований в области инженерии, менеджмента и прикладных наук. Мы нацелены на качественную исследовательскую публикацию и предоставляем читателю достоверные исследования.

Правила подачи заявок
Крайний срок подачи 26.01.2021 – 25.02.2021
Новое поступление Подача онлайн
Окончательная подача принятой статьи Подача онлайн
Месяц / Год / Объем / Выпуск Февраль 2021 г. Том X Выпуск II
Сборы за публикацию (индийские авторы) 900 INR
Сборы за публикацию (международные авторы) 20 $
Почему открытый доступ?

Журналы открытого доступа доступны бесплатно в Интернете для немедленного открытого доступа во всем мире к полному содержанию статей, отвечающих интересам основных исследователей.Каждый заинтересованный читатель может бесплатно читать, скачивать или потенциально распечатывать статьи в открытом доступе! Мы приглашаем подавать документы превосходного качества только в электронном (только .doc) формате.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *