Чем отличается газосиликат от газобетона: Газобетон или газосиликат – в чем разница и что лучше?

Содержание

Чем отличается газобетон от газосиликата?

Каталог товаров
Вентиляция и отопление
Водоотводные системы
Все для дачи и отдыха
Двери
Изоляционные материалы
Инструмент и станки
Камины, печи, сауны
Керамогранит, керамическая и стеклянная плитка
Клеевые материалы
Лакокрасочные материалы
Мебель
Напольные покрытия
Настенные обои
Обогреватели, водонагреватели, осушители воздуха и тепловые пушки
Общестроительные материалы
Осветительное оборудование
Плинтуса, пороги, планки
Садовая техника и мототехника
Сайдинг и водосточные системы
Сантехника
Стеновые покрытия
Строительная Химия
Строительные смеси
Утеплители
Фанера, Гипсокартон, ДВП, МДФ, OSB, ЛДСП, СМЛ
Статьи > Общестроительные материалы > Кирпичи и стеновые блоки > Блоки газосиликатные > Чем отличается газобетон от газосиликата? Чем отличается газобетон от газосиликата и что лучше использовать в частном домостроении? У этих материалов разные характеристики теплопроводности, прочности и методы изготовления. Плюс блоки из газобетона стоят в полтора раза дороже газосиликатных.

Газобетон и газосиликат – это ячеистые блоки, относящиеся к ячеистым бетонам, имеющие пористую структуру, получаемую за счет обработки и вспучивания не гашеной извести, которое происходит при добавлении в состав алюминиевой суспензии.

Чем же отличаются газобетонные блоки от газосиликатных? Прежде всего следует отметить, что теоретически при изготовлении газобетонных блоков основой состава должен быть цемент, а газосиликата – известь. В газосиликатных блоках должно содержаться 62% кварцевого песка и 24% извести, от газобетона в котором должно присутствовать 50-60% цемента, очень велико, но «чистого» состава не бывает, и иногда характеристики этих материалов мало отличаются друг от друга.

На практике, в России при изготовлении обоих составов смешивается известь с цементом, только в разных пропорциях. Получается что в газобетоне больше цемента, и он более прочен, в газосиликате больше извести, которая лучше изолирует звук и тепло.

По способу твердения эти составы также отличаются друг го друга: газосиликат может быть только автоклавным, а газобетон твердеет как в автоклаве, так и без него. При изготовлении газобетона и газосиликата в автоклаве они различны по прочности и теплоизоляционным свойствам по отношению к средней плотности, а также от блоков, изготовленных неавтоклавным методом.

Сравнивая продукцию, можно определить главные особенности материалов: например, газобетонный блок D500 будет прочен и морозостоек, а такой же блок из газосиликата будет более теплым и будет хорошо защищать от ненужных звуков. Также, следует отметить, что газобетон лучше подойдет, если отделка здания будет из камня или кирпича, а газосиликат для вентилируемых фасадов, так как хорошо держит крепления.

Товары в категории

Задать вопрос

Не нашли ответ на интересующий вас вопрос о выборе или использовании отделочных материалов, стройматериалов и товаров для дома? Спросите у нас на форуме, и мы пришлем вам ответ по email. Мы работаем с десятками тысяч наименований товаров и всегда готовы поделиться накопленным опытом.

Задать вопрос


Москва, Московская область, Зеленоград, Подольск, Люберцы, Мытищи, Коломна, Электросталь, Химки, Балашиха, Королёв, Серпухов, Одинцово, Орехово-Зуево, Ногинск, Сергиев Посад, Щёлково, Железнодорожный, Жуковский, Красногорск, Клин, Раменское, Воскресенск, Владимир

Газобетон или газосиликат, что лучше?

Дата: 22.06.2014

На сегодняшнем рынке строительных материалов представлено большое разнообразие ячеистых бетонов. Далеко не каждый из профессиональных строителей может сказать, что лучше — газосиликат или газобетон, пенобетон или керамзитобетон, а также в каких условиях применять тот или иной вид этого стройматериала. Давайте разбираться, чем же отличаются между собой блоки, в чем их достоинства и недостатки.

Что это такое?

Согласно ГОСТу, оба этих бетона относятся к ячеистым, или как их еще называют, пористым бетонам. В процессе изготовления внутри каждого из них образуются равномерно расположенные округлые поры-ячейки, диаметром от 1 до 3 мм.

Основное отличие между ними в способе затвердевания. Так, газосиликатные блоки затвердевают только в результате автоклавной обработки (под воздействием пара и давления), а газобетон может изготавливаться как методом автоклавного, так и неавтоклавного твердения.

Сравнительный обзор

Изготавливаются эти два вида ячеистых бетонов посредством перемешивания разнообразных компонентов. Основу газосиликата составляет смесь кварцевого песка с известью, придающая ему сероватый оттенок, а газобетона – портландцемент, из-за которого материалу присущ белый цвет.

По способу затвердевания и тот и другой вид могут быть автоклавными, но только газобетон бывает неавтоклавного твердения.

Представленная ниже таблица наглядно иллюстрирует, в чем разница газобетона и газосиликата:

Параметр

Газобетон

Газосиликат

Прочность (кг/ см2)

28-40

10-50

Марки по плотности

350, 400, 500, 600, 700

400 – 700 и выше

Коэффициент теплопроводности (Вт/мГрад)

0,10-0,14

0,15-0,3

Объемный вес (кг/м3)

400-600

200-600

Морозостойкость (количество циклов)

35

10

Водопоглощение (в %)

20

25-30

Стоимость (руб/1м3)

2800 — 3000

От 3000 — 4000

Звукоизоляция

средняя и ниже

высокая

Долговечность

Более 70 лет

От 50 лет и выше

Коэффициент паропроницаемости, (µ) мг/м·ч·Па

0,20

0,17 – 0,25

Проанализировав таблицу, можно понять, что газобетон превосходит газосиликат по морозостойкости.

Какой стройматериал лучше?

Те, кто собирается строить собственный дом, возникнет вопрос: так все-таки какой же из этих бетонов выбрать? Остановимся более подробно на достоинствах и недостатках каждого из них, сравнительно друг друга.

У изготовленных автоклавным методом блоков из газосиликата практически идеальная форма, что значительно облегчает их транспортировку, хранение и выкладывание. Применяются они и для возведения внешних и внутренних стен, а также различных перегородок. Кроме того, газосиликат лучше еще и тем, что его поры открыты и позволяют поверхности из него выстроенной, «дышать». Недостатком этого материала является его гигроскопичность, то есть способность накапливать и впитывать в себя влагу из окружающего воздуха.

То есть, если блоки, изготовленные из него не защитить особым образом, при нахождении в условиях повышенной влажности они будут накапливать в себе влагу. Если такое произойдет при резком понижении температуры, то стена, построенная из газосиликата, очень быстро промерзнет, а в дальнейшем будет растрескиваться и разрушаться. Таким образом, хорош газобетон тогда, когда уровень влажности высок, так как его водопоглощающая способность на 5-10% ниже, чем у газосиликата.

Достоинством газобетонных блоков является и то, что укладываются они на специальный клеевой состав, благодаря чему удается обойтись без «мостиков холода», так как швы всего лишь в 1-4 мм.


что лучше, газосиликат, газобетон и пенобетон, в чем разница, чем отличается, отличия

Строительство дома сопряжено с постоянным выбором: проекта, этажности, используемых материалов и т. д. От правильности решений будет зависеть надежность семейного очага. Холодный дом с вечно текущей крышей может стать постоянным раздором в семье. Избежать неприятных ситуаций поможет предварительная консультация на начальной стадии строительства с архитекторами и другими специалистами, которые помогут выбрать материал.

В последнее время все чаще стали использовать ячеистый бетон. Он подходит для тех, кто хочет в кратчайшие сроки построить теплосберегающее и надежное жилье. Среди разнообразия этого материала выделяют пеноблок и газосиликат, поэтому будет полезно узнать, в чем их сходство и отличие.

Различия

Чем газобетон отличается от пенобетона? Они отличаются внешне, так как отличие очевидно.  Сразу можно отметить, что пеноблок проигрывает, так как имеет серый цвет и неровные поверхности.

Это связано с разными технологиями производства этих двух материалов и особенным составом каждого из них. Газосиликат, наоборот, имеет четкие контуры и белый цвет.

Что лучше пеноблок или газоблок отзывы, а так же другие характеристики материала описаны в данной статье.

Это обусловлено тем, что материал не содержит бетон, который имеет свойство окрашивать раствор в серый оттенок.

Пенобетонные блоки состоят из цемента, заполнителя-песка, воды, пенообразователя и добавок. Последние используются для придания материалу необходимых характеристик, которые обозначены в ГОСТе.

Пеноблоки и газоблоки разница и особенности строительного материала указаны в статье.

Газосиликатные блоки включают в себя портландцемент, песок, кальцевую известь, воду, газообразователь – алюминиевую пудру и ПАВ – сульфонол С. Для получения этого продукта используются только производственные условия и высокотехнологичное оборудование. Из приведенных компонентов формируется монолитный пласт заданной толщины, а затем он разрезается на блоки нужных размеров.

Что дешевле шлакоблок или пеноблок можно узнать в данной статье.

На видео рассказывается, что лучше: пеноблоки или газосиликатные блоки:

О том какая разница между пеноблоком и газосиликатным блоком можно узнать из данной статьи.

Пеноблок может производиться в домашних условиях. Иногда его изготавливают прямо на строительных площадках, что исключает его транспортировку. Но при этом надо учитывать, что при кустарном методе не всегда соблюдаются стандартные размеры, да и качество получаемого материала оставляет желать лучшего. Приготовленный раствор заливают в специальные формы, в которых он отстаивается и застывает.

Отличительные черты

У каждого из них имеются сильные и слабые стороны. Для удобства сведем общие характеристики двух материалов в таблицу.

Клей для кладки газосиликатных блоков цена и другие данные можно найти в статье.

СвойстваПенобетонный блокГазосиликатный блок
Влагостойкость, для надежности каждый из этих материалов нуждается в наружной гидроизоляцииНе впитывает воду, его показатель равен 10% от массы материала.Проявляет устойчивость, но при длительном воздействии влаги начинает ее поглощать. Он может впитать до 25% от своей массы.
ПлотностьЭтот материал сразу после изготовления имеет низкий показатель всего 500 кг/м3, но со временем он только укрепляется и его прочность растет. А через определенный период может достигать 1100 кг/м3. Многие производители после изготовления пенобетона оставляют его выстаиваться и тогда, при продаже его значение плотность будет намного выше.Его величина находится в пределах 500-700 кг/м3.
Морозостойкость

Могут выдержать одинаковое количество циклов от 25 до 35.

ПрочностьУступает своему газовому аналогу. Чтобы создать качественный продукт необходимо использовать дорогие пенообразователи, но фирмы-изготовители чаще всего экономят на них, чтобы понизить себестоимость изделия. Поэтому при выходе получаются низкие показатели, хотя в стандарте заложен показатель от 12 до 70 кгс/см2.Более надежный и крепкий. Имеет плотный состав, и одинаковое значение на всех поверхностях – 20-35 кгс/см2.
Теплоизоляция

Она практически одинакова, но пенобетон занимает более выигрышную позицию благодаря своей закрытой структуре. Внутри нее располагаются изолированные друг от друга пузырьки, а в газосиликатных блоках они сообщаются между собой и образуют плотную структуру.

ЭкологичностьПри его изготовлении добавляются специальные пенообразователи (белкового и искусственного происхождения), но они не оказывают на организм человека никакого воздействия.Образование пузырьков в газосиликате происходит за счет химической реакции между алюминиевой пудрой и негашеной известью. Выделяемый после нее водород полностью не уходит из получаемого продукта, его незначительная часть остается в блоках, даже после окончания строительства. При взаимодействии с влагой он начинает поступать внутрь здания. В большинстве случаев люди не реагируют на него, но если у кого-то ослабленный иммунитет, то это сразу же вызовет першение в горле и отдышку.
ПожароустойчивостьОба бетонных изделия отличаются высокой устойчивостью к огню. Газосиликатные блоки часто применяются для возведения пожаростойких стен.
Этажность домовИспользуется для возведения одно- и двухэтажных зданий, реже их количество может достигать трех.Применяется для строительства многоэтажных сооружений
УсадкаИмеет большой ее показатель, поэтому на его плоскости могут образовываться трещины и сколы. Со временем они приводят к разрушению стен и перегородок. Чтобы избежать таких последствий лучше материал перед строительством «выдержать».Не подвержен ей.
МонтажЕго кладку можно производить как на клеевой состав, так и на цементный. Если используется последний, то на выполнение работ потребуется больше времени.Кладка выполняется на клей, проходит она быстро и легко.
ОбработкаСложно поддается. Хотя при необходимости в нем можно просверлить аккуратные отверстия, но при небрежном отношении растрескиваний и крошения материала не избежать.С помощью обычного инструмента можно придавать абсолютно любые формы.
СтоимостьДоступная.Высокая.
РазмерыПри производстве в домашних условиях и необорудованных цехах, их точность далека от заявленных в ГОСТе.Его параметры полностью соответствуют стандартным.
Внешний видИмеют неровные края, требуется обязательная доводка наружной поверхности.Иногда их применяют без облицовочных работ.
ЗвукоизоляцияХуже из-за наличия пор больших размеров.Лучше, так как его структура более однородная.
АрмированиеНизкие прочностные характеристики требуют укрепления кладки, поэтому армируется каждый четвертый ряд.Не требуется.
Масса материалаОн тяжелее своего аналога.Имеет малый вес.

Учитывая их характеристики, строители уже давно определили какой материал и для каких целей применять.

Газосиликатные блоки технические характеристики и остальные данные строительного материала указаны в статье.

Особенности использования

Оба материала применяются для возведения новых зданий как частных, так и промышленных.

Применение пенобетона

Используя свойство этого материала противостоять влаге, его часто устанавливают на стыках «холод-тепло» и в местах, где повышенная влага. Пенобетонные строительные блоки применяют для кладки несущих стен, простенков, перегородок. Из них строят дома, коттеджи, гаражи, дачи и разные хозяйственные постройки, высота которых не превышает двух этажей.

О том какие плюсы и минусы имеют газосиликатные блоки, а так же узнать мнение экспертов,можно из данной статьи.

На видео – применение пенобетона:

О том какие существуют плюсы и минусы бань из керамзитобетонных блоков, а так же об различиях с пеноблоком можно узнать из данной статьи.

Также из них нередко выполняются полы в частных домах и в квартирах. Для большей комфортности применяют пенобетон разной плотности, а между ними укладывают слой теплоизоляции. Они также используются для отделки зданий, которые были построены из кирпича.

Уникальные характеристики газобетонных блоков создали стеновой материал с пористостью в пределах 85%. У него есть твёрдость камня и пористость дерева.

Применение газосиликатного блока

В первую очередь их него возводятся жилые дома. Этот материал используют при строительстве наружных и внутренних стен помещений, где влажность воздуха не превышает 60%. Если же необходимо в построенном из него доме создать комнату, в которой будет повышенная влажность, то необходимо защитить такие стены дополнительным пароизоляционным слоем.

Какие бывают виды блоков для строительства дома можно узнать из данной статьи.

Несмотря на некоторую схожесть с пенобетоном газосиликат все же имеет высокие прочностные характеристики, которые применяются для теплоизоляции зданий и тепловых сетей. Он хорошо крепится и зачастую с помощью него возводятся вентилируемые фасады.

На видео – применение газосиликата:

О том какое перекрытие использовать в доме из газобетона можно узнать из данной статьи.

Подводя итог, можно сказать, что газосиликат целесообразней применять при многоэтажном строительстве капитальных сооружений. А пенобетон лучше и экономичней использовать при кладке хозяйственных помещений и дач. Оба материала можно использовать для внутренних перегородок. Окончательное решение в пользу одного из них следует принимать, посоветовавшись со специалистами своего региона, которые подскажут, какие блоки лучше проявят себя в определенных климатических условиях.

Газобетон или газосиликат что лучше ?

Разнообразие строительных изделий вводит в заблуждение неспециалистов, которым необходимо приобрести тот или иной материал. Яркий пример – путаница между газобетоном и газосиликатом.

Внешнее сходство этих блоков не означает их полной идентичности, поэтому при выборе важно знать отличия, преимущества и недостатки каждого материала. Выбирая газосиликат или газобетон, стоит ориентироваться на технические параметры изделий и их сравнительную характеристику. На выбор между ними также влияют задачи строительства.

Что общего между газобетоном и газосиликатом

Основная общая черта материалов – близкие значения их характеристик. Потребность в конструкционных изделиях, которые помогут сэкономить на энергоносителях, подталкивает застройщиков к поиску материалов с оптимальным соотношением цена/качество.

Состав и свойства материалов сильные и слабые стороны

Если обобщать, газосиликат – это газобетон, обработанный в автоклаве – аппарате для быстрого затвердевания материала при повышенном давлении и температуре. Разница между газобетоном и газосиликатом состоит в особенностях производственного процесса.

Газобетон, как и газосиликат – это разновидности ячеистого бетона, который отличается пористой структурой. Благодаря этой особенности материал получается легким, но в то же время прочным. Из-за наличия пустот в блоках они имеют низкую теплопроводность.

Раствор газосиликата и газобетона – это смесь следующих материалов:

  • цемент;
  • песок;
  • известь;
  • вода;
  • газообразователь – алюминиевая пудра или паста;
  • специальные добавки для повышения числовых значений нужных характеристик.

Поскольку параметры изделий из газосиликата и газоблоков довольно близки, стоит выделить общие преимущества незначительно отличающихся материалов:

  • Невысокий коэффициент теплопроводности, который согласно ГОСТу на ячеистый бетон, начинается с 0,09 Вт*мС.
  • Морозоустойчивость. В технической документации каждого материала указано минимальное количество циклов заморозки-разморозки – 25. На практике, это число отличается у разных производителей. В связи с высокой конкуренцией, этот показатель обычно превышает значение 50, вне зависимости от вида газобетонных блоков.
  • Оптимальная плотность – обозначается буквой D. Она находится в диапазоне 300-1200 кг/м3. Самые плотные изделия используют при возведении стен. Для утепления применяют блоки с более низким показателем.
  • Марка прочности. Согласно ГОСТу, она составляет B1,5 – B15.
  • Экологичность. По этому показателю ячеистый бетон уступает дереву всего на 1 пункт.
  • Неподверженность горению.
  • Простота создания кладки объясняется легкостью распиливания и шлифовки материалов. При работе с газобетоном и газосиликатом не возникает необходимости в применении специального оборудования.
  • Высокая скорость строительства – обусловлена простой технологией укладки блоков и оптимальными размерами изделий.

Общим преимуществом обоих материалов является их доступность, что объясняется широким выбором производителей. Благодаря популярности материалов их выпускают в виде стеновых изделий, U-образных элементов.

Общие недостатки газосиликата и газобетона:

  • Высокая хрупкость. При транспортировке изделий они  часто подвергаются механическим воздействиями, что приводит к образованию сколов и увеличению количества забракованных блоков.
  • Высокая степень водопоглощения. Поскольку материалы гигроскопичны, они быстро впитывают влагу, что требует их продуманной защиты. При длительном воздействии воды изделия постепенно разрушаются.
  • Сложность закрепления различных предметов на стенах из ячеистого материала.
  • Невысокая степень адгезии с отделочными материалами.
  • Подверженность усадке и образованию трещин в результате этого процесса.

Учитывая общие минусы газоблоков, можно ориентироваться на возможности строительства.

Виды и сфера применения обоих материалов

Поскольку блоки газобетона и газосиликата – это разновидности ячеистого бетона, для них разработана одна классификация:

  • Конструкционные изделия имеют высокую прочность и способность выдерживать значительные нагрузки. Теплопроводность таких изделий более высокая, чем у остальных видов.
  • Конструкционно-теплоизоляционный газосиликат и газобетон чаще применяется застройщиками, поскольку за счет его использования снижается стоимость утепления.
  • Теплоизоляционный ячеистый бетон характеризуется высокой степенью теплоизоляции.

Газосиликатные или газобетонные блоки чаще используют для возведения первого и второго этажа загородных домов, хозяйственных построек. Зная, в чем разница между ними, можно определить конкретные задачи строительства.

Особенности технологии производства газобетона и газосиликата и изделий из них

По способу изготовления газосиликат мало отличается от газобетона. Процесс отличается лишь на заключительной стадии.

Отличить газосиликатный блок от газобетонного можно по процессу изготовления.

Оборудование и материалы

Ячеистые бетоны производят с применением различного оборудования:

  • Конвейер. Отличается высокой дороговизной.
  • Стационарные линии обладают меньшей производительностью, однако вклады в них существенно ниже, чем у конвейера.

Кроме комплекта оборудования, для производства ячеистых блоков необходимо подготовить погрузчики, грузовики, устройства, не входящие в стандартную комплектацию.

Ход процесса производства

Последовательность изготовления газобетона и газосиликата:

  • Из бункеров хранения сырье поступает в дозатор. Затем оно направляется в смеситель, где компоненты перемешиваются.
  • По окончании смешивания в состав добавляется газообразователь.
  • Бетон разливается в формы на 1/3. Их не заполняют, поскольку при вспучивании раствор будет увеличиваться в объеме.
  • После заполнения формы раствором необходимо удалить излишки.
  • Пласты бетона разрезают на типоразмеры.
  • Заключительный этап производства газосиликата – процесс автоклавирования. Именно в этом этапе заключается основное отличие газосиликатных блоков от газобетонных. Затем изделия отправляются на склад готовой продукции.

Хранить блоки ячеистого бетона можно как в помещении, так и на открытой площадке. Единственное условие – их необходимо защитить от воздействия влаги. Использовать готовые изделия в строительстве рекомендуется только спустя 28 дней после изготовления.

Сравнительный обзор материалов

Чтобы понять, что лучше: газобетон или газосиликат, важно ориентироваться на сравнительные характеристики материалов.

Газобетон или газосиликат

Газосиликатные изделия имеют существенные преимущества перед газобетоном. Это объясняется наличием лабораторного контроля  производства и применение специального оборудования при изготовлении, что гарантирует высокое качество строительного материала. Однако этот факт не ограничивает применение газобетонных блоков в жилищном строительстве – они отличаются повышенной огнеупорностью и прочностью.

Сравнительная характеристика эксплуатационных параметров, позволяющая выяснить, чем отличается газобетон от газосиликата:

ПараметрГазобетонГазосиликат
Процент водопоглощения от массы материалаот 16 до 25от 25 до 30
Морозоустойчивость3535
Марки плотности, кг/м3от D500 до D800от D350 до D900
Показатель теплопроводности, Вт/C*м20,15-0,390,11-0,16
Прочность на сжатие, МПаот 1,5 до 2,5от 1 до 5
Показатель паропроницаемости, мг/(м*час*МПа)0,120,17-0,25
Толщина кладки, см4030

При выборе блоков стоит ориентироваться на задачи строительства, ведь основные отличия газобетона от газосиликата заключаются в повышенной прочности последнего и его большем водопоглощении.

Сравнение изделий с другими популярными материалами

Поскольку газобетон и газосиликат обладают множество характеристик и определить, какие из них наиболее важны для определенного застройщика, невозможно, стоит сравнить популярные изделия из ячеистого бетона с другими стройматериалами:

СвойствоГазосиликатГазоблокКерамзитоблокПеноблок
Теплопроводность, Вт*мСот 0,09 до 0,34от 0,09 до 0,35от 0,14 до 0,45от 0,08 до 0,32
Прочность, Вот 1,5 до 150,5-12,5не меньше 3,50,5-12,5
Плотность, Dот 300 до 12003 от 00 до 1200от 400 до 2000от 300 до 1200
Морозоустойчивость, кол-во цикловот 15 до 150от 15 до 75не более 200от 15 до 100
Показатель усадки, мм/м20,30,5Не подвержен0,5
Водопоглощение, %25%30%18%16%
Подверженность горению
Сложность обработкиневысокаяневысокаявысокаяневысокая

Таким образом, газобетонные и газосиликатные блоки обладают определенными плюсами и минусами в сравнении с конкурентными материалами. Их различие состоит в цене готовых изделий и параметрах теплопроводности.

Чем отличается автоклавный газобетон от неавтоклавного?

Автоклавирование газобетона

В последнее время в связи с ростом популярности строительных блоков из ячеистых бетонов часто возникает вопрос: в чем отличие автоклавного газобетона от неавтоклавных материалов (пенобетона и неавтоклавного газобетона)? Постараемся ответить на данный вопрос в этой статье.

Распространены несколько терминов, обозначающих строительные материалы из ячеистого бетона – газобетон, пенобетон, кроме того есть такие характеристики, как автоклавный и неавтоклавный. Разберемся в определениях. Ячеистый бетон – это общее наименование всех легких бетонов, которые характеризуются наличием множества пор (ячеек) в своей структуре, которые придают улучшенные физико-механические свойства материалу.

По способу порообразования ячеистые бетоны делятся на пенобетоны и газобетоны. Как следует из названия, в одном материале для создания ячеистой структуры применяется химическая пена, а в другом газ.

Пенобетон –  застывший в поризованном состоянии цементно-песчаный раствор. Ячеистая структура в нем формируется за счет введения и «взбивания» химических пенообразователей. Как правило, цех по производству пенобетона («заводом» назвать эту фабрику крайне сложно), небольшой по площади с преобладанием ручного труда и неквалифицированного персонала. Объем производства крайне мал, оборачиваемость средств низкая, поэтому экономить в таком производстве приходится буквально на всем, что явно не способствует повышению качества готового продукта.

Насыщения бетона газом, выделяющимся при реакции извести и алюминиевой пасты – процесс достаточно сложный и требующий тщательного контроля за дозировкой этих компонентов. Обеспечить это возможно только на крупных заводах с качественным автоматизированным оборудованием, и еще недавно термин «газобетон» уже по умолчанию означал наличие автоклавной обработки. Так постепенно в сознании потребителя сформировалось устойчивое и вполне объективное мнение: пенобетон – это дешево и с посредственными характеристиками; газобетон – немного дороже, но значительно лучше качество и стабильные свойства.

В конкурентной борьбе за покупателя, производители пенобетона вместо снижения цены или улучшения качества своих изделий, решили просто уйти от полностью дискредитированного термина «пенобетон», заменив его более благозвучным – НЕавтоклавный газобетон. В сути своей материал не изменился, теперь в ту же химическую пену добавляется немного газообразователя, затем все также разливается в опалубку и раствор набирает прочность под открытым небом. Для конечного потребителя, кроме увеличения цены продукта, это переименование ничего не несет.

Что такое автоклавирование и для чего оно нужно?

Автоклавная обработка – пропаривание в металлических капсулах (автоклавах) при высоком давлении (12 атм.) и высокой температуре (191оС) – позволяет получить материал с такими свойствами, какие невозможно получить в обычных условиях. Автоклавирование газобетона производится не только для того, чтобы ускорить процесс твердения смеси. Основной смысл состоит в том, что в автоклаве в структуре газобетона происходят изменения на молекулярном уровне, и образуется новый минерал с уникальными эксплуатационными характеристиками — тоберморит. Поэтому автоклавный газобетон – это искусственно синтезированный камень, а неавтоклавные бетоны – фактически застывший в поризованном состоянии цементно-песчаный раствор.

Автоклавный  газобетон и неавтоклавные материалы принципиально различаются по целому ряду параметров, начиная от состава и заканчивая физико-техническими и эксплуатационными характеристиками.  А если быть точнее, автоклавный газобетон превосходит их по всем показателям.

Рассмотрим основные показатели:

1. Стабильность качества автоклавного газобетона

Автоклавный газобетон изготавливается только на крупном производстве и на стройплощадку попадает в виде готовых блоков. Производство автоклавного газобетона в кустарных условиях невозможно, так как при изготовлении необходимо контролировать одновременно несколько десятков процессов и параметров. Современные заводы автоклавного газобетона имеют высокую степень автоматизации (около 95%) и практически исключают влияние человеческого фактора на производственный процесс.

Автоклавный газобетон производится согласно современному ГОСТу 2007 года, что подтверждается протоколами испытаний, продукция имеет сертификат качества, и клиент может быть уверен в надлежащем качестве.

Для производства пенобетона и неавтоклавного газобетона не требуется большого завода и огромных капиталовложений, что обеспечивает низкий порог входа в этот бизнес. На практике это означает, что имея небольшую бетонно-растворную установку, опалубку и пару низкоквалифицированных рабочих, можно организовать кустарное производство с нестабильными показателями качества, гордо назвав это заводом или фабрикой по производству стройматериалов. Обеспечить в таких условиях стабильность характеристик продукта практически невозможно, поскольку дозирование компонентов производится вручную и, как правило «на глаз», а старый ГОСТ, которому уже больше четверти века, допускает производство таких изделий.

2. Прочность

Ячеистые бетоны изготавливают различной плотности: от 400 до 800 кг/м3 классом прочности на сжатие от В1,5 до В7,5. Самыми ходовыми являются плотности D500 и D600, при этом автоклавный газобетон на этих плотностях имеет класс по прочности на сжатие B2,5 и B3,5 соответственно.

Неавтоклавные же материалы значительно проигрывают автоклавному газобетону по физическим свойствам и прочности при одинаковой плотности. Например, при плотности D600 они имеют прочность на сжатие в два раза ниже, чем у автоклавного газобетона! Кроме того, производители неавтоклавных материалов просто не могут выпускать строительные блоки с плотностью ниже D600, т.к. эти блоки не имеют прочности вообще, а применять их в строительстве недопустимо.


 

3. Возможность крепления

Автоклавирование значительно повышает прочностные характеристики газобетона. В основание из автоклавного газобетона можно закрепить не только шкафы и полки, но и бойлеры, кондиционеры, вентилируемые фасады. Причем навесные фасады могут быть как из легкого композита так и из тяжелого керамогранита. Для этого применяются анкера с полиамидными распираемыми элементами. Например, один анкер 10х100 выдерживает нагрузку на вырыв по оси до 700кг, что вполне сравнимо с показателями полнотелого кирпича или тяжелого бетона.

Говорить о креплении в пенобетон или НЕавтоклавный газобетон просто не приходится. Гвоздь или шуруп просто вдавливается в стену руками, поэтому применение обычного механического крепежа здесь невозможно. Можно использовать для крепления НЕтяжелых предметов, например, зеркал или крючков для одежды, дорогостоящий двухкомпонентный химический анкер, что дает хоть какую-то иллюзию надежности. Но при навешивании на стену кухонного гарнитура даже использование «химии» не поможет, т.к. под весом шкафа с посудой произойдет разрушение неавтоклавного материала в месте крепления и из стены просто выпадет кусок блока.


4. 

Однородность

При производстве автоклавного газобетона газообразование происходит одновременно во всем объеме материала. Параллельно с газообразованием происходит отверждение. По мере роста массива на опалубку от закрепленных на ней специальных вибраторов периодически  подается импульс, который «встряхивает» массив, выгоняя из него крупные пузыри газа и исключая наличие раковин и воздушных мешков в готовых блоках. В результате поры одного размера и равномерно распределены по всему объему материала. Строительные блоки из автоклавного газобетона получают в результате разрезания большого массива, что гарантирует идеальное и одинаковое качество всех блоков.

Неавтоклавный газобетон и пенобетон получают введением в бетонную массу пены, газообразователей и перемешивая ее. В итоге часто случается, что пузырьки, как более легкие компоненты смеси, всплывают вверх, а более тяжелые наполнители оседают вниз. Получается неравномерное распределение пор в блоке, и за счет этого нет возможности добиться единых характеристик на разных блоках. Технология производства неавтоклавного газобетона исключает возможность встряхивания массива, поэтому наличие пузырей диаметром 50-70 мм – обычное дело. В таком материале часто возникают более холодные участки стены с выпадением конденсата на поверхности, а также трещины – в местах ослабления кладки крупными пузырями воздуха.


5. Усадка при высыхании

Набор прочности неавтоклавным ячеистым бетоном сопровождается значительной его усадкой, которая, в свою очередь, приводит к растрескиванию готовой кладки. Очень часто приходится видеть, как на недавно построенном и отделанном здании появляются множественные трещины, отслаивается отделочный слой, отваливается штукатурка. Эти процессы могут протекать в течение нескольких лет  –  того самого периода, пока идет «набор прочности».

Более того, трещинами испещрены блоки еще до того, как они уложены в кладку. Избавиться от усадки и трещин можно только автоклавированием, но в условиях кустарного производства это невозможно. Поэтому продавцы пенобетона и неавтоклавного газобетона идут на маркетинговые уловки, добавляя фибру (бумагу, пропитанную раствором серной кислоты и роданидом кальция) и называя это «армированным пенобетоном», устойчивым к растрескиванию. Для конечного потребителя, опять же кроме увеличения стоимости, фибра ничего не дает, ведь любой человек, даже не связанный со строительной индустрией, понимает, что если добавить бумагу в бетон, то никаких чудодейственных свойств, обещанных продавцами пенобетона, у материала не появится.

Нужно отметить, что чем легче (а как следствие, и теплее) материал, тем больше усадка. Опыт строительства показывает, что стены из неавтоклавных ячеистых бетонов  нельзя просто зашпаклевать и покрасить – внутри их приходится закрывать гипсокартоном, а для внешней отделки применять навесные фасады с креплением в перекрытие или кирпич.

Автоклавный газобетон полностью набрал прочность уже в процессе производства и автоклавирования, поэтому усадочные деформации ему не грозят.

К примеру, для автоклавного газобетона показатель усадки не превышает 0,4 мм/м, тогда как для неавтоклавных материалов он составляет в 10 раз больше – до 5 мм/м.


6. Экологичность

Автоклавный газобетон является абсолютно экологичным и аэропроницаемым материалом. Поэтому в доме из автоклавного газобетона всегда благоприятный микроклимат для проживания, сходный с климатом деревянного дома. Газобетон производится из минерального сырья, поэтому совершенно не подвержен гниению, а благодаря способности к регулированию влажности воздуха в помещении, полностью исключается вероятность появления на нем грибков и плесени.

Пенобетон может изготавливают из самого дешевого местного сырья: песка, отходов щебеночного производства, кроме того, в качестве пенообразователей применяются химические добавки, что, несомненно, снижает показатели экологичности дома из пенобетона. Также химические компоненты вносятся в блок с фиброй, пропитанной кислотами, хлоридами и роданидами. Даже присутствующие в небольших количествах, эти вещества способны выделяться и накапливаться в воздухе жилых помещений.

7. Геометрия

Точность геометрических размеров блоков из автоклавного газобетона регулируется современным ГОСТом, допустимые отклонения – по длине до 3 мм, по ширине до 2 мм, по толщине – до 1 мм. Блоки получаются путем резки струнами большого массива автоклавного газобетона и нарезать неровно на таком оборудовании просто нельзя.

Неавтоклавный газобетон и пенобетон разливают в опалубку с ограниченными циклами использования. Ввиду все той же экономии, опалубка используется в несколько раз дольше ее нормативного срока службы, а поскольку опалубка разборная, то в силу ее деформаций и износа собрать ее правильно с каждым разом становится все сложнее и сложнее – отсюда и отклонения по геометрии блоков. Для неавтоклавных газобетона и пенобетона отклонения геометрических размеров допускаются значительно больше – по толщине могут достигать 5 мм (старый ГОСТ 1989 года).

Большой разбег в геометрических размерах блоков из неавтоклавных материалов влечет ухудшение всех показателей кладки:

  • – увеличивается толщина слоя раствора, приводя к увеличению стоимости кладки
  • – увеличивается усадка кладки, т.к. помимо блоков усаживаются и толстые растворные швы
  • – образуются мостики холода из-за толстых растворных швов
  • – требуется трудоемкое выравнивание вертикальной поверхности стен
  • – расход цементно-песчаного раствора в 5-6 раз выше, чем кладочного клея
  • – увеличивается толщина и трудоемкость отделочных работ
  • – снижается прочность кладки

8. Теплоизоляционные свойства

Плотность пенобетона или газобетона напрямую влияет на их теплоизоляционные свойства и, чем материал плотнее,  тем теплоизоляция ниже. Пенобетон или неавтоклавный газобетон с низкой плотностью – это отличный теплоизоляционный материал, но прочность у него крайне низкая и применять его для кладки стен нельзя. В качестве конструктивного, особенно для несущих стен, требуется плотность выше, а значит, материал будет «холоднее». К примеру, для Иркутской области при использовании неавтоклавных материалов плотность ячеистого бетона должна быть минимум 700 кг/куб. метр. И без того невыдающиеся теплоизоляционные свойства значительно ухудшаются ведением кладки на цементно-песчаном растворе с толстыми швами. Это значит, что толщина стены из пенобетона или неавтоклавного газобетона с плотностью D700 для нормальной теплоизоляции без применения утеплителя должна быть около 65-70 см.

Стена из автоклавного газобетона обеспечивает такие же показатели теплозащиты и прочности при толщине всего 40 см, при этом достаточно плотности D400-D500. Объективно автоклавный газобетон обладает лучшими, чем неавтоклавные материалы, показателями прочности и теплоизоляции при меньшем весе.


Подведем итоги
  • – Автоклавный газобетон превосходит неавтоклавные материалы по физико-техническим свойствам благодаря автоклавной обработке.
  • – Автоклавный газобетон производится только на современных заводах со стабильным гарантированным качеством на уровне мировых стандартов.
  • – Автоклавный газобетон отличается от неавтоклавных материалов более высокой прочностью при меньшем весе.
  • – Автоклавный газобетон не дает усадки в процессе эксплуатации.
  • Блоки из автоклавного газобетона отличаются точными размерами и равномерной плотностью массива.
  • Автоклавный газобетон является искусственным природным минералом, что обуславливает высочайший уровень его экологичности.
  • Применение автоклавного газобетона позволяет возвести теплоэффективный дом с однородной стеной 400 мм, не требующей утепления.

Строительство домов из неавтоклавных материалов дешевле только на первый взгляд. Если учесть плохую геометрию неавтоклавных материалов, худшие показатели теплоизоляции и прочности по сравнению с автоклавным газобетоном, необходимость в большем расходе кладочных и выравнивающих материалов, то выгода строительства из неавтоклавных  материалов отсутствует. 

Газоблок и газосиликат: в чем разница? | АлтайСтройМаш

Ячеистые бетоны занимают высокие позиции в рейтинге популярности и распространенности среди основных стройматериалов благодаря своим теплоизоляционным свойствам, легкости и сравнительной дешевизне.

Газоблоки и газосиликат относятся к этой категории легких и «теплых» строительных конструкционных материалов. Но далеко не каждый строитель-каменщик ответит, в чем разница между газобетоном и газосиликатом. Проанализируем плюсы и минусы газосиликатных и газобетонных блоков, а также их ключевые отличия.

Чем отличается газобетон от газосиликата

Главная отличительная особенность в технологии производства.

  • Газосиликатные блоки – вспененный силикатный бетон. Его основные компоненты известь и песок в соотношении 0,24:0,62. Процесс отвердевания происходит под действием высоких температур (180-200°С) и давления (8-14 атм.), отчего он получил название автоклавный.
  • Газобетонные блоки – ячеистый бетон из цемента (портландцемент), песка и извести с добавлением вспенивающего компонента (алюминиевая пудра или паста). Газобетон может быть как автоклавным, так и неавтоклавным. Последний способ изготовления газоблоков предполагает атмосферное отвердевание или прогревание до температуры 40-60°С в простых прогревочных камерах.

Исходя из способа изготовления и сырья, первое, чем отличается газобетон от газосиликата – разница в цене и технико-эксплуатационных характеристиках.

Неавтоклавный газобетон в сравнении с газосиликатом значительно выигрывает по стоимости ввиду простоты производства. При этом наладить изготовление газобетонных блоков в необходимом для строительства объеме можно и самостоятельно прямо на строительной площадке.

Частные застройщики при возведении собственного жилого дома или хозяйственных построек нередко изготавливают газоблоки своими руками, что невозможно при использовании на стройке газосиликата.

Газоблок и газосиликат: разница в технических параметрах

Чтобы выяснить, чем отличается газосиликат от газобетона, определимся с основными критериями оценки технических характеристик любых конструкционных стройматериалов:

  • влаго- и паропроницаемость,
  • морозостойкость,
  • твердость и прочность,
  • теплопроводность,
  • пожаробезопасность и экологическая чистота,
  • усадка стен.

Результаты сравнения газоблоков и газосиликата представим в таблице.

Газосиликат или газобетон: что лучше?

Практически все технические характеристики в среднем одинаковы для газоблоков и газосиликатов. Исключение лишь в меньшей гидрофильности газобетонных блоков и их большей морозостойкости. Основное отличие газобетона в его стоимости за счет простоты изготовления и малых производственных издержках.

Под экономией подразумевается не разница в розничных ценах. Возможность сэкономить на общей строительной смете при самостоятельном изготовлении газоблоков из неавтоклавного газобетона – вот основное их преимущество над газосиликатом.

Такая экономия полностью исключена при выборе в качестве основного стройматериала газосиликатных блоков.

Газобетон активно используется в индивидуальном и крупном строительстве. Высокую рентабельность и быструю окупаемость оборудования для производства газобетонных блоков неавтоклавным способом компании «АлтайСтройМаш» уже оценили как частные застройщики, так и представители среднего бизнеса России, Казахстана и Узбекистана.

Отличия газосиликата и газобетона – чем отличается газосиликатный блок от газобетонного

Для уменьшения тепловых потерь в современном строительстве все чаще используются блочные конструкции из ячеистых бетонов – газосиликата и газобетона, которые обладают повышенными теплоизолирующими свойствами. Эти материалы постоянно соперничают между собой – их довольно часто путают даже профессионалы из-за одинаковых характеристик и аналогичной сферы применения.

Чтобы дать ответ на вопрос: «В чем отличие газосиликата от газобетона и что лучше?», давайте разберемся, из каких компонентов состоят эти материалы, а потом сравним их плюсы и минусы. Но перед этим важно уточнить, что газосиликат – это один из видов газобетона, только созданный методом принудительного твердения. Именно способ его производства и сказывается на основных характеристиках готовых изделий.


Технологии изготовления

Газобетонные изделия производятся из следующих компонентов: цемента (60%), извести, песка, воды и пудры из алюминия, которая необходима для образования полостей. Существует 2 способа их производства – неавтоклавного (естественного) твердения и автоклавного (синтезного).

Блоки, сделанные неавтоклавным способом, имеют сероватый оттенок, который им придает главный связующий компонент данного состава – цемент. Он же влияет и на прочностные качества: чем выше процент его содержания, тем прочнее будет стройматериал.

Газоблок автоклавного твердения – это и есть газосиликат. Он изготавливается исключительно в заводских условиях, на завершающем этапе производства подвергаясь обязательной термообработке в автоклаве. Данная технология делает изделия более прочными, надежными и увеличивает степень их теплоизоляции.

Газосиликат – это смесь песка (60%) и извести (25%) с примесью пудры из алюминия. Газосиликатный блок в отличие от газоблока имеет белый оттенок, который ему придает высокое содержание извести как основного наполнителя данного состава. Нередко в смесь добавляются специализированные добавки, повышающие качественные показатели стройматериала.

Использование недорогих газобетонных или газосиликатных блоков – оптимальное решение, которое все чаще применяется для малоэтажного строительства. Основные преимущества домов из ячеистых бетонов, которые добавляют им популярности: низкая теплопроводность, высокая морозостойкость, экологичность, пожароустойчивость и невысокая цена.

Выбор в пользу одного из них следует делать, исходя из анализа основных отличий газосиликата и газобетона, их преимуществ и недостатков.


Сравниваем характеристики

  1. Главное, чем отличается газосиликат от газоблока, это более высокие теплоизоляционные и прочностные качества благодаря равномерному размещению полых ячеек по объему готового изделия.

  2. А вот по таким показателям, как прочность и огнестойкость, опережает именно газобетон. И хотя повышенная прочность приводит к увеличению веса, что создает дополнительные нагрузки на фундамент, она позволяет применять материал для возведения сооружений с повышенной взрывопожарной и сейсмической опасностью.

  3. По морозоустойчивости газобетон также существенно превосходит соперника из-за более низкой водопоглощаемости.

  4. Заводское производство гарантирует строго выдержанную геометрию газосиликатных изделий, что позволяет уменьшить расход материалов, необходимых для их кладки (клея) и отделки (штукатурки).

  5. Здание из газосиликата имеет более красивый и эстетичный вид даже без дополнительной отделки.

  6. Чем еще отличается газосиликат от газобетона, так это более высокой ценой. Что объясняется со сложным процессом его изготовления.

По всем остальным показателям, таким как прочность, долговечность, скорость кладки, материалы почти не отличаются.

Какой материал выбрать 

Разобрав по пунктам, чем отличается газосиликатный блок от газобетонного, приходим к выводу: первый обладает большим количеством преимуществ. Это легко объясняется тем, что он производится по новым методикам в заводских условиях. Но это совсем не означает, что газобетонные изделия не находят применения при строительстве зданий. У них есть свои плюсы – прочность, водопоглощение, огнеупорность, цена – которые играют очень важную роль при выборе стройматериалов.

Выбирая между этими материалами, воспользуйтесь следующими рекомендациями:

  • для возведения второстепенных построек и перегородок внутри помещений имеет смысл использовать недорогой газобетон, что позволит уменьшить общие затраты на строительство;

  • капитальные сооружения лучше строить из более качественного газосиликата;

  • газосиликат не подходит для северных регионов страны, поскольку стены нужно будет дополнительно утеплять или повышать теплоемкость за счет увеличения их толщины;

  • газосиликат не рекомендован и для регионов с высокой влажностью, так как подобные условия приводят к быстрому охрупчиванию материала, а в итоге – к разрушению всего сооружения;

  • при возведении зданий из газобетона важно обращать внимание на качество блоков – высокий процент брака приведет к трещинам, перекосам, вытеканию клея через неровности и, как следствие, высокой теплопотере зимой;

  • газосиликат рекомендуется устанавливать на ленточном фундаменте с использованием армирования кладки, т.к. такие блоки имеют склонность к подвижкам, что может привести к разрушению здания.


И еще один совет

Перед покупкой материла важно определиться не только с основными отличиями газосиликатных блоков от газобетонных, но и с целью их использования. К примеру, чтобы утеплить стены или построить перегородки, достаточно купить блоки плотностью 300 кг/куб.м. А вот несущие конструкции многоэтажных сооружений нужно возводить из более тяжелых блоков плотностью выше 500 кг/куб.м.

Конечный же выбор всегда остается за потребителем. Ведь каждый застройщик отдает предпочтение определенному строительному материалу, руководствуясь исключительно собственными целями, взглядами и приоритетами.

Газобетон или газосиликат, что лучше? Принципиальные отличия газосиликата от пенобетона.

Выбирая между прокладками и пеноблоками, не забывайте о газосиликатных блоках. Сравнительная таблица и ключевые описания мы приводили ранее. Настал момент разобраться, чем отличаются газобетон от газосиликатных блоков.

Отличия в составе

А другой строительный материал изготавливается на основе ячеистого бетона.Но в рецептуре раствора для газобетонных блоков больше цемента, а в составе – газосиликатная известь.

Различия в технологиях

Процесс изготовления газосиликатных блоков обязательно включает прохождение химического реактора – автоклава, где при температуре и / или давлении компоненты смешиваются, тушатся и затвердевают. При производстве газобетонных блоков этим этапом можно пренебречь.

Отличия в характеристиках

Газосиликатные блоки лучше газобетона по звукоизоляции и прочности, имеют меньшую усадку.Строя дом из газосиликатных блоков, можно использовать меньше отделочных материалов, а значит, сделать стены тоньше, но не хуже.

Использование газоблоков и газосиликатных блоков при строительстве дома бесспорно лучше пенобетона. Прочность и качество за счет более сложного производственного процесса сделают ваш дом надежнее и долговечнее. К тому же геометрия фигур из пеноблоков практически всегда ниже из-за «кустарного» способа изготовления.И самое главное, дома из газобетона и силикатных блоков можно оставить без внешней отделки, а это немалая экономия!

Список российских производителей:

  • ЦСЕЛЛА-аэроблок-Центр, Московская область, г. Можайск;
  • ООО «Очаковский комбинат Жбы», г. Москва;
  • Интерлайн, Москва;
  • ОАО «Ступинский завод праздничного бетона», Московская область, г. Ступино;
  • ОАО «Рекубинетон», г. Москва;
  • ОАО «Комбинат« Красный Строитель », г. Москва;
  • ОАО «АэроК СПБ» (бывшая ЛСР «Газобетон»), г. Санкт-Петербург.Петербург;
  • 211 производство ЖБИ, Санкт-Петербург;
  • ЗАО «Евробобетон», г. Санкт-Петербург;
  • ЗАО «Изоляционный завод СЗПЭК», г. Санкт-Петербург;
  • ОАО «Н + Н», г. Санкт-Петербург;
  • ЗАО «Воронежский завод строительных материалов», г. Воронеж;
  • ОАО «Лискигазосиликат», Воронежская область, г. Лиски;
  • ООО «Завод строительных материалов» г. Белгород;
  • ООО «Барнаульский праздничный комбинат», г. Барнаул;
  • ООО «Рефтинское объединение« Теплит », Свердловская область, г. Березовский;
  • Филиал «Завод ячеистых бетонов № 8» ФГУП «Усть №8 Специальных Спецпредложений России », г. Ижевск;
  • ОАО «ЗББФ Бетфор», г. Екатеринбург;
  • ОАО «Костромской силикатный завод», г. Кострома;
  • ООО «Казанский завод силикатных стеновых материалов», г. Казань;
  • ООО «ГАЗОБЕТОН», г. Тула;
  • ООО «Кубанский завод пенобетон», г. Краснодар;
  • ЗАО «Курский завод силикатного кирпича», г. Курск;
  • ОАО «Липецкий комбинат силикатных изделий (Lix)», г. Липецк;
  • ОАО «Липецкий завод домостроительных изделий» (ЛЗИД), г. Липецк;
  • ОАО «Новолипецкий металлургический комбинат», г. Липецк;
  • ОАО «Завод сетчатых бетонов», Республика Татарстан, г. Набережные Челны;
  • ЗАО «ИНТЕГРОПРОМ», г. Кострома;
  • ОАО «Главносибирсктрой», завод «Сибит», г. Новосибирск;
  • ООО «Агротехника», г. Нижний Новгород;
  • ОАО «Кировгазосиликат», г. Киров;
  • ООО «Комбинат пористых материалов» г. Омск;
  • ОАО «Пермский завод силикатных панелей», г. Пермь;
  • ЗАО «Новые строительные технологии», г. Ростов-на-Дону;
  • ОАО «Новотроицкий завод силикатных стеновых материалов», Оренбургская область, г. Новотроицк;
  • ОАО «Коттедж», г. Самара;
  • ОАО «Ковыкский завод силикатного кирпича» – Республика Мордовия, Ковыкский район, пос.Силикат;
  • Завод автоклавного газобетона группа заводов ЗАО «ИНСИ», г. Челябинск;
  • ЧелябинскСтройМатериалы, ООО, г. Челябинск;
  • ОАО «Тверской завод сотовых бетонов», г. Тверь;
  • ООО «Эко», г. Ярославль;
  • ЗАО «Саратовский завод строительных материалов», г. Самара.

Список белорусских производителей

  • ОАО «СморгоньСиликатобетон», Гродненская область, г. Сморгонь;
  • ЗАО «Могилевский комбинат силикатных изделий», г. Могилев;
  • ОАО «Обудова», г. Минск;
  • ООО «Безон-Бел», г. Минск;
  • ООО «Газосиликат», г. Могилев;
  • ООО «Кубок», г. Минск;
  • ОАО «Гродненский КСМ», г. Гродно;
  • ООО «Стабы-Бел», г. Минск;
  • ОАО «ГомельстройМатериалы», г. Гомель;

Список украинских производителей

  • ООО «Аэрок», г. Киев;
  • ООО «Завод строительных материалов им.1 “, Херсонская область, г. Новая Каховка;
  • ООО «Икс Плюс Х Украина» Киев
  • КСЕЛЛА-Украина, ООО, Одесса
  • ЧП Foods S.L., г. Житомир;
  • ООО «Круг-Стройкомплект», г. Черкассы;
  • Корпорация “Харьковские стройматериалы”, г. Харьков;
  • ООО «Силикатобетон», г. Сумы;
  • ОАО «Житомирский комбинат силикатных изделий», г. Житомир.

Сейчас ячеистый бетон, который относится к знаменитому народу газобетону, пенобетон и газосиликат чрезвычайно популярны, особенно в частном строительстве.Однако многие не до конца понимают разницу между ними, в частности разницу между газобетоном и газосиликатными блоками, и она есть.

Отличие газобетона от газосиликата заключается в их составе и способе обработки, поэтому остановимся более подробно на способе производства.

Особенности производства

В составе газобетонного блока цемент (это основной компонент), песок, известь, вода и алюминиевая пудра, гарантирующая образование пузырьков воздуха.Блоки Foottonal могут затвердевать как в естественных условиях, так и в специальных автоклавах. Второй способ, конечно, лучше с добавлением источника питания, надежности, теплоизоляции и т. Д. Готовый блок самовозвращения выглядит серым, так как цемента много, автоклав почти белого цвета.

Газосиликатные блоки хоть и относятся к ячеистым бетонам, но имеют несколько иной состав. Преобладает песок – 62%, известь – 24%, присутствует алюминиевая пудра. Готовый состав затвердевает только в автоклавных условиях.В результате получаются белые блоки.

Стоит отметить, что на самом деле некоторые отечественные производители находят нечто среднее между газобетоном и газосиликатом – их добавляют в известь и цемент.

Преимущества газобетона и газосиликата

Прежде чем приступить к сравнению, стоит отметить некоторые общие черты этих типов ячеистого бетона. Так, и газобетон, и газосиликат обладают прекрасными тепло- и звукоизоляционными свойствами, они дешевле кирпича и намного превосходят его, морозостойкие, пожаробезопасные, паропроницаемые, простые в обработке, монтаже и отделке. , прочны.Все эти качества достаточно выражены, но все же немного отличаются в этих двух материалах.

Преимущества газосиликата перед газобетоном

В зависимости от состава готовые блоки обладают определенными свойствами, которые мы можем рассматривать как положительные или отрицательные, отталкиваясь от определенного идеального строительного материала. Стоит отметить, что вопрос, какой материал лучше – газиликат или газобетон, достаточно спорный и окончательного ответа не имеет, но вы можете отозвать этот ответ для себя или для конкретной ситуации.

  1. В результате изготовления газосиликатных блоков пузырьки воздуха распределяются по объему более равномерно, поэтому прочность Такие блоки выше по сравнению с газобетоном. И в результате у этой стены реже появляются трещины и усадки. Именно поэтому газосиликат хорошо использовать для возведения несущих перегородок, из него можно строить дома высоких этажей и все это при плотности 600 кг / м3. Точно так же и для газобетона, если вы хотите построить дом в 2-3 этажа, лучше использовать блоки плотностью 800-900 кг / м3 – по правилам, а на практике блоки часто используются с меньшей плотностью, но тогда последствия трудно предсказать.
  2. Благодаря такому более правильному расположению пузырьков воздуха газосиликат имеет лучшие характеристики по шумоизоляции . Итак, если этот показатель для вас принципиален, а к зданию выдвигаются требования по минимальному звуковому проходу, лучше выбрать газосиликатный.
  3. Если кому-то важны чисто эстетические свойства , то газосиликат имеет несколько белый оттенок в автоклавном газобетоне и значительно выделяется на фоне неавтоклавного.
  4. Gasilicat обладает лучшими тепло- и звукоизоляционными свойствами . Это опять же связано с особенностями строения газосиликатного блока. Но в этом плане не стоит отказываться и от газобетона, который к тому же имеет прекрасные теплоизоляционные свойства, которые лишь немного уступают газосиликатным блокам, а в некоторых случаях вообще не уступают, а даже превосходят газо- силикатные индикаторы.

Преимущества газобетона перед газосиликатом


Выход

На самом деле для строительства одно- или двухэтажного дома он отлично подходит для газобетона и газосиликатных блоков, тем более, что сами отечественные производители иногда дают одно за другое.По своим характеристикам кардинальных и принципиальных отличий они не имеют, но все же некоторые особенности есть. Итак, газосиликатные блоки прочнее, но за эту прочность придется заплатить, а в остальном все характеристики очень похожи, а разница между ними буквально незначительна.

Отличие газобетона от газосиликата


Расширенный ассортимент строительного сырья, предлагаемого предприятиями, затрудняет принятие заказчиком решения о выборе необходимого материала для возведения конструкции.Желая обеспечить долгую эксплуатацию, высокую прочность, экологию возводимого здания застройщик активно использует газобетон, газосиликат, а также керамзитобетон и пенокомпозиты.

Различные строительные изделия, используемые при возведении жилых и производственных помещений, различаются способом изготовления, эксплуатационными характеристиками, внешним видом и, естественно, ценой.

Не владею особенностями строительной терминологии и характеристиками, прекрасно рассматриваю газобетон и газосиликат со словами-синонимами.Обсуждая особенности использования материалов, их часто называют просто блоками.

В настоящее время при возведении малоэтажных домов используются блоки из легких ячеистых типов бетона – газобетона и газосиликата –

Выбор неподходящего материала для решения строительных задач приводит к нарушению технологии строительства, снижает качество работ по перепланировке, непредвиденным финансовым затратам. Зная отличие газобетона от газосиликатного, можно избежать серьезных ошибок.Подробно рассмотрим, чем газобетон отличается от газосиликатного.

Визуальные отличия

С первого взгляда легко определить, что это за счетчик топливобетонный или газовый. Зная, что газосиликатный блок не содержит цемента, а газобетон образован цементом, который является связующей основой, становится понятно, почему есть различия в цветовой гамме:

  • белый цвет газосиликатных блоков связан с высоким содержанием силиката (извести) и отсутствием цемента в композитном массиве, который твердеет автоклавным методом;
  • Серый оттенок газобетона определяет цемент, который является основой массива, который естественным образом приобретает твердость.

В зависимости от концентрации цемента, являющегося основой газобетонного блока, и извести, входящей в состав газосиликата, изделия могут иметь незначительные различия в цветовой гамме. Есть светло-серая палитра газобетонных блоков, а также серо-белые оттенки газосиликатных изделий.

Разница между ними заключается в количественном составе сырья и в том, на какой стадии оно входит в производственный процесс

Структура массива

Газиликат и газобетон имеют еще одну отличительную особенность – это гигроскопичность.Повышенная гигроскопичность газосиликата способствует насыщению бетонного массива влагой, что способствует постепенному разрушению бетона под действием перепада температур. Газобетон обладает повышенной устойчивостью к впитыванию влаги, отличается более прочной структурой бетонного массива. Легко провести эксперимент, погрузив каждый из указанных материалов в воду.

Несмотря на разную степень гигроскопичности, блоки требуют защиты ячеистой поверхности штукатуркой.Помещения, построенные из ячеистого бетона, обеспечивают комфортную температуру, микроклимат, благоприятный для проживания.

Характеристики ячеистого бетона

Разберемся, в чем разница между материалами, каждый из которых относится к разновидностям ячеистых бетонов:


Особенности характеристик

Чтобы ответить на вопрос, какой материал лучше использовать для строительства, газиликатный или газобетон, остановимся на характеристиках этих ячеистых материалов, каждый из которых характеризуется свойствами, структура определяется эксплуатационными параметрами:

  • прочностные характеристики газосиликата превышают прочность газобетона, что связано с более равномерной концентрацией воздушных полостей в бетонном массиве;
  • Газоблоки
  • из силикатных композитов незначительно отличаются массой, что увеличивает силу тока на фундамент и немного усложняет выполнение работ, связанных с кладкой;

Гасиликат – разновидность ячеистого бетона

  • теплоизоляционные характеристики силикатного бетона выше, чем у изделий из газового композита, что связано с более равномерной концентрацией пор воздуха.Это позволяет использовать газосиликатные изделия для строительства зданий, отличающихся комфортным температурным режимом;
  • повышенная устойчивость к воздействию отрицательных температур и длительных циклов замерзания и оттаивания, газобетон имеет превосходный силикатный блок, склонный к интенсивному влагопоглощению;
  • , в отличие от пенобетона, силикатные блоки имеют правильную геометрию, а также характеризуются уменьшенными размерами допусков. Это облегчает кладку, позволяет снизить расход клеевой смеси и состава для выполнения штукатурки;
  • эстетическое восприятие белых зданий, построенных из газосиликата, намного выше по сравнению со строительством из серого газонаполненного бетона;
  • более высокая стойкость к открытому огню у газобетона, хотя оба материала обладают хорошей огнестойкостью;
  • Срок службы строений, основу которых составляют газобетонные и газосиликатные блоки, достаточно велик.Оба материала используются в жилищном и промышленном строительстве непродолжительное время, поэтому сделать вывод о долговечности того или иного из них проблематично.

Перечислив эксплуатационные характеристики, стоит остановиться на финансовой стороне. При равных размерах изделий газосиликатные изделия характеризуются повышенной ценой по сравнению с газобетоном, что связано с особенностями технологии изготовления.

Проблема выбора

Изучив эксплуатационные характеристики блоков из ячеистого бетона, детально изучив газосиликатный и газобетон, можно сделать вывод о наличии серьезных эксплуатационных преимуществ у силикатных изделий по сравнению с изделиями из пенобетона.

Использование для производства силикатных материалов специализированного оборудования, наличие лабораторного контроля, гарантирует высокое качество строительного материала. Естественно, что себестоимость продукции влияет на цену продукции. Этот фактор никоим образом не ограничивает использование газобетона в домостроении. Материал отличается доступной ценой, повышенной влагостойкостью и огнеупорностью.

Оптимальным решением в сфере малоэтажного строительства является использование экономичных газосиликатных или газобетонных блоков.Выбор в пользу того или иного нужно делать на основании досконального изучения материала, анализа достоинств и недостатков.

Структура и внешний вид бетона

Газобетон и газобетон относятся к ячеистым бетонам, поэтому оба продукта схожи и конструктивно. Оба материала состоят из большого количества пор, заполненных воздухом, благодаря чему стены обладают высокими теплоизоляционными свойствами. Количество ячеек определяет типы блоков в обоих случаях – чем меньше, тем сильнее блок.Однако более высокие марки проигрывают в теплоизоляции.

Гасиликат белый, что позволяет использовать известь в качестве заполнителя. Газобетон имеет темно-серый оттенок из-за использования цемента в качестве вяжущего компонента.

Особенности производства

Компоненты топливного блока изготовлены из смеси воды с цементом (50-60%), песка, извести и алюминиевой пудры, которая работает как тороид. Блоки упрочняются естественным или усиленным способом. Второй способ увеличивает прочность, надежность, теплоизоляцию готового изделия.

Газосиликатные блоки получают из 62% песка, 24% извести с добавкой алюминиевой пудры при автоклавном твердении.

Общие характеристики

Распределение пор в газосиликате более равномерное, чем в газобетоне, поэтому его прочностные и теплоизоляционные свойства несколько выше. Масса газобетонного блока больше, поэтому его укладка сложнее и требует более мощного фундамента. Автоклавный бетон имеет точную геометрию, поэтому считается более экономичным за счет уменьшения расхода клея на кладочные и отделочные материалы.Стены из газосиликатной кладки больше, возводятся легче и быстрее.

Газиликатная теплоизоляция превосходит. По морозостойкости он уступает газобетону, так как последний имеет меньшую степень водопоглощения. Благодаря тому, что он пропускает воду, не впитывая ее, в доме создается благоприятный микроклимат. Гасиликат, напротив, способен впитывать влагу, от которой постепенно начинает разрушаться.

Белый цвет газосиликатных блоков выглядит эстетично, поэтому стены не нуждаются в дополнительной декоративной отделке.Огнестойкость у газобетона выше, хотя по шумоизоляции уступает газосиликатному. Долговечность обоих материалов оценить сложно, так как их начали использовать относительно недавно. Один объем блоков из газосиликата при покупке будет стоить дороже, чем из газобетона, что связано с более сложной технологией изготовления. Хотя стоимость самой кладки из обоих материалов практически одинакова.

Сравнение материалов

Чтобы подробно сравнить оба строительных материала, вам следует ознакомиться с основными преимуществами и недостатками одного перед другими.

Плюсы газиликата перед газобетоном


Важным преимуществом газосиликата является отсутствие «усадки».

Состав сырья определяет его свойства, которые являются основными параметрами для сравнения. Равномерность распределения образующихся пузырьков воздуха зависит от взаимодействия компонентов сырья. В этом газобетонные изделия уступают газосиликатным блокам. За счет такой однородности увеличивается прочность автоклавного агрегата, поэтому его стенки практически не дают усадки и не растрескиваются.Это качество определяет возможность использования газосиликатов при создании несущих перегородок, возведении многоэтажных домов. В этом случае плотность материала составляет 600 кг / м3 и выше. Из газобетона можно построить двух- или трехэтажный дом только при его плотности 800-900 кг / м3.

Более однородная структура газосиликатного продукта увеличивает его шумоизоляционные свойства, поэтому при строительстве зданий с хорошей шумозащитой следует выбирать именно этот материал.Благодаря автоклавной обработке в газосиликатных блоках получается более ровная и гладкая поверхность приятного белого цвета. Материал стен нельзя декорировать, что позволит сэкономить на отделке. По тепло- и звукоизоляционным характеристикам газосиликат немного превосходит второй продукт. Также это позволяет сэкономить на расходных материалах.

Выбирая оптимальный вариант стройматериала, встает вопрос – газосиликат или газобетон, что лучше? Такие блоки из ячеистого бетона часто используют для возведения стен зданий и перекрытий.У них много общих свойств, из-за которых они конкурируют друг с другом. По этой причине люди задаются вопросом, выбирая газобетон или газосиликат, в чем разница? Их отличия обусловлены способом приготовления.

Характеристики газобетона и газосиликата

Стоит более подробно рассмотреть отличительные качества каждого из материалов:

  • Газобетон – композитный материал, который изготавливается по классическим схемам, когда процесс твердения происходит в естественных условиях.Для изделий характерно наличие пористой структуры, когда в них равномерно расположены воздушные участки сферической формы, а также диаметром 3 мм. Вяжущий элемент – портландцемент, количество которого в составе газобетонных блоков превышает 50%. По его концентрации определяется цвет продуктов и основные свойства материала;
  • Газиликатные изделия также имеют воздушные камеры. Основные элементы, которые используются для их создания, – это кварцевый песок, а также известь.Обычно соотношение компонентов составляет 3К1. Для процесса газообразования в состав добавляют алюминиевый порошок, а также воду для доведения раствора до нужной консистенции. Далее смесью заливаем особую форму, которую должен получить готовый строительный материал. Производство осуществляется по автоклавной технологии, когда изделия подвергаются термообработке, помещаются в специальные камеры, в которые нагнетается высокое давление. В итоге массив разрезается на требуемые размеры силикатного газобетона.

Учитывая, что оба типа строительных материалов представляют собой пористый бетон, каждый из них имеет свои особенности, определяющие, чем газобетон отличается от газосиликата.

Внешняя разница


Неподготовленный человек, впервые увидевший такие стройматериалы, не сможет дать точного ответа, где газосиликатный блок, а где газобетон. Но у них есть свои визуальные отличия, которые обусловлены их составом и технологией производства.Например, в процессе изготовления силикатных изделий портландцемент не используется. Но при создании газобетона он нужен, так как является его вяжущим элементом. Этот фактор влияет на цвет изделий, что является внешним отличием газосиликатных блоков из газобетона:

  • Итак, первые созданы автоклавным методом и содержат большое количество извести, из-за чего имеют белый цвет;
  • У вторых изделий приобретение характеристик происходит в условиях естественной заливки с применением портландцемента, который придает им серый оттенок.

В связи с изменением количества связующего элемента в материалах, их цветовые отклонения от других аналогичных изделий. Так, при увеличении / уменьшении содержания цементного газобетона его цвет может меняться, начиная от темно-серого и заканчивая светло-серым. Но у силикатных вариантов цветовая гамма начинается с ярко-белого цвета и заканчивается серовато-белым цветом. Кроме того, разница между аналогичными стройматериалами заключается в разном уровне гигроскопичности:

  • Гасиликат с повышенной влажностью быстро впитывается, из-за того, что при возникновении резкого перепада температур приводит к нарушению целостности блоков;
  • В изделиях из газобетона труднее достать жидкость, что связано с закрытием воздушных пор.Благодаря этому такие материалы обладают хорошей прочностью и влагостойкостью.

Такие блоки требуют отделки из-за пористой внешней поверхности. Чтобы создать с их помощью комфортные условия в помещении, требуется провести правильную внешнюю и внутреннюю отделку.

Преимущества газового силиката


Этот тип строительных блоков популярен. Он производится с использованием извести в качестве основного связующего элемента и обрабатывается автоклавным методом.Его преимущества заключаются в следующих свойствах.

  • Прочность. Благодаря технологии создания блоков они принимают равномерное распределение по объему пузырьков воздуха, что позволяет газиликату иметь высокие показатели прочности. Он немного склонен к появлению трещин, а также к усадке.

При идентичных показателях плотности газосиликатные изделия имеют в 1,5 раза более высокий уровень прочности, чем газобетон.

  • Шумоизоляция.Благодаря наличию увеличенного количества пор внутри материалов обладает хорошими шумоизолирующими свойствами;
  • Удельный вес. Из-за меньшей массы подобных блоков их использование меньше, чем требуется по несущей способности фундамента. Это позволяет снизить затраты на обслуживание при их применении;
  • Блочная форма. В связи с тем, что после автоклавной обработки материал разрезается до необходимых размеров, допустимые отклонения не превышают 3 мм;
  • Эстетика.Здания, возведенные из белого газосиликата, имеют более привлекательный вид.

Преимущества газобетона


Даже с учетом меньших показателей прочности и теплоизоляции, между пенобетоном и газосиликатом есть отличия, говорящие в пользу первого пестрого:

  • Поглощение влаги. Такие изделия обладают низким уровнем влагопоглощения, что связано с меньшим объемом пор в структуре изделий.Но при использовании на них нужно создать специальное защитное покрытие;
  • Цена. Самым существенным фактором, влияющим на выбор материала, является его стоимость. В этом плане газобетон более доступен;
  • Морозостойкость. Газобетон обладает повышенной устойчивостью к отрицательным температурам, что необходимо для использования строительных материалов в регионах с суровым климатом. Это связано с его способностью выдерживать многократные заморозки с последующим оттаиванием без потери целостности;
  • Огнестойкость.Учитывая, что газосиликат также обладает хорошей огнестойкостью, газобетон – лучшие показатели устойчивости к повышенным температурам, а также открытому огню.

Учитывая, чем отличаются газосиликатные блоки от газобетонных блоков, стоит отметить, что оба вида материалов при правильном использовании обеспечивают длительный срок эксплуатации конструкции.

Какой агрегат выбрать для строительства

Определив, что он лучше для строительства дома, специалисты рекомендуют выбирать газосиликат, превосходящий многие показатели газобетона.Это связано с тем, что силикатные материалы производятся на специальных предприятиях, где предполагается качество продукции. Для этого применяется специальное оборудование, проводятся лабораторные испытания. Но это сказывается на цене, что делает материал дороже.


Многие застройщики из-за большей доступности и малой гигроскопичности отдают предпочтение газобетону. Применяется для возведения стен в монолитно-каркасных конструкциях. Использование каждого материала возможно для одних и тех же целей при соблюдении технологических требований.Всего такая продукция используется в следующих сферах:

  • Малоэтажное жилищное строительство;
  • Строительство промышленных или торговых объектов;
  • Строительство спортивных сооружений;
  • Строительство общественных зданий.
  • Область применения таких блоков определяется массой и прочностью:
  • Суровые варианты, имеющие большую плотность, можно использовать для возведения капитальных стен или перегородок в малоэтажном строительстве;
  • Среда по показателям продукции конструктивно теплоизоляционная.Поэтому их используют для возведения частных домиков или коттеджей;
  • Изделия низкой прочности предпочтительно использовать для создания теплоизоляции, а их использование для возведения нагруженных конструкций запрещено.

Отличие газобетона от газосиликата заключается в технологии создания таких блоков и их основных характеристиках. Каждый сам определяет, какой стройматериал предпочтительнее для возведения той или иной постройки. Важно ориентироваться на технические характеристики материалов и финансовые возможности.

Автоклавный и неавтоклавный газобетон

Автоматизированные линии для производства газобетона


Газобетон
– это вид выдувного бетона. Газобетон – это искусственный камень со сферическими порами, равномерно распределенными по его объему. Газобетон получают из смеси связующего, кремнеземистого компонента и воды с добавлением газообразующих и модифицирующих агентов.

Портландцемент и известняк (газосиликат) обычно используются в качестве связующего компонента.В качестве кремнеземистого компонента обычно используются зола ТЭЦ, гранулированный доменный шлак и кварцевый песок. Как правило, алюминиевый порошок действует как газообразующий агент. Добавление алюминиевого порошка в смесь вызывает химическое изменение, которое приводит к выделению водорода. В свою очередь водород образует поры. В качестве модификаторов используются регуляторы структурообразования и развития пластической прочности, отвердители и пластификаторы.


Типы газобетона

Существует много различных типов газобетона, которые классифицируются по следующим критериям:

1.По функциональным возможностям:

  • конструкционный;
  • конструкционные и теплоизоляционные;
  • теплоизоляционный.

2. По условиям отверждения:

  • автоклав (синтетическая закалка) – закалка в среде насыщенного пара при давлении выше атмосферного;
  • неавтоклавное (гидратное упрочнение) – закалка в естественных условиях с электронагревом, в среде насыщенного пара при атмосферном давлении.

3. По виду связующего компонента:

  • известняк;
  • цемент;
  • смешанный;
  • шлак;
  • ясень;

4. По типу кремнеземистого компонента:

  • природные материалы: кварцевый песок, посыпанный мукой, и другие виды песка;
  • вторичные продукты промышленности: зола уноса ТЭЦ, зола гидроочистки, побочные продукты различных руд, отходы ферросплавов и др.

Основные характеристики газобетона

Виды прочности автоклавного и неавтоклавного газобетона классифицируются по классам прочности на сжатие согласно СТ СЭВ 1406.

Для газобетона указаны следующие классы: В0,5; В0,75; В1; В1,5; В2; В2,5; В3,5; В5; В7,5; В10; В12,5; В15.

Для конструкций, спроектированных без учета требований СТ СЭВ 1406, показатели прочности газобетона на сжатие характеризуются марками: М7,5; М10; М15; М25; М35; М50; М75; М100; М150; М200.

По средней плотности указаны марки газобетона в сухом состоянии: D300; D350; D400; D500; D600; D700; D800; D900; D1000; D1100; D1200.

Физико-механические свойства конкретных типов бетона приведены в таблице 1.

Таблица 1 – Физико-механические свойства типов бетона

Тип бетона

Марка бетона

Бетон для автоклавов

Бетон неавтоклавный

по средней плотности

Класс по прочности на сжатие

Марка по хладостойкости

Класс по прочности на сжатие

Марка по хладостойкости

D300

В0,75

В0,5

Теплоизоляция

D350

В1

Не указано

В0,75

D400

В1,5

В0,75

В1

В0,5

Не указано

D500

В1

В0,75

Конструкционные и теплоизоляционные

D500

В2,5

В2

От F15 до F35

В1,5

В1

D600

В3,5

B2,5

С F15 на F75

В2

От F15 до F35

В2

В1

В1,5

В5

В2,5

D700

В3,5

В2

От F15 до F50

Конструкционные и теплоизоляционные

В2,5

В1,5

В2

От F15 до F100

В7,5

В3,5

D800

В5

В2,5

В3,5

В2

В2,5

С F15 на F75

В10

В5

D900

В7,5

С F15 на F75

В3,5

В5

В2,5

В3,5

В12,5

В7,5

D1000

В10

В5

В7,5

Строительный

От F15 до F50

От F15 до F50

В15

В10

D1100

В12,5

В7,5

В10

D1200

В15

В12,5

В12,5

В10


Усадка газобетона при высыхании должна быть не более 3,0 мм / м для неавтоклавного бетона марок Д600 — Д1200.Коэффициенты теплопроводности газобетона не должны превышать значений, приведенных в таблице 2, более чем на 20%.

Таблица 2- Регулируемые физико-технические свойства пенобетона

Тип бетона

Марка бетона

Коэффициент

Сорбционная влажность бетона, не более%

по средняя плотность

Теплопроводность

Вт / (м · ° С ), не более, готового бетона в сухом состоянии

Паропроницаемость

мг / (м · h · Па), макс., Готовый бетон

при относительной влажности 75%

при относительной влажности 97%

Бетон готовый

С песком

С ясенем

С песком

С ясенем

С песком

С ясенем

С песком

С ясенем

Теплоизоляция

D300

0,08

0,08

0,26

0,23

8

12

12

18

D400

0,10

0,09

0,23

0,20

8

12

12

18

D500

0,12

0,10

0,20

0,18

8

12

12

18

Конструкционные и теплоизоляционные

D500

0,12

0,10

0,20

0,18

8

12

12

18

D600

0,14

0,13

0,17

0,16

8

12

12

18

D700

0,18

0,15

0,15

0,14

8

12

12

18

D800

0,21

0,18

0,14

0,12

10

15

15

22

D900

0,24

0,20

0,12

0,11

10

15

15

22

Строительный

D1000

0,29

0,23

0,11

0,10

10

15

15

22

D1100

0,34

0,26

0,10

0,09

10

15

15

22

D1200

0,38

0,29

0,10

0,08

10

15

15

22


Образование тоберморита при разном составе газобетона

[1] К.Куатбаев К. Физико-химические свойства процессов упрочнения и долговечность гидротермически обработанных силикатных и силикатных материалов алюминия. Алматы: Дис. … канд. Наук, 1982.

[2] Н.Ю. Мостафа, S.A.S. Эль-Хемали, Э. Аль-Вакил, С.А. Эль-Кораши, Активность микрокремнезема и деалюминированного каолина при различных температурах, Цемент и бетон. 31 (2001) 905-911.

DOI: 10.1016 / s0008-8846 (01) 00489-6

[3] Н.Ю. Мостафа, А.А. Shaltout, H. Omar, S.A. Abo-El-Enein, Гидротермальный синтез и характеристика замещенных алюминием и сульфатом тоберморитов 1. 1 нм, J. Alloys and Comp. 467 (2009) 332-337.

DOI: 10.1016 / j.jallcom.2007.11.130

[4] С.A. Ríos, C.D. Уильямс и М.А.Фуллен, Гидротермальный синтез гидрограната и тоберморита при 175 ° C из каолинита и метакаолинита в системе CaO-Al2O3-SiO2-h3O: сравнительное исследование, Appl. Clay Sci. 43 (2009) 228-237.

DOI: 10.1016 / j.clay.2008.09.014

[5] Д.Tunega и A. Zaoui, Понимание связывания и механических характеристик вяжущего минерала тоберморита из первых принципов, J. Comput. Chem. 32 (2011) 306-314.

DOI: 10.1002 / jcc.21622

[6] Р.Вектарис, Б. Лескаускас и К. Саснаускас, Влияние гипсовых добавок на процесс образования низкоосновных гидратов силиката кальция, Труды: Res. Строить. Матер. Вильнюс, (1987).

Отличие пенобетона от газобетона. Основные характеристики пеногазового блока. О производственном процессе

Перед тем, как начать строительство собственного дома, перед будущим хозяином неизбежно встает вопрос выбора материала.Все чаще домовладельцы отходят от традиционных дерева и кирпича и предпочитают другие материалы, в частности газоблоки и пеноблоки. В чем разница между ними? Или все это название одного материала? Сразу стоит внести ясность. отличаются не только названием. Оба этих типа блоков отлично подходят для строительства частных домов, как одноэтажных, так и двухэтажных.

Стены домов из их газоблоков обладают хорошей паропроницаемостью, благодаря чему можно добиться идеального микроклимата в каждой комнате.

Многие характеристики газобетона и пенобетона отличают эти материалы от традиционных дерева и кирпича. Они популярны благодаря относительно невысокой стоимости и невысокой теплопроводности.

Основные характеристики

Газоблоки не требуют дополнительной изоляции, а их пористая структура позволяет стенам «дышать».

Различия в характеристиках зданий

Вся вышеперечисленная информация очень полезна и интересна, но человеку, собравшемуся строить дом (гараж, баня, любое другое строение), будет гораздо интереснее узнать различия в технических характеристиках, относящиеся к постройке.

Во-первых, различия как поры. Несмотря на то, что у обоих материалов есть поры, они немного разные. Поры газобетона открытые, а пенобетон закрытый. Это значит, что у газобетона есть возможность пропускать водяной пар и воздух, а в пенобетоне такой возможности нет. В связи с этим, сложенные из пеноблоков здания можно приступить к разделению сразу после постройки, а разложенным газоблоком конструкциям потребуется дополнительное время для просыхания.Более того, после высыхания необходимо будет отделить здание от газобетона, чтобы оно не начало впитывать воду (после впитывания увеличится его расширение и могут появиться трещины, которые вызовут разрушение газобетона).

Во-вторых, при одинаковых показателях плотности газобетон выдерживает большие нагрузки. А плотность влияет на теплопроводность. Чем выше плотность, тем больше требуется размер стены для поддержания одинаковой температуры внутри здания.Для сравнения: при плотности газобетона 400 кг на 1 куб. По своим теплоизоляционным характеристикам он будет на 40% выше пенобетона плотностью 600 кг на 1 куб. При этом прочность таких материалов будет равной.

В заключение сравнения необходимо упомянуть, что существует важное различие в огнестойкости между пеноблоком и газоблоком. По этому параметру лидирует пенобетон – он длительное время выдерживает высокие температуры.

Если раньше выбор строительных материалов был в определенной степени ограничен, то сейчас на рынке представлен довольно обширный ассортимент этого продукта. Каждый частный застройщик старается разумно сэкономить, и не в последнюю очередь, на фундаменте, поскольку его стоимость составляет значительную часть общей сметы. Вот одна из причин популярности сотовых блоков. Часто приходится решать, что лучше пенобетон или газобетон? Попробуем разобраться.

Но сначала нужно уточнить – формулировка «что лучше для строительства дома из блочного или пеноблока» не совсем корректна.Ведь у каждого человека всегда есть особое мнение по тому или иному вопросу. Наверное, правильнее будет понять, какие условия эксплуатации больше подходят для той или иной продукции, какова степень комфорта в таком доме. Но для этого нужно знать, что эти конкретные представляют собой.

У этих строительных материалов много общего. Например, пористая структура, наличие ЦПС (цементно-песчаная смесь, для которой тоже подходит). Разница только в технологии и некоторых компонентах, от которых продукты приобретают некоторые отличия в свойствах.

Пенобетон

Чем отличается пеноблок от газоблока? Его изготовление проще. В CPS пена или формирующее вещество вводятся в качестве добавки. Плотность структуры легко контролировать изменением «дозы» пенообразователя. Таким образом, можно получать с ее широким диапазоном – от 200 до 1 500 кг / м 3. Производство не связано с повышенным энергопотреблением, так как по технологии использование автоклавных установок не предусмотрено.Область применения – от устройства монолитных конструкций до заполнения форм (опалубки) и поверхностей.

Gasobutton

Для его промышленного приготовления используются автоклавы – на этот раз. Еще компонентов два. К ним, кроме CPS, относятся кремнезем, едкий натр (или воздушная известь) и «газообразование». В качестве последнего часто используется алюминий (в виде порошка).

При выборе тех или иных строительных материалов Застройщик руководствуется определенными требованиями, которым он должен отвечать.Так что рассмотрим сравнительные характеристики газового и пенобетона в соответствии с ними. Причем учитываем, что их плотность одинакова.

Особенности применения

Возможность самостоятельной работы

По этому «параметру» газобетон и пенобетон практически идентичны. Во-первых, небольшой вес блоков позволяет не использовать средства механизации. Во-вторых, оба легко режутся, изнашиваются, обрабатываются. В-третьих, скрепление элементов между собой не требует профессиональных навыков, как, например, при кладке кирпича.

Есть лишь небольшая разница в геометрии. Размеры всех газобетонных блоков строго выдерживаются, но пеноблоки имеют отклонения от «нормы» около 0,5 см. Поэтому необходимо будет дополнительно утеплить стыки. И если учесть, что клеевой состав используется для монтажа газобетонных блоков, а для их «собрата» – КПС, то первый предпочтительнее. При таком способе монтажа в кладке из пеноблоков возможно образование «мостиков холода».Необходимо учитывать то, что с клеем легче работать, а его расход меньше. Кроме того, не обязательно делать «зам», как для раствора.

Конструкционная прочность

Плотность материалов такая же. А вот по жесткости газобетон – лидер. Поэтому для возведения, например, стен с такими же характеристиками их толщина для пенобетона должна быть больше. Следовательно, расход увеличивается. Но при заливке монолитных конструкций именно так, поскольку нет необходимости в использовании технических средств.

Усадка

За счет автоклавной обработки имеет в газобетоне в 3 раза меньше (около 0,1 м на 1 м поверхности). Пеноблокам потребуется дополнительная изоляция из-за появления щелей (со временем).

Водопоглощение

Здесь газобетон немного проигрывает. Гидроизоляция поверхностей должна быть лучше.

Экология

Даже у пенобетона она в 2 раза ниже за счет повышенного содержания цемента. Кроме того, замена обработки в автоклаве химическими веществами увеличивает токсичность продуктов.

Способность материала «дышать»

Это свойство позволяет поддерживать благоприятный микроклимат в доме, препятствует развитию процессов шлифования, образованию плесени. Кроме того, отпадает необходимость устраивать более сложную систему естественной вентиляции. По этому показателю, судя по отзывам о газобетоне, и в разы.


Срок службы

Здесь явно выигрывает газобетон. По прочности он превосходит своего «собрата» более чем в 2 раза.По подсчетам специалистов, пенобетонному дому без значительного ремонта просуществует не более 30 лет.

Эконом

По этому показателю материалы примерно равны, если учесть (в целом) стоимость блоков, цену клеевого состава и сравнить его расход с КТК. Однако отсутствие «мостиков холода» при использовании газобетонных блоков существенно снижает теплопотери, что сказывается на расходах на дальнейшую эксплуатацию (на отопление, кондиционирование).

По всем остальным параметрам – звукоизоляция, устойчивость к высоким температурам, ультрафиолету, грызунам и насекомым, а также некоторым другим материалам примерно одинаковы.

В сегменте ячеистого бетона конкурируют два популярных материала – пенобетон и газобетон. Планируя строительство дома, дачи, гаража или бани, каждый хозяин старается учесть все нюансы, спрогнозировать различные ситуации, оценить стоимость, в целом, создать максимально реальный план, прежде чем приступить к работе.

Первой и важной задачей является выбор материала для несущих стен. Из чего лучше построить дом, пеноблок или газоблок? О каждом из них есть как положительные, так и отрицательные отзывы.

Целликовый бетон – это группа строительных материалов, состоящих из бетона и различных добавок, придающих ему пористую структуру. Самые известные представители этого вида – а.

На первый взгляд это идентичные материалы. Однако есть различия, которые формируют отличительные свойства, которые являются камнем преткновения между сторонниками и противниками этих материалов.

Чтобы сделать объективный вывод и сделать правильный выбор Предлагаем ознакомиться, чем газоблок отличается от пеноблока – это сравнение характеристик, свойств и цены. Для этого мы изучим все этапы жизненного цикла этих стеновых материалов, начиная с технологического процесса производства, заканчивая декоративной отделкой. Проведем полный сравнительный анализ.

Сравнение, что лучше: пеноблоки или газоблоки

1. Производство пенобетона и газобетона

Сравнение в рамках технологии изготовления (производства)

Структура

Оба материала производятся путем смешивания бетона с материалами, которые придают ему пористую структуру.

Но при производстве пенобетона таким материалом (пенообразователем, пластификатором) является смола для древесины (DDO), а для пенобетона – алюминиевая пыль.

Строительство жилого дома – процесс особенный и не допускающий ошибок, особенно с точки зрения прочности и комфорта. Особенно в наших широтах, где температурный режим может колебаться в существенных пределах, а также погодные условия. Выбор качественного материала в этом случае – важная задача, и тот, кто знает, что ищет, сможет с ней справиться.Сегодня мы рассмотрим два широко используемых в современном домостроении материала – газобетон и пенобетон, сравним их и дадим оценку каждому материалу по нескольким характеристикам.

Пенобетон по своей сути – это цемент, песок и реагент-пенообразователь. Все это перемешивается, разливается по формам и уходит в покое до полного застывания. То есть процесс можно производить прямо на строительной площадке.


Пенные часы и газоблок – внешний вид

Но газобетон требует высокой температуры и высокой температуры.Он состоит из извести, цемента, воды и песка. Алюминиевый порошок в этом составе действует как газообразователь. Полученную смесь нарезают нитками блоков и помещают в автоклав. Здесь под воздействием высокого давления материал приобретает свою окончательную форму и свои лучшие качества – устойчивость к механическим воздействиям, долговечность, огнеупорность и податливость обработки.

Оказывается, оба материала – легкий бетон, только способ создания в них пузырьков воздуха разный.

Оба материала изготавливаются по одному и тому же ГОСТу, а значит, соответствуют одним и тем же требованиям. Их физико-технические характеристики практически повторяют друг друга. Но это не означает полной идентичности газобетона и пенобетона.

Газобетон при собственной термической обработке имеет ряд преимуществ, но утверждать, что он превосходит пенобетон, не приходится. Все-таки именно качество цемента и его плотность определяют степень качества и надежности продукта.Укладка из этих двух материалов тоже разнообразна: на клей кладут газобетонные блоки, а на обычный цементный раствор – пенобетон. Он дешевле клея, но практика показывает, что его требуется гораздо больше, и работать с ним сложнее.

Получается любопытная вещь – газобетон вместе с клеем дороже пенобетона на цементном растворе, но при этом количество выходит практически одинаковое. К тому же клей не дает возникать мостиков холода, а значит, утепление салона будет проще, что положительно скажется на экономии средств.

Еще одно отличие материалов – степень точности размера блока. Тем не менее, на заводе размеры соблюдаются гораздо точнее, чем на стройплощадке. Поэтому газобетон проще и приятнее.


Сравнительная таблица характеристик пенобетона и газобетона

Преимущества и недостатки

Если говорить о производстве материалов, пенобетон с точки зрения сложности процесса выглядит предпочтительнее.Для газобетона нужно построить цех, провести мощную электросеть, газопровод. Пенные часы несложно изготовить на портативном оборудовании, что несложно – их модификаций вполне достаточно. Другое дело, что упрощенный способ производства часто привлекает неграмотных производителей, не гоняющихся за точностью линейных размеров, соблюдением уровня теплопроводности, плотности и прочности. Избежать встречи с некачественной продукцией можно, найдя грамотного производителя, имеющего все необходимые сертификаты качества и проводящего периодические испытания своей продукции на соответствие требованиям современных стандартов.


Блоки из пенобетона и газобетона легко укладываются, а благодаря своим размерам экономят клей или цементный раствор

Пенобетон может быть токсичным – поскольку он не обрабатывается в автоклаве, при его создании применяются химические процессы. Это сказывается на прочности изделия. При одинаковом показателе плотности степень прочности у газобетона и пенобетона разная. Возьмем, например, плотность 500 единиц. Газобетон с этим показателем отлично справляется с нагрузками, при этом пенобетон не должен похвастаться высокой прочностью и применяется только как утеплитель.

Водопоглощение и морозостойкость – два важных показателя для материала.

Газоблок способен поглощать больше воды, чем пеноблок, но в то же время менее устойчив к низким температурам. Правда, при строительстве жилых домов их внешняя сторона покрывается защитным слоем в виде штукатурки, плитки, сайдинга и других материалов, а значит, газоблок от воздействия воды будет защищен.

Видео: Характеристики газопеноблоков

Домостроение

Дома из этих материалов будут стоить дешевле кирпичных.И на то есть свои причины. Во-первых, газобетон и пенобетон – это легкие, которые не обязывают строителя возводить массивный фундамент. Достаточно его облегченной версии. Во-вторых, тепло- и звукоизоляция в обоих материалах на уровне, предполагающем экономию средств. И не только в будущем. В процессе строительства можно возводить стены меньшей толщины, а значит, экономить средства на материалах. В-третьих, экономия материалов касается клея с цементом, которого при больших объемах блоков уходит не так уж и много.

Дома из пеноблоков и газоблоков очень надежны, ведь эти материалы долговечные и ерунда. Они не гниют и не подвержены атакам грызунов и насекомых-вредителей.

Если выложить внутриподные конструкции, такие стены легко будет гладить. И наконец, самое главное, эти стены «дышат», что создает комфортные условия проживания в доме.


Общая закупочная стоимость пенобетона на цементном растворе и клеевого пенобетона примерно равна

Фотогалерея: Сетка бетонная в строительстве

Стены из газо- и пеноблоков «дышат» и обеспечивают комфорт в помещениях. Дома из ячеистого бетона легко и быстро возводятся. Газо- и пенобетон – экономичные материалы, обеспечивающие желаемую толщину стен при относительно меньших размерах. Газоблоки обладают высокой теплопроводностью.

Оказывается, ни один материал не имеет явного преимущества перед другими.У каждого свой набор достоинств и недостатков, а значит, прежде чем останавливать свой выбор на каком-либо из них, необходимо внимательно проанализировать их особенности и выбрать то, что, по вашему мнению, лучше всего подходит для строительства будущего дома.

В последнее время в качестве материала для строительства дома все чаще выбирают ячеистый бетон – искусственный строительный материал с пористой структурой, одна из разновидностей легкого бетона. Из этого материала возводят как коттеджи, так и многоквартирные дома.При этом такие постройки отличаются лучшими теплоизоляционными характеристиками по сравнению с кирпичом и намного прочнее тех, при строительстве которых использовался шлакоблок.

Благодаря своей форме и небольшому отклонению в размерах блоки из ячеистого бетона можно укладывать не на цементный раствор, являющийся своеобразным мостиком холода в готовой стене, а на специальный клей, позволяющий значительно снизить теплоотдачу стены.

Заливать такой бетон можно тремя способами: вспениванием, газообразованием и аэрацией, благодаря чему получается пенобетон и силикаты.

Из такого материала начали строить постройки еще в XIX веке, когда строители стали заливать в цементно-известковые растворы костную кровь, белок которой образовался из раствора, при этом из раствора образовалась пена. Ни тогда, ни в каких 30-х годах прошлого века ячеистый бетон не получил широкого распространения и начал набирать популярность сравнительно недавно, как более легкий и недорогой, по сравнению с кирпичом, строительный материал. Отличается достаточной прочностью, лучше держит тепло и легко выводит из помещения избыток влаги.

Сегодня из пеноблоков высокой плотности можно возводить дома до трех этажей. Если в конструкции дома предполагается конструкция несущего железобетонного каркаса, то постройки можно возводить из пеноблоков.

Есть несколько разновидностей пеноблоков, различной плотности, теплопроводности и морозостойкости.

Для получения газобетона в цементный раствор вводятся специальные вещества, выделяющие газ и обеспечивающие более ровную пористую структуру, чем при производстве пенобетона.

Особенности производства пеноблоков и газоблоков

Пенобетон

получают простым смешиванием заранее приготовленной пены с бетонной смесью. Такое производство намного проще и дешевле производства газобетона и его можно организовать практически на любой стройке с нулевыми транспортными расходами. Сравнительная простота изготовления пеноблока очень похожа на шлакоблок, который можно сделать из цемента, воды и выпадения в любом дворе.Однако следует учитывать, что в этом случае качество таких пеноблоков может быть поставлено под сомнение.

Получить пеноблоки можно тремя способами.

Первый – Смесь для блоков разливается в кассетные металлические формы, где застывает около 10 часов. После этого форма разбирается и достаётся готовые пеноблоки. При этом далеко не единственное, чем отличается шлакоблок, так это то, что заранее приготовленная пена не добавляется в смесь для ее изготовления.

Схема кассетной формы для производства пенобетона

Второй способ Предполагает засыпку большого пенобетонного массива объемом 2-3 кубометра. Такой массив застывает около 14 часов, после чего весь массив разрезается на части на специальном режущем аппарате. Этот метод лучше, чем можно получить пеноблок любого размера. По стоимости этот способ дороже первого. Кроме того, при таком способе производства пеноблоков около 0.При распиловке в балки уходит 5% бетона.

По третьему способу Производство пенобетона осуществляется в специальных формах, которые после заливки массы выгружаются на автоматическую платформу. Готовые блоки выдавливаются из форм на специальном поддоне, а блоки для блоков автоматически смазываются. Главный недостаток такого метода – данную установку нельзя перенастраивать, она позволяет производить пеноблоки только одной формы и размера.

Любой интернет-форум, на котором обсуждаются вопросы строительства, готов предложить готовое видео производства пеноблоков, а также шлакоблоков.

При производстве газобетона в бетонную смесь не добавляется заранее заданная пена, а вспенивающий агент представляет собой водную суспензию алюминиевой пудры, которая вступает в реакцию с наполнителями смеси. В результате в бетоне образуются пузырьки водорода размером до 2 миллиметров в диаметре, которые равномерно распределяются по всему материалу. После предварительного застывания смеси масса разрезается на блоки равного размера, которые подвергаются термической обработке в автоклаве.

Производство газобетона

Для использования такого оборудования необходимы профессиональные навыки. Но готовые блоки отличаются высокой морозостойкостью и устойчивостью к образованию трещин, их легко можно использовать при строительстве домов и других построек.

При неавтоклавном методе производства газобетона рубленые блоки оставляют для его затвердевания в естественных условиях. Этот способ производства более экономичен за счет снижения энергозатрат, однако имеет существенный недостаток.

Так, при одинаковой плотности материала неразрешенный бетон дает усадку на 2-3 миллиметра, а при термообработке усадка не превышает 0,3 мм.

Кроме того, при таком способе производства технология также предполагает повышенный расход цемента.

Благодаря этому автоклавный газобетонный агрегат был благодаря большему количеству.

Плюсы и минусы пенобетона и газоблоков

Преимущества пенобетона и газобетона перед традиционными, привычными строительными материалами аналогичны.Газобетонные и пенобетонные блоки весят меньше кирпича и более долговечны, чем шлакоблок, само название которого, как шутят некоторые строители, красноречиво говорит о качестве этого материала. Их легче транспортировать и благодаря небольшому весу экономить уже в самом начале строительства, закладывая легкий фундамент в фундамент здания. При этом основные отличия пенобетона, наряду с более низкой стоимостью, – это его недостатки.

Газобетон прост в обработке

Блоки из ячеистого бетона обеих пород легко монтируются между собой. Поэтому на возведение стен домов из таких блоков требуется втрое меньше времени, чем на стены из обычного кирпича, но и пенобетон намного лучше дальнейшей обработки. Какой еще камень, пусть будет искусственный, при необходимости можно распилить обычной ножовкой? Даже шлакоблоки меньше пивылива для резки.

Гигроскопичность и морозостойкость

Оба материала обладают низкой влагостойкостью, поэтому стены домов из них нуждаются в дополнительной обработке разными составами. Газобетонный блок лучше впитывает влагу за счет того, что поры в нем не только закрытого типа, как в пенобетоне, но и открытые. Он выводит лишнюю влагу из помещения и «дышит» благодаря своей пористости тоже намного лучше. В условиях повышенной влажности фасад конструкции из газобетона потребуется дополнительно защитить от прямого попадания влаги.

Благодаря пористой структуре внутри блоков всегда есть резервное место для движения воды во время замерзания. Поэтому морозостойкость пенобетона колеблется от F15 до F50.

Автоклавный газобетон, в свою очередь, способен выдержать около 200 циклов заморозков, что соответствует примерно 500 годам эксплуатации в воде. При этом ГОСТ требует для этого материала всего 35 циклов заморозки.

Прочность

Пенобетон и газобетонные блоки могут изготавливаться различной плотности Материал: от 300 до 1200 кг / м3.

При одинаковой плотности Пеноблок заметно теряет прокладку автоклава в прочности, которая во многом зависит от качества пенообразователя.

Поскольку пенобетон можно изготавливать практически вручную, многие производители вместо качественных компонентов смесей используют их более дешевые аналоги. Стоимость пеноблоков снижается, но качество их как строительного материала не улучшается.

Усадка

Кладка автоклавных газобетонных блоков менее подвержена появлению трещин, чем стена из пенобетона.Усадка автоклавного газобетона обычно не превышает 0,5 мм на 1 метр кладки. При этом у пеноблоков усадка может достигать 3 мм / м.

Теплоизоляция

Теплопроводность пеноблоков в три раза ниже, чем у обычного кирпича. Их отличает от газобетонных блоков то, что поры внутри блока неровные и могут сильно отличаться по размеру. Где-то получилось больше, где-то меньше, а где-то вообще не образовалось.Из-за этого сложно утверждать, что даже один пенобетонный блок способен обеспечить одинаковый уровень теплопроводности по всему своему объему.

Текстура газоблоков больше, и они равномерно пронизывают весь материал. Поэтому они теплоизоляционные качества лучше пеноблоков.

Ниже, чем у газобетонных блоков, по теплопроводности может быть только шлакоблок. Однако в его случае теплопроводность во многом зависит от того, какой материал был использован при его производстве.

Огнестойкость

Газобетон по своей структуре не поддерживает горение и не распространяет огонь. Посетив любой строительный форум, вы можете убедиться, что по отзывам о кладке газобетонных блоков толщиной всего 20 см она вполне способна остановить распространение огня.

Пенобетон тоже относится к негорючим материалам и способен выдерживать одностороннее воздействие огня в течение 5-7 часов.

Стоимость

Газобетон, особенно автоклавный, заметно дороже пенобетона или шлакоблока. Это происходит по той простой причине, о которой уже говорилось ранее – пенобетон можно выполнять практически везде. Вы даже можете сделать это, даже прочитав отзывы и посетив Строительный форум, где это не только поможет разобраться в технологии производства. Процесс производства видео также может предложить посетителям такого форума и деликатный совет, если что, они помогут.

Оборудование для производства автоклавного газобетона дорогое, только крупные предприятия могут позволить ему себе это.Поэтому этот материал значительно дороже.

Размеры

Размер пеноблока и кирпич

Только один пеноблок или газоблок способен заменить 15-20 кирпичей в кладке.

В этом случае возвести стену дома из этих материалов будет намного проще. Сами бетонные блоки могут быть изготовлены разных размеров. Все зависит от оборудования, на котором производится этот стройматериал.

Дома из пеноблоков выгодны из кирпича в первую очередь меньшей стоимостью.Когда они построены, стоит фундамент и кладка и сам материал. Помимо прочего, такие дома будут дешевле и в обслуживании. Очистить помещение салфетками из ячеистого бетона намного проще.

Что лучше для строительства?

Любой форум, где обсуждают тонкости строительства, может вместить достаточно сторонников и противников использования обоих материалов. Некоторые предпочитают доступность, простоту и дешевизну изготовления. Вторая племянница старый добрый кирпич и шлакоблок.Другие считают, что гарантировать качество строительства можно только в случае использования материалов, изготовленных на большом производстве с дорогостоящим оборудованием. А пенопласт и газоблок вполне заслуживают как отрицательных, так и хвалебных отзывов. Каждый из материалов отличается своими несомненными достоинствами и недостатками.

Преимущества и недостатки газобетона и пенобетона

Помимо производственного процесса, с помощью видео можно оценить простоту и тонкость кладки стен из пенобетона и пенобетона.Простота и удобство этого процесса играют далеко не последнюю роль.

На выбор материала для строительства может повлиять множество факторов. Цена складывается из стоимости самого материала, стоимости его укладки, эксплуатационных характеристик, наличия, назначения построенного здания, а также многого другого.

IRJET-Запрошенная вами страница не найдена на нашем сайте

IRJET приглашает статьи из различных инженерных и технологических и научных дисциплин для Тома 8 Выпуск 8 (август 2021 г.)

Отправить сейчас


IRJET Том-8 Выпуск 8, Август 2021 г. Публикация продолжается…

Обзор статей


IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.

Проверить здесь


IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы управления качеством.


IRJET приглашает специалистов по различным инженерным и технологическим дисциплинам, научным дисциплинам для Тома 8, выпуск 8 (август 2021 г.)

Отправить сейчас


IRJET Vol-8, выпуск 8, август 2021 г. Публикация продолжается…

Обзор статей


IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.

Проверить здесь


IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы управления качеством.


IRJET приглашает специалистов по различным инженерным и технологическим дисциплинам, научным дисциплинам для Тома 8, выпуск 8 (август 2021 г.)

Отправить сейчас


IRJET Vol-8, выпуск 8, август 2021 г. Публикация продолжается…

Обзор статей


IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.

Проверить здесь


IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы управления качеством.


IRJET приглашает специалистов по различным инженерным и технологическим дисциплинам, научным дисциплинам для Тома 8, выпуск 8 (август 2021 г.)

Отправить сейчас


IRJET Vol-8, выпуск 8, август 2021 г. Публикация продолжается…

Обзор статей


IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.

Проверить здесь


IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы управления качеством.


IRJET приглашает специалистов по различным инженерным и технологическим дисциплинам, научным дисциплинам для Тома 8, выпуск 8 (август 2021 г.)

Отправить сейчас


IRJET Vol-8, выпуск 8, август 2021 г. Публикация продолжается…

Обзор статей


IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.

Проверить здесь


IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы управления качеством.


IRJET приглашает специалистов по различным инженерным и технологическим дисциплинам, научным дисциплинам для Тома 8, выпуск 8 (август 2021 г.)

Отправить сейчас


IRJET Vol-8, выпуск 8, август 2021 г. Публикация продолжается…

Обзор статей


IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.

Проверить здесь


IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы управления качеством.


IRJET приглашает специалистов по различным инженерным и технологическим дисциплинам, научным дисциплинам для Тома 8, выпуск 8 (август 2021 г.)

Отправить сейчас


IRJET Vol-8, выпуск 8, август 2021 г. Публикация продолжается…

Обзор статей


IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.

Проверить здесь


IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы управления качеством.


IRJET приглашает специалистов по различным инженерным и технологическим дисциплинам, научным дисциплинам для Тома 8, выпуск 8 (август 2021 г.)

Отправить сейчас


IRJET Vol-8, выпуск 8, август 2021 г. Публикация продолжается…

Обзор статей


IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.

Проверить здесь


IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы управления качеством.


У вас недостаточно прав для чтения этого закона в настоящее время

У вас недостаточно прав для чтения этого закона в настоящее время Логотип Public.Resource.Org На логотипе изображен черно-белый рисунок улыбающегося тюленя с усами.Вокруг печати находится красная круглая полоса с белым шрифтом, в верхней половине которого написано «Печать одобрения создания», а в нижней половине – «Public.Resource.Org». На внешней стороне красной круглой марки находится круг. серебряная круглая полоса с зубчатыми краями, напоминающая печать из серебряной фольги.

Public.Resource.Org

Хилдсбург, Калифорния, 95448
Соединенные Штаты Америки

Этот документ в настоящее время недоступен для вас!

Уважаемый гражданин:

В настоящее время вам временно отказано в доступе к этому документу.

Public Resource ведет судебный процесс за ваше право читать и говорить о законе. Для получения дополнительной информации см. Досье по рассматриваемому судебному делу:

.

Американское общество испытаний и материалов (ASTM), Национальная ассоциация противопожарной защиты (NFPA), и Американское общество инженеров по отоплению, охлаждению и кондиционированию воздуха (ASHRAE) против Public.Resource.Org (общедоступный ресурс), DCD 1: 13-cv-01215, Объединенный окружной суд округа Колумбия [1]

Ваш доступ к этому документу, который является законом Соединенных Штатов Америки, был временно отключен, пока мы боремся за ваше право читать и говорить о законах, по которым мы решаем управлять собой как демократическим обществом.

Чтобы подать заявку на получение лицензии на ознакомление с этим законом, ознакомьтесь с Сводом федеральных нормативных актов или применимыми законами и постановлениями штата. на имя и адрес продавца. Для получения дополнительной информации о постановлениях правительства и ваших правах гражданина в соответствии с нормами закона , пожалуйста, прочтите мое свидетельство перед Конгрессом Соединенных Штатов. Вы можете найти более подробную информацию о нашей деятельности на общедоступном ресурсе. в нашем реестре деятельности за 2015 год. [2] [3]

Спасибо за интерес к чтению закона.Информированные граждане – это фундаментальное требование для работы нашей демократии. Благодарим вас за усилия и приносим извинения за возможные неудобства.

С уважением,

Карл Маламуд
Public.Resource.Org
7 ноября 2015 г.

Банкноты

[1] http://www.archive.org/download/gov.uscourts.dcd.161410/gov.uscourts.dcd.161410.docket.html

[2] https://public.resource.org/edicts/

[3] https://public.resource.org/pro.docket.2015.html

Использование углекислого газа при отверждении или смешивании бетона может не принести чистой климатической выгоды

Обзор литературы для классификации использования CO

2 в бетоне

Мы провели обзор литературы, чтобы получить 99 наборов данных из 19 исследований, посвященных материалам и энергии жизненного цикла данные инвентаризации и параметры процесса для производства CCU и обычного бетона. Обзор литературы выявил 19 исследований 16,19,22,23,31,32,33,35,38,40,51,52,53,54,55,56,57,58,59 , поскольку они были только те, которые сообщают о следующих трех элементах (i) проектная смесь, состоящая из запасов энергии и материалов, необходимых для производства обычного бетона и бетона CCU (раздел 2 SI).Запасы энергии и материалов необходимы для определения воздействия на жизненный цикл CO 2 производства обычного бетона и бетона CCU; (ii) количество CO 2 , использованное при смешивании или отверждении бетона. Это необходимо для определения воздействия на жизненный цикл CO 2 улавливания, транспортировки и использования CO 2 , используемого при производстве бетона CCU; и (iii) прочность на сжатие CCU и обычного бетона по истечении 28 дней, что помогает учесть изменение свойств материала между обычным и CCU бетоном.28-дневная прочность на сжатие является одним из наиболее широко используемых технических параметров для оценки качества бетона, категоризации конструкций бетонной смеси 60 и составляет основу для проектирования конструкции бетона 61,62 и, следовательно, выбирается в качестве функционального свойства на основе на котором сравнивается обычный бетон и бетон CCU. В зависимости от того, используется ли CO 2 в бетоне CCU для отверждения или смешивания, и если SCM использовался в расчетной смеси, 99 наборов данных были разделены на четыре категории.

  1. (я)

    Категория 1: CO 2 используется для отверждения бетона, и только OPC используется в качестве вяжущего материала в проектной смеси 22,31,33,38,40,56,57,58,59 . Эта категория содержит 50 наборов данных.

  2. (ii)

    Категория 2: CO 2 используется для отверждения бетона, а комбинация OPC и SCM используется в качестве вяжущего материала в проектной смеси 23,32,35,55 .Эта категория содержит 20 наборов данных.

  3. (iii)

    Категория 3: CO 2 используется при смешивании бетона, и только OPC используется в качестве вяжущего материала в проектной смеси 16,19,51 . Эта категория содержит 8 наборов данных.

  4. (iv)

    Категория 4: CO 2 используется при смешивании бетона, а комбинация OPC и SCM используется в качестве вяжущего материала в проектной смеси 16,51,52,53,54 .Эта категория содержит 21 набор данных.

SCM представляет собой измельченный гранулированный доменный шлак, который является побочным продуктом производства чугуна 63 , или летучую золу, которая является побочным продуктом производства электроэнергии на угольных электростанциях.

Функциональный блок

Использование CO 2 во время смешивания или отверждения изменяет прочность на сжатие бетона CCU по сравнению с бетоном, полученным путем обычного смешивания или отверждения.Кроме того, потери энергии (E p кВтч) возникают для бетона CCU на электростанциях из-за энергии, связанной с улавливанием CO 2 , который используется при отверждении или смешивании бетона CCU (φ CCU , кг CO 2 ). E p не возникает при производстве обычного бетона, поскольку не происходит улавливания CO 2 . Следовательно, чистая выгода CO 2 от замены бетона CCU на обычный бетон должна учитывать воздействие CO 2 от изменения прочности на сжатие и E p , которое возникает на электростанциях только при CO 2 захвачен.

В результате мы используем функциональную единицу из бетона с прочностью на сжатие 1 МПа и объемом 1 м 3 и E p кВтч электроэнергии.

Функциональная единица учитывает изменение прочности на сжатие и обеспечивает согласованность путем нормализации материалов и энергии, затрачиваемых на производство 1 м. 3 CCU и обычного бетона до 1 МПа прочности на сжатие. Включение E p кВтч электроэнергии в функциональную единицу учитывает разницу в выбросах CO 2 от выработки электроэнергии без улавливания CO 2 в обычном бетонном тракте и с улавливанием CO 2 в бетонном тракте CCU .E p определяется на основе массы CO 2 , уловленного с электростанции (дополнительная таблица 1, процесс 8).

Производство бетона CCU – границы системы и выбросы CO

2

Обзор литературы показал, что общий жизненный цикл CO 2 выбросов от производства бетона CCU представляет собой сумму выбросов CO 2 от 13 ключевых процессов, необходимых для улавливать, транспортировать и утилизировать CO 2 и производить материалы, необходимые для расчетной бетонной смеси (рис.1).

Выражение, используемое для определения общего жизненного цикла выбросов CO 2 от производства бетона CCU на основе выбросов CO 2 от 13 процессов, представлено в формуле. 1. 13 выражений в скобках в формуле. 1 соответствуют выбросам CO 2 от 13 процессов (рис. 1).

$$ {\ mathrm {TOT}} _ {{\ mathrm {CCU}}} = \, \ left ({{\ upvarphi} _ {\ mathrm {C}} \ ast {\ mathrm {C}} _ {{\ mathrm {CCU}}}} \ right) + \ left ({{\ upvarphi} _ {{\ mathrm {CA}}} \ ast {\ mathrm {CA}} _ {{\ mathrm {CCU}}) }} \ right) + \ left ({{\ upvarphi} _ {{\ mathrm {FA}}} \ ast {\ mathrm {FA}} _ {{\ mathrm {CCU}}}} \ right) + \ left ({{\ upvarphi} _ {\ mathrm {W}} \ ast {\ mathrm {W}} _ {{\ mathrm {CCU}}}} \ right) \\ \, \ quad {\, \,} + \ left ({{\ upvarphi} _ {{\ mathrm {SCM}}} \ ast {\ mathrm {SCM}} _ {{\ mathrm {CCU}}}} \ right) + \ left ({{\ mathrm { D}} _ {\ mathrm {M}} \ ast {\ upvarphi} _ {{\ mathrm {TM}}} \ ast {\ mathrm {M}} _ {{\ mathrm {Conv}}}} \ right) \\ \, \ quad {\, \,} + \ left ({{\ upvarphi} _ {{\ mathrm {CCU}}} \ ast {\ mathrm {j}} _ {{\ mathrm {MEA}}} } \ right) + \ left ({{\ mathrm {Alloc}} _ {{\ mathrm {elec}}} \ ast {\ upvarphi} {\ mathrm {Not}} \; {\ mathrm {Cap}} + { \ upvarphi} _ {{\ mathrm {Avg}}} \ ast {\ mathrm {E}} _ {\ mathrm {p}}} \ right) \\ \, \ quad {\, \,} + \ left ( {{\ upvarphi} _ {{\ mathrm {CCU}}} \ ast \ left ({1 +2 {\ mathrm {T}} _ {\ mathrm {w}}} \ right) \ ast {\ mathrm {D }} _ {{\ mathrm {CO2}}} \ ast {\ upvarphi} _ {\ mathrm {T}}} \ right) \\ \, \ quad {\, \,} + \ left ({\ upvarphi} _ {{\ mathrm {CCU}}} \ ast {\ upvarphi} _ {{\ mathrm { Vap}}} \ right) + \ left ({\ upvarphi} _ {{\ mathrm {CCU}}} \ ast \ left ({\ upvarphi} _ {{\ mathrm {Inj}}} + \ left (1 – \ upeta \ right) \ right) \ right) \\ \, \ quad {\, \,} + \ left ({\ upvarphi} _ {{\ mathrm {CO2}} \ _ {\ mathrm {Cur}}} \ right) + \ left ({\ upvarphi} _ {{\ mathrm {Stm}} \ _ {\ mathrm {Cur}}} \ right) $$

(1)

Процесс с 1 по 4 – Производство обычного портландцемента (C), крупного заполнителя (CA), мелкого заполнителя (FA) и воды (W): воздействие CO 2 является продуктом (i) жизненного цикла CO 2 выбросы от производства материала (φ C , φ FA , φ CA и φ W в кг CO 2 / кг материала) и (ii) и масса материала, используемого в расчетная смесь, приведенная к прочности на сжатие бетона CCU (C CCU , CA CCU , FA CCU и W CCU в кг материала / МПа / м 3 ).Используемый материал и прочность на сжатие получены из обзора литературы (раздел 2 SI), а φ C , φ FA , φ CA и φ W получены из базы данных ecoinvent (дополнительная таблица 2) .

Процесс 5 – производство SCM: SCM CCU представляет собой массу SCM, использованную в расчетной смеси, нормированную на прочность на сжатие бетона CCU (в кг материала / МПа / м 3 ).

Шлак и летучая зола, являющиеся побочными продуктами производства железной руды и выработки электроэнергии из угля, используются в качестве SCM в конструкционной смеси бетона.Три метода – расширение системы (SE), распределение на основе экономической стоимости (EA) и распределение на основе массы (MA) – широко используются в LCA для определения выбросов CO 2 побочных продуктов, генерируемых одной системой.

В SE выбросы CO 2 от производства требуемой массы шлака определяются путем расширения системы, чтобы включить производство соответствующей массы железной руды (на основе отношения железной руды к шлаку, Раздел SI 4). В случае MA и EA общие выбросы CO 2 от процесса производства железной руды и шлака распределяются между железной рудой и шлаком на основе массы и экономической ценности побочных продуктов, соответственно (разделы SI 5 и 6).Чтобы исследовать изменчивость выбросов CO 2 от производства бетона CCU на основе метода распределения, в этом анализе используются три метода при определении выбросов CO 2 для шлака и летучей золы.

Воздействие CO 2 шлака (φSCM_slag в кг CO 2 / кг шлака) определяется по формуле. 2

$$ \ upvarphi _ {{\ mathrm {SCM}} \ _ {\ mathrm {slag}}} = {\ mathrm {Alloc}} _ {{\ mathrm {slag}}} * {\ mathrm {7 }} {\ mathrm {.7}} * \ upvarphi _ {{\ mathrm {IO}}} $$

(2)

Значение Alloc для шлака составляет 1 0008.или 0,11 при выборе SE, MA или EA соответственно (разделы SI 4, 5 и 6).

φ IO – это жизненный цикл выбросов CO 2 при производстве 1 кг железной руды и 2,2 кг CO 2 / кг железной руды (Раздел 4 SI).

Когда летучая зола используется в качестве SCM, воздействие CO 2 на кг летучей золы (φ SCM_ash в кг CO 2 / кг летучей золы) определяется по формуле. 3

$$ \ upvarphi _ {{\ mathrm {SCM}} \ _ {\ mathrm {ash}}} = {\ mathrm {Alloc}} _ {{\ mathrm {ash}}} * {\ mathrm {22 }} {\ mathrm {.7}} * \ upvarphi _ {{\ mathrm {Elec}} \ _ {\ mathrm {Coal}}} * \ upalpha _ {{\ mathrm {Cap}}} $$

(3)

Значение Alloc ash равно 1, 0,02 или 0,06 при выборе SE, MA или EA соответственно (разделы SI 4, 5 и 6). φ Elec_Coal , который представляет собой жизненный цикл выбросов CO 2 при производстве 1 кВт · ч угольной электроэнергии, составляет 1,25 кг CO 2 / кВт · ч (Раздел 4 SI). α Cap равен 0,1, если CO 2 улавливается на угольной электростанции и используется в производстве бетона CCU.α Cap равен 1, если на угольной электростанции не происходит улавливания углерода, то есть когда CO 2 улавливается с завода природного газа с комбинированным циклом и используется в производстве бетона CCU.

Процесс 6 – Транспортировка материалов: выбросы CO 2 от транспорта материалов являются продуктом 5 материалов, используемых в расчетной смеси (M CCU в кг / МПа / м 3 ), CO 2 интенсивность используемого вида транспорта (φ M в кг CO 2 на кг-км) и расстояние, на которое транспортируются материалы (D M в км).M CCU представляет собой C CCU , FA CCU , CA CCU , W CCU и SCM CCU из процессов с 1 по 5. D Значения M для автомобильных, железнодорожных, морских и баржных перевозок: получено из средних национальных значений для бетонной промышленности США (раздел 7 SI) 60 . φ M для четырех видов транспорта получены из базы данных Ecoinvent (раздел 7 SI).

Процесс 7 – Производство моноэтаноламина (MEA): Воздействие улавливания углерода CO 2 является продуктом массы CO 2 , который улавливается и используется при отверждении или перемешивании бетона CCU (φ CCU , кг CO 2 ) и жизненный цикл выбросов CO 2 от производства системы улавливания CO 2 после сжигания моноэтаноламина (MEA) (φ MEA ).φ MEA получено из обзора литературы 21 исследования 44,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80, 81,82,83 (Раздел 3 SI).

Системы MEA рассматриваются, поскольку они улавливают CO 2 с высокой эффективностью (90%) 64,65,84 , улавливают CO 2 из разреженных концентраций 85 , могут быть модернизированы для электростанций, работающих в настоящее время и коммерчески зрелая технология 86,87 . На энергетический сектор приходится 28% общих выбросов CO 2 в США.S 88 и, следовательно, является хорошим кандидатом для улавливания углерода. В результате мы рассматриваем улавливание CO 2 на электростанциях. Улавливание после сжигания считается более распространенным, чем кислородное топливо и системы предварительного сжигания 65,85 . Читатель может обратиться к 65,85 для получения дополнительных сведений об основных физических принципах улавливания углерода с использованием MEA, что выходит за рамки данной работы.

Процесс 8 – Производство электроэнергии электростанцией: Когда производится бетон CCU, общие выбросы CO 2 от электростанции складываются из двух компонентов.

$$ \ left ({{\ mathrm {Alloc}} _ {{\ mathrm {elec}}} * \ upvarphi _ {{\ mathrm {Not}} \; {\ mathrm {Cap}}} + \ upvarphi _ {{\ mathrm {Avg}}} * {\ mathrm {E}} _ {\ mathrm {p}}} \ right) $$

Alloc elec количественно определяет распределение выбросов CO 2 от угля электростанция между побочными продуктами электричества и летучей золы, которая используется в качестве SCM в производстве бетона в определенных наборах данных. Выделение elec составляет 0,98 или 0,94, так как экономическое или массовое распределение выделяет 0,02 и 0.06 от общих выбросов CO 2 угольной электростанции в побочный продукт летучей золы (разделы 5 и 6 SI). Alloc elec равен 1, когда электроэнергия поступает от электростанции, работающей на природном газе с комбинированным циклом, или когда используется расширение границ системы (вместо экономического или массового распределения). Not Cap составляет 10% CO 2 , который не улавливается, поскольку эффективность улавливания системы MEA составляет 90% 64,65,84 .

Второй компонент учитывает выбросы CO 2 в результате компенсации штрафа за энергию (E p в кВтч), который возникает, когда CO 2 улавливается электростанцией.Второй компонент является произведением E p и CO 2 интенсивности электроэнергии, используемой для компенсации E p Avg в кг CO 2 / кВт · ч).

E p количественно определяется следующим образом:

$$ {\ mathrm {E}} _ {\ mathrm {p}} = \ upvarphi _ {{\ mathrm {CCU}}} * \ left [{\ left ( {{\ mathrm {heat}} _ {{\ mathrm {ccu}}} * {\ mathrm {hte}} * {\ mathrm {0}} {\ mathrm {.277}}} \ right) + {\ mathrm {E}} _ {{\ mathrm {pump}}} + {\ mathrm {E}} _ {{\ mathrm {liq}}}} \ right] $$

(4)

φ CCU – это масса CO 2 , который улавливается электростанцией и используется в производстве бетона CCU.тепло ccu представляет собой тепло, необходимое для регенерации MEA (от 2,7 до 3,3 МДж / кг CO 2 , дополнительная таблица 5), которое можно было бы альтернативно использовать для выработки электроэнергии на электростанции 70,89,90,91 . hte – коэффициент преобразования тепла в электроэнергию (0,09–0,25, дополнительная таблица 5), который используется для определения электрического эквивалента тепла ccu . E насос – это электричество, необходимое для питания насосов и вентиляторов в блоке улавливания углерода (16.От 6 до 30,6 × 10 −3 кВтч / кг CO 2 , дополнительная таблица 5) и E liq – это электричество, необходимое для сжижения уловленного CO 2 (0,089 кВтч / кг CO 2 , раздел SI 3 «CO 2 Сжижение»)).

Этот анализ соответствует стандартам, рекомендованным Национальной лабораторией энергетических технологий (NETL) 92 для определения интенсивности CO 2 электроэнергии, используемой для компенсации штрафа за энергию. NETL рекомендует компенсировать потерю энергии за счет внешнего источника электроэнергии, который представляет структуру энергосистем региона, в котором проводится анализ 92 Среднее значение варьируется от 0,38 до 0,56 кг CO 2 / кВт · ч, что представляет собой нижний и верхний предел средней интенсивности CO 2 электроэнергии, произведенной в различных регионах сети в США в 2020 году 92 .

Процесс 9 – CO 2 Транспортировка: в этом анализе предполагается, что захваченный CO 2 транспортируется в грузовике с полуприцепом (Раздел 3 SI «Транспортировка CO 2 »), поскольку это необходимо для доставки CO 2 от места захвата до географически рассредоточенных предприятий по отверждению или смешиванию бетона, к которым в основном можно добраться по дороге 21 .Выбросы CO 2 при транспортировке CO 2 являются произведением общего веса (φ CCU плюс вес тары), расстояния, на которое происходит транспортировка (D CO2 в км) и CO 2 интенсивность транспортных выбросов полуприцепа (φ T = 112 г CO 2 на тонно-км, дополнительная таблица 11). Транспортировка 1 кг CO 2 требует транспортировки дополнительного веса тары (T w ) 0.4 кг во время дальнейшей поездки на бетонный завод CCU (дополнительная таблица 7). На обратном пути мы учитываем выбросы CO 2 при транспортировке только с собственным весом. В результате T w равно 0,8. Мы предполагаем, что D CO2 составляет 810 км, что соответствует наибольшему расстоянию, на которое может транспортироваться CO 2 в США 93 .

Процессы 10 и 11 – Испарение и нагнетание CO 2 : После транспортировки сжиженный CO 2 необходимо превратить в газообразное состояние и ввести в образец бетона для отверждения или смешивания 94 .Выбросы CO 2 от испарения (φ Vap ) и нагнетания CO 2 Inj ) являются продуктом φ CCU (кг CO 2 ), φ Avg (кг CO ) 2 / кВт · ч) и электроэнергии, необходимой для испарения (5,3 × 10 −3 кВт · ч / кг CO 2 , раздел 3 SI) и впрыска CO 2 (37 · 10 −3 кВт · ч / кг CO 2 ) 16 соответственно. η – эффективность поглощения CO 2 и представляет собой часть общего CO 2 , которая поглощается во время смешивания или отверждения бетона (наборы данных с 71 по 99).η изменяется от 50% до 85% во время смешивания 16,19,52 . Для отверждения η равно 1 (т.е. 100% абсорбции), поскольку наборы данных по вулканизации (наборы данных от 1 до 70) сообщают, что CO 2 используется как отношение массы абсорбированного CO 2 к массе цемента.

Процессы 12 и 13 – CO 2 и отверждение паром: Отверждение CO 2 из CO 2 образца бетона (φ CO2_Cur ) является продуктом φ CCU (кг CO 2 ), φ Avg (кг CO 2 / кВт · ч), электрическая мощность, необходимая для камеры отверждения (P CO2_Cur = 38.8 кВт / м 3 бетона) 35,95 и продолжительность отверждения (t CO2_Cur в часах, SI Раздел 2), которая определяется из обзора литературы 38,96 . φ CO2_Cur приведен к прочности на сжатие бетонного образца. В некоторых наборах данных для производства бетона CCU используется комбинация отверждения паром и CO 2 . В этом случае анализ включает выбросы CO 2 от парового твердения бетона CCU.Выбросы CO 2 при отверждении паром (φ Stm_Cur ) являются произведением интенсивности отверждения CO 2 (39,55 кг CO 2 / м 3 / ч, дополнительная таблица 8) и продолжительности отверждение паром (t stm_Cur в часах), которое определено из литературы (дополнительная таблица 1, процесс 13). φ Stm_Cur приведен к прочности на сжатие бетонного образца.

Когда CO 2 используется для смешивания бетона (наборы данных в категории 3 и 4), выбросы CO 2 от CO 2 и отверждения паром принимаются равными нулю, так как отверждение CO 2 для бетона не проводится.

Производство обычного бетона CO

2 Выбросы

Общий жизненный цикл CO 2 Выбросы от производства обычного бетона (TOT Conv ) аналогично количественно определены в уравнении. 5.

$$ {\ mathrm {TOT}} _ {{\ mathrm {Conv}}} = \, {\ mathrm {(}} \ upvarphi _ {\ mathrm {C}} \ ast {\ mathrm {C }} _ {{\ mathrm {Conv}}} {\ mathrm {)}} + {\ mathrm {(}} \ upvarphi _ {{\ mathrm {CA}}} \ ast {\ mathrm {CA}} _ { {\ mathrm {conv}}} {\ mathrm {)}} + {\ mathrm {(}} \ upvarphi _ {{\ mathrm {FA}}} \ ast {\ mathrm {FA}} _ {{\ mathrm { conv}}} {\ mathrm {)}} + {\ mathrm {(}} \ upvarphi _ {\ mathrm {W}} \ ast {\ mathrm {W}} _ {{\ mathrm {conv}}} {\ mathrm {)}} \\ \, + {\ mathrm {(}} \ upvarphi _ {{\ mathrm {SCM}}} \ ast {\ mathrm {SCM}} _ {{\ mathrm {conv}}} {\ mathrm {)}} + {\ mathrm {(E}} _ {\ mathrm {p}} \ ast \ upvarphi _ {{\ mathrm {Pow}} \ _ {\ mathrm {Plnt}}} \ ast {\ mathrm {Alloc}} _ {{\ mathrm {elec}}} {\ mathrm {)}} + \ upvarphi _ {{\ mathrm {Stm}} \ _ {\ mathrm {Cur}}} + {\ mathrm {(D }} _ {\ mathrm {M}} \ ast \ upvarphi _ {{\ mathrm {TM}}} \ ast {\ mathrm {M}} _ {{\ mathrm {Conv}}} {\ mathrm {)}} $$

(5)

(Ep * φPow_Plnt * Allocelec) количественно определяет выбросы CO 2 от выработки E p кВтч электроэнергии на электростанции без улавливания углерода.φ Pow_Plnt – это интенсивность CO 2 электроэнергии, вырабатываемой на угольной или газовой электростанции (кг CO 2 / кВтч, дополнительная таблица SI 1).

Чистый CO

2 Анализ чувствительности

Разница между TOT CCU (уравнение 1) и TOT Conv (уравнение 5) определяет чистую выгоду CO 2 от бетона CCU, заменяющего обычный бетон .

$$ {\ mathrm {Net}} \; {\ mathrm {CO}} _ {\ mathrm {2}} {\ mathrm {Benefit}} = {\ mathrm {TOT}} _ {{\ mathrm {Conv }}} {\ mathrm {- TOT}} _ {{\ mathrm {CCU}}} $$

(6)

TOT CCU и TOT Conv обусловлены выбросами CO 2 от 13 процессов, на которые, в свою очередь, влияют неопределенность и изменчивость основных параметров (дополнительная таблица 1).

При анализе точечной диаграммы стохастически генерируются 10 000 значений для материалов и единиц инвентаря, а также параметров для 13 процессов, которые получаются из набора данных (диапазоны и отношения, представленные в дополнительной таблице 1). Стохастически сгенерированные значения применяются в уравнениях. 1, 5 и 6, чтобы определить выбросы CO 2 от 13 процессов для обычного бетона и бетона CCU и чистую выгоду CO 2 . Чистая выгода CO 2 отложена по оси ординат.По оси абсцисс отложена разница между выбросами CO 2 для каждого из 13 способствующих процессов в обычном и бетонном.

Для дальнейшей проверки результатов в этом анализе проводится независимый от момента анализ чувствительности 25,29,30,97 для определения процесса (из 13 процессов), оказывающего наибольшее влияние на чистую выгоду от выбросов CO 2 . Независимый от момента анализ чувствительности определяет индекс δ для каждого из 13 процессов. Индекс δ количественно определяет относительный вклад каждого из 13 процессов в функцию распределения вероятности чистой выгоды CO 2 .Независимый от момента анализ чувствительности предлагает методологические преимущества, поскольку он учитывает корреляцию между входными параметрами для 13 процессов и применим, когда входные параметры и выход не связаны линейно 98 .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *