Автоматизированная система проектирования – Обзор популярных систем автоматизированного проектирования (CAD)

Содержание

Обзор популярных систем автоматизированного проектирования (CAD)

Система автоматизированного проектирования (САПР) – сложный комплекс средств, предназначенный для автоматизации проектирования.

Согласно принятым в 1980-х годах стандартам, САПР – это не просто некая программа, установленная на компьютере, это информационный комплекс, состоящий из аппаратного обеспечения (компьютера), программного обеспечения, описания способов и методов работы с системой, правил хранения данных и многого другого.

Однако, с приходом на отечественный рынок иностранных систем, широкое распространение получили аббревиатуры CAD (Computer Aided Design), которую можно перевести, как проектирование с применением компьютера, и CAD-system, которую можно перевести, как система для проектирования с помощью компьютера.

В настоящее время в среде специалистов по САПР многие термины утратили свой первоначальный смысл, а термин САПР теперь обозначает программу для автоматизированного проектирования. Другими словами, то, что раньше называлось ПО САПР или CAD-системой, теперь принято называть системой автоматизированного проектирования (САПР). Также можно встретить названия CAD-система, КАД-система, система САПР и многие другие, но все они обозначают одно – некую программу для автоматизированного проектирования.

На современном рынке существует большое количество САПР, которые решают разные задачи. В данном обзоре мы рассмотрим основные системы автоматизированного проектирования в области машиностроения.

Базовые и легкие САПР

Легкие системы САПР предназначены для 2D-проектирования и черчения, а также для создания отдельных трехмерных моделей без возможности работы со сборочными единицами.

Безусловный лидер среди базовых САПР – AutoCAD.

AutoCAD

AutoCAD — это базовая САПР, разрабатываемая и поставляемая компанией Autodesk. AutoCAD – самая распространенная CAD-система в мире, позволяющая проектировать как в двумерной, так и трехмерной среде. С помощью AutoCAD можно строить 3D-модели, создавать и оформлять чертежи и многое другое. AutoCAD является платформенной САПР, т.е. эта система не имеет четкой ориентации на определенную проектную область, в ней можно выполнять хоть строительные, хоть машиностроительные проекты, работать с изысканиями, электрикой и многим другим.

Система автоматизированного проектирования AutoCAD обладает следующими отличительными особенностями:

  • Стандарт “де факто” в мире САПР
  • Широкие возможности настройки и адаптации
  • Средства создания приложений на встроенных языках (AutoLISP и пр.) и с применением API
  • Обилие программ сторонних разработчиков.

Кроме того, Autodesk разрабатывает вертикальные версии AutoCAD - AutoCAD Mechanical, AutoCAD Electrical и другие, которые предназначены для специалистов соответствующей направленности.

Bricscad

В настоящее время на рынке появился целый ряд систем, которые позиционируются, как альтернатива AutoCAD. Среди них можно отдельно отметить Bricscad от компании Bricsys, которая очень активно развивается, поддерживает напрямую формат DWG и имеет целый ряд отличий, включая инструменты прямого вариационного моделирования, поддержку BIM-технологий.

САПР среднего уровня

Средние системы САПР — это программы для 3D-моделирования изделий, проведения расчетов, автоматизации проектирования электрических, гидравлических и прочих вспомогательных систем. Данные в таких системах могут храниться как в обычной файловой системе, так и в единой среде электронного документооборота и управления данными (PDM- и PLM-системах). Часто в системах среднего класса присутствуют программы для подготовки управляющих программ для станков с ЧПУ (CAM-системы) и другие программы для технологического проектирования.

САПР среднего уровня – самые популярные системы на рынке. Они удачно сочетают в себе соотношение “цена/функциональность”, способны решить подавляющее число проектных задач и удовлетворить потребности большей части клиентов.

Autodesk Inventor

Профессиональный комплекс для трехмерного проектирования промышленных изделий и выпуска документации. Разработчик – компания Autodesk.

Среди особенностей Inventor стоит отметить:

  • Продвинутые инструменты трехмерного моделирования, включая работу со свободными формами и технологию прямого редактирования
  • Поддержку прямого импорта геометрии из других САПР с сохранением ассоциативной связи (технология AnyCAD)
  • Тесную интеграцию с программами Autodesk - AutoCAD, 3ds Max, Alias, Revit, Navisworks и другими, что позволяет использовать Inventor для решения задач в разных областях, включая дизайн, архитектурно-строительное проектирование и пр.
  • Поддержку отечественных стандартов при проведении расчетов, моделировании и оформлении документации
  • Обширные библиотеки стандартных и часто используемых элементов
  • Обилие мастеров проектирования типовых узлов и конструкций (болтовые соединения, зубчатые и ременные передачи, проектирование валов и колес и многое другое)
  • Широкие возможности параметризации деталей и сборок, в том числе управление составом изделия
  • Встроенную среду создания правил проектирования iLogic.

Для эффективного управления процессом разработки изделий, управления инженерными данными и организации коллективной работы над проектами, Autodesk Inventor может быть интегрирован с PLM-системой Autodesk Vault и схожими системами других разработчиков.

SolidWorks

Трехмерный программный комплекс для автоматизации конструкторских работ промышленного предприятия. Разработчик – компания Dassault Systemes.

Черты системы, выгодно отличающие ее от других CAD-систем:

  • Продуманный интерфейс пользователя, ставший образцом для подражания
  • Обилие надстроек для решения узкоспециализированных задач
  • Ориентация как на конструкторскую, так и на технологическую подготовку производства
  • Библиотеки стандартных элементов
  • Распознавание и параметризация импортированной геометрии
  • Интеграция с системой SolidWorks PDM

SolidEdge

Система трехмерного моделирования машиностроительных изделий, которую разрабатывает Siemens PLM Software.

Среди преимуществ системы можно выделить:

  • Комбинацию технологий параметрического моделирования на основе конструктивных элементов и дерева построения с технологией прямого моделирования в рамках одной модели
  • Расчетные среды, включая технологию генеративного дизайна
  • Поддержку ЕСКД при оформлении документации
  • Расширенные возможности проектирование литых деталей и оснастки для их изготовления
  • Встроенный модуль автоматизированного создания схем и диаграмм
  • Тесную интеграцию с Microsoft SharePoint и PLM-системой Teamcenter для совместной работы и управления данными

Компас-3D

Компас-3D – это система параметрического моделирования деталей и сборок, используемая в областях машиностроения, приборостроения и строительства. Разработчик – компания Аскон (Россия).

Преимущества системы Компас-3D:

  • Простой и понятный интерфейс
  • Использование трехмерного ядра собственной разработки (C3D)
  • Полная поддержка ГОСТ и ЕСКД при проектировании и оформлении документации
  • Большой набор надстроек для проектирования отдельных разделов проекта
  • Гибкий подход к оснащению рабочих мест проектировщиков, что позволяет сэкономить при покупке
  • Возможность интеграции с системой автоматизированного проектирования технологических процессов ВЕРТИКАЛЬ и другими системами единого комплекса.

T-FLEX

Отечественная САПР среднего уровня, построенная на основе лицензионного трехмерного ядра Parasolid. Разработчик системы – компания ТопСистемы (Россия).

Отличительные черты системы:

  • Мощнейшие инструменты параметризации деталей и сборок
  • Продвинутые средства моделирования
  • Простой механизм создания приложений без использования программирования
  • Интеграция с другими программами комплекса T-FLEX PLM
  • Инструменты расчета и оптимизации конструкций.

“Тяжелые” САПР

Тяжелые САПР предназначены для работы со сложными изделиями (большие сборки в авиастроении, кораблестроении и пр.) Функционально они делают все тоже самое, что и средние системы, но в них заложена совершенно другая архитектура и алгоритмы работы.

PTC Creo

Система 2D и 3D параметрического проектирования сложных изделий от компании PTC. САПР PTC Creo широко используется в самых разных областях проектирования.

Выгодные отличия системы от конкурирующих решений:

  • Эффективная работа с большими и очень большими сборками
  • Моделирование на основе истории и инструменты прямого моделирования
  • Работа со сложными поверхностями
  • Возможность масштабирования функциональности системы в зависимости от потребностей пользователя
  • Разные представления единой, централизованной модели, разрабатываемой в системе
  • Тесная интеграция с PLM-системой PTC Windchill.

NX

NX – флагманская система САПР производства компании Siemens PLM Software, которая используется для разработки сложных изделий, включающих элементы со сложной формой и плотной компоновкой большого количества составных частей.

Ключевые особенности NX:

  • Поддержка разных операционных систем, включая UNIX, Linux, Mac OS X и Windows
  • Одновременная работа большого числа пользователей в рамках одного проекта
  • Полнофункциональное решение для моделирования
  • Продвинутые инструменты промышленного дизайна (свободные формы, параметрические поверхности, динамический рендеринг)
  • Инструменты моделирования поведения мехатронных систем
  • Глубокая интеграция с PLM-системой Teamcenter.

CATIA

Система автоматизированного проектирования от компании Dassault Systemes, ориентированная на проектирование сложных комплексных изделий, в первую очередь, в области авиастроения и кораблестроения.

Отличительные особенности:

  • Стандарт “де факто” в авиастроении
  • Ориентация на работу с моделями сложных форм
  • Глубокая интеграция с расчетными и технологическими системами
  • Возможности для коллективной работы тысяч пользователей над одним проектом
  • Поддержка междисциплинарной разработки систем.

Облачные САПР

В последнее время активно начали развиваться “облачные“ САПР, которые работают в виртуальной вычислительной среде, а не на локальном компьютере. Доступ к этим САПР осуществляется либо через специальное приложение, либо через обычный браузер. Неоспоримое преимущество таких систем – возможность их использования на слабых компьютерах, так как вся работа происходит в “облаке”.

Облачные САПР активно развиваются, и если несколько лет назад их можно было отнести к легким САПР, то теперь они прочно обосновались в категории средних САПР.

Fusion 360

САПР Fusion 360 ориентирована на решение широкого круга задач, начиная от простого моделирования и заканчивая проведением сложных расчетов. Разработчик системы – компания Autodesk.

Особенности Fusion 360:

  • Продвинутый интерфейс пользователя
  • Сочетание разных методов моделирования
  • Продвинутые инструменты работы со сборками
  • Возможность работы в онлайн и оффлайн режимах (при наличии и отсутствии постоянного подключения к сети Интернет)
  • Доступная стоимость приобретения и содержания
  • Расчеты, оптимизация, визуализация моделей
  • Встроенная CAM-система
  • Возможности прямого вывода моделей на 3D-печать.

Onshape

Полностью “облачная” САПР Onshape разрабатывается компанией Onshape.

На что стоит обратить внимание при выборе Onshape:

  • Доступ к программе через браузер или мобильные приложения
  • Работа только в режиме онлайн
  • Узкая направленность на машиностроительное проектирование
  • Полный набор функций для моделирования изделий машиностроения
  • Контроль версий создаваемых проектов
  • Поддержка языка FeatureScript для создания собственных приложений на основе Onshape.

Заключение

В настоящее время на рынке присутствуют самые разные современные CAD системы, которые отличаются между собой как по функциональности, так и по стоимости. Выбрать подходящую систему автоматизированного проектирования среди многих CAD – непростая задача. При принятии решения необходимо ориентироваться на потребности предприятия, задачи, которые стоят перед пользователями, стоимость приобретения и содержания системы и многие другие факторы.

www.pointcad.ru

Система автоматизированного проектирования (САПР). Кто кого? / Habr


Идея родилась в моей голове от нашей бедности наших потребностей. Для тех, кто решил освоить какой-нибудь САПР, казалось бы, выбор должен быть всегда очевиден — это должен быть тот же САПР, что используется на предприятии, где работаешь, или же хочешь работать. Причины, по которой трудно сделать выбор могут быть разными, к примеру – у всех ленивых возникнет вопрос: «А что освоить легче?» или «Пойдет ли он на моем компьютере, если я хочу сделать нечто и в определённом количестве?». На выбор может так же повлиять наличие в программе нужных функций и, как это не странно прозвучит, цена. На эти и возможно некоторые другие вопросы ответы под катом.
ФОТО!!!

Виновники торжества:

Безусловно, САПР систем куда больше, но нам не хватило бы ни времени, ни сил на то, чтобы все их вам представить. Встречайте избранных.

Кратко о каждом. Плюсы и минусы:

Autodesk AutoCAD – один из самых распространенный CAD систем, помимо просто версии под названием Autodesk AutoCAD есть рад специализированных, таких как: AutoCAD для Mac, AutoCAD Architecture, AutoCAD Civil 3D, AutoCAD Electrical, AutoCAD LT, AutoCAD Map 3D, AutoCAD Mechanical, AutoCAD MEP, AutoCAD Plant 3D, AutoCAD P&ID, AutoCAD Raster Design, AutoCAD Revit Architecture Suite, AutoCAD Revit MEP Suite, AutoCAD Revit Structure Suite, AutoCAD Structural Detailing, AutoCAD Utility Design. Старые версии не сильно требовательны к железу, но начиная с 2010 версии работать на компьютере года 2006-го будет несколько затруднительно. Так же замечено, что AutoCAD 2010-2012 заведомо медленнее работает на интегрированных чипах Intel, в чем мы впоследствии убедимся, причем как в 3D, так и в 2D. Спасает эту ситуацию даже самый слабый GPU, который минимально соответствует требованиям AutoCAD, к примеру на чипе NVidia 200 Series.

Autodesk Inventor – САПР ориентированный большей частью на машиностроение, причем 2D часть программы развита настолько плохо, что оставляет желать лучшего. Практически весь набор дополнительных утилит представлен только в 3D части программы, в то время как в 2D нам остается довольствоваться только ассоциативными видами и минимальным набором для черчения. Недостаток в 2D полностью компенсирует AutoCAD Mechanical, ориентированный в свою очередь на оформление чертежей. Требования к железу у Inventor-а одновременно и небольшие, и в то же время достаточно высоки. Все зависит от того, что вы хотите «напроектировать». Как обстоят дела с версиями ниже 2010 сказать не могу но, как и в случаи с AutoCAD, компьютер нужен посерьезнее.

DSS SolidWorks – очень неплохая система, имеет достаточной понятный интерфейс, ничего из ряда вот выходящего я в ней не нахожу, но не могу отметить способность данной программы распознавать дерево построения сторонних CAD систем, а так же расстроить любителей халявы, пиратская версия встает кривовато. Делайте выводы.

АСКОН КОМПАС 3D – САПР, популярный, наверное, только в России. Основным полюсом у него будет – изначально русский интерфейс (хотя предыдущие системы этим не страдают), и очень обширная библиотека стандарта ГОСТ. Если в случаи с AutoCAD, при не удовлетворительной производительности на старом компьютере есть возможность поставить более старую версию, то в случаи с КОМПАСом — это будет не целесообразно, т.к. системные требования, начиная с 5-ой версии не сильно менялись. Также преимуществом является возможность сохранять работы в старой версии, т.к. большинство систем, благодаря своеобразной политике компании, такой функции лишены.

Подопытные кролики Тестируемые машины:







Проводимый тест:

В общем и целом ничего сложного.
Все настройки программ касательно графики будут стоять на качество отрисовки, но с минимум визуализации (в последствии некоторые проблемы мы постараемся решить и покажем как).
Задачу мы поставим нашим подопытным достаточно простую, с точки зрения реализации – массив из пружинок.

Постепенно увеличивая массив, можно будет увидеть, как живет программа при разной нагрузке. Отметим, что пружина, сама по себе один из самых сложный примитивов, если ее можно таковым назвать, следовательно, результаты будут даны с запасом.

Перед тестом хочу немного остановиться и рассказать вкратце, что из себя представляют тестируемые машины, для тех, кто не сильно разбирается в комплектующих и в терминологии вообще.
Разделяя компьютеры на рабочие станции и домашние подразумевается, что набор комплектующих в первых будет иметь несколько специфические параметры, названия и цену (как правило, более высокую). Рабочие станции, в свою очередь, тоже можно разделить на достаточно большое дерево, ибо для каждого типа работы нужно что-то свое, рассматривать в этой статье мы их не будем и выделим только представителей, которых называют графическими станциями. Что же отличает эти графические станции от обычных компьютеров? Ответ очень простой, в большинстве случаев это только наличие профессионального графического адаптера. В принципе из любого мощного игрового компьютера можно сделать графическую станцию просто поменяв видеокарту, но есть одно «но». Графические станции – это инструмент, на котором выполняются задачи, в частном случаи это инженерные, ответственные, сложные, достаточно трудоемкие (и как следствие высоко оплачиваемые) и этот инструмент должен удовлетворять пользователя не только по скорости работы, но и по надежности и своеобразной устойчивости к сбоям, и когда производитель выпускает комплектующие, предназначенные для профессиональной работы, он просит за них соответствующую цену, поэтому, для удовлетворяющей вас работы, просто смены видеокарты на профессиональную, может быть недостаточным.

Профессиональная графика на сегодняшний день для САПР систем представлена 3-мя компаниями:

  • NVidia (серия Quadro и Quadro FX)
  • ATI(AMD) (серия FirePro)
  • Intel (интегрированная графика в процессорах семейства Xeon E3, E7)
Производители от души «распиарили» свои продукты (все это читайте на официальных сайтах), но на деле раскрывается страшная истина. Те из вас, кто достаточно любопытен, наверняка заметили, что вышеупомянутые компании в профессиональной графике используют те же графические чипы, что и в игровых и бюджетных видеокартах, а деньги (причем не малые) просят с нас в большей части только за более качественное изготовление и оптимизацию программной части, т.е. драйверов. Но, как это ни прискорбно, для повышения производительности придется купить, то, что предлагают, а на сколько это целесообразно, каждый решит для себя сам.
По поводу ноутбуков, у нас будут представлены по одному представителю от бизнес и домашней серии.

И так, поехали:

Xeon
Показал вполне достойные результаты, последний тест выполнил с упрощением, смог задействовать два потока в нагрузке процессора, а вот нагрузка видеокарты была реализована только примерно на 50 процентов. В тонированно-каскадном тесте показал результат лучше, чем остальные системы.
Для выполнения теста понадобилось 747 Mb RAM
Использовано 2 потока
Нагрузка на GPU 50%

FX580
Как это ни странно, результаты не намного ниже, чем у предыдущей машины, однако, стоит отметить, что, если нагрузка на процессор была аналогичная, то видеокарта тут выложилась по полной. Также очень необычный «жор» в оперативной памяти – 2390 метров.
Для выполнения теста понадобилось 2390 Mb RAM
Использовано 2 потока
Нагрузка на GPU 100%

i7 Intel HD
На удивление результаты первых 4-х тестов аналогичны, как и на “FX580”, однако тест 50 на 50 был проведен с упрощением, равно как и последний.
Для выполнения теста понадобилось 624 Mb RAM
Использовано 2 потока

GTX460
Несмотря на заявления производителей и то, что процессор не i7, а i5 и предыдущего поколения, результат выше, чем у «второго» и не многим меньше «первого». Предположительно будет меньше стабильность работы, но в целом результат достаточно удивительный.
Для выполнения теста понадобилось 652 Mb RAM
Использовано 2 потока
Нагрузка на GPU 50%

DualCore
Последние 2 теста – провалены. Система зависла и построить массив не смогла. Мною было честно дано на построение 30 минут, но увы, результата я так и не дождался. Результаты остальных тестов значительно ниже. И вообще вывод – компьютер не пригоден для работы в CAD системах, т.ч. ссылаться на этот тест в сравнениях не будем.
Для выполнения теста понадобилось 358 Mb RAM
Использован 1 поток

ATI
Провалены последние 2 теста, система не смогла построить массив. Результат остальных – ниже, и удовлетворительной работы на больших сборках ждать от него не приходится. Нагрузка на карту была 100 % на протяжении всего теста.
Для выполнения теста понадобилось 301 Mb RAM
Использован 1 поток
Нагрузка на GPU 100%

i5
Практически идентичные результаты с третьей машиной (i7 Intel HD)
Для выполнения теста понадобилось 598 Mb RAM
Использован 1 поток

Xeon
Производительность на уровне с Inventor-ом, при этом нагрузка на систему была все 25%, как для видеокарты, так и для процессора (один поток).
Для выполнения теста понадобилось 412 Mb RAM
Использован 1 поток
Нагрузка на GPU 25%

FX580
Для выполнения теста понадобилось 434 Mb RAM
Использован 1 поток
Нагрузка на GPU <75%

i7 Intel HD
Выдал результаты ниже, но не заметные для восприятия.
Для выполнения теста понадобилось 715 Mb RAM
Использован 1 поток

GTX460
Для выполнения теста понадобилось 517 Mb RAM
Использован 1 потока
Нагрузка на GPU 25%

DualCore
Для выполнения теста понадобилось 290 Mb RAM
Использовано 2 потока (сомнительно)

ATI
Хоть не смог построить только самый последний тест, тесты 50 на 50 и 100 на 100 – выполнены с упрощением, остальные тесты показали производительность, на уровне с остальными машинами (за исключением DualCore)
Для выполнения теста понадобилось 388 Mb RAM
Использован 1 поток
Нагрузка на GPU 50%

i5
Для выполнения теста понадобилось 526 Mb RAM
Использован 2 потока (сомнительно)

Xeon
Как и AutoCAD, смог нагрузить только один поток. Средняя нагрузка на видеокарту – 50 процентов, как и предыдущие системы – провалил тест 100 на 100, и практически провалил тест 50 на 50.
Для выполнения теста понадобилось 196 Mb RAM
Использован 1 поток
Нагрузка на GPU 50%

FX580
Выдал практически идентичную производительность. Нагрузка на видеокарту тоже возросла.
Для выполнения теста понадобилось 177 Mb RAM
Использован 1 поток
Нагрузка на GPU 100%

i7 Intel HD
Показал аналогичный результат, как и на всех предыдущих машинах, такое ощущение, что ему видеокарта вообще не нужна.
Для выполнения теста понадобилось 268 Mb RAM
Использован 1 поток

GTX460
… без комментариев.
Для выполнения теста понадобилось 168 Mb RAM
Использован 1 поток
Нагрузка на GPU <75%

DualCore
Для выполнения теста понадобилось 98 Mb RAM
Использован 1 поток

ATI
Провален тест 50 на 50 и 100 на 100, в остальном – как обычно.
Для выполнения теста понадобилось 186 Mb RAM
Использован 1 поток
Нагрузка на GPU <50%

i5
Провален тест 50 на 50 и 100 на 100.
Для выполнения теста понадобилось 132 Mb RAM
Использовано 1 поток

Xeon
Оказался самым прожорливым, хоть как и 2 предыдущих системы, использовал ресурсы только одного потока, задействовал почти 100% видеокарты, показал сравнительно более лучшие результаты в тесте с тонировкой без каркаса.
Для выполнения теста понадобилось 323 Mb RAM
Использован 1 поток
Нагрузка на GPU 100%

FX580
Выдал результаты ниже почти в 2 раза.
Для выполнения теста понадобилось 279 Mb RAM
Использован 1 поток
Нагрузка на GPU 100%

ATI
Наличие дискретной карты дало свои результаты, но удовлетворительной работы в сборках более 100 деталей ждать не приходится.
Для выполнения теста понадобилось 261 Mb RAM
Использован 1 поток
Нагрузка на GPU 100%

Вывод по сравнению CAD систем:

Inventor: может использовать многозадачность, что беccпорно плюс, требователен к оперативной памяти, во всяком случаи задействовал ее больше чем все остальные, показал неплохую производительность на интегрированных видеокартах, но задействовал всего половину ресурсов от Quadro 4000. (есть предположение, что на Quadro 2000 производительность будет аналогичная, так же, есть предположение, что на игровых картах Radeon производительность будет больше, чем у аналогов Nvidia)

AutoCAD: продемонстрировал весьма достойную производительность, однако ресурсов задействовал меньше, из этого можно сделать вывод, что конфигурация выше второй машины (FX580) особого смысла не имеет.

КОМПАС 3D: показал одинаковую производительность на тестируемых стационарных машинах, прирост производительности практически минимальный, т.ч. для работы будет достаточно Intel HD 3000, но покупка профессиональной графики выше Quadro 600 будет не оправдана. Ноутбуки показали вполне сравнимый результат со стационарными машинами, хотя тест с каскадной отрисовкой 50 на 50 был не удовлетворительным.
В общем и целом для КОМПАСа желательно наличие дискретной графики, но при покупке нового компьютера с интегрированной HD 3000, стоит задуматься.

SolidWorks: пожалуй самый требовательный CAD к графической части, аппаратного ускорения на интегрированных картах он не дал, а значит дискретная графика обязательна для тех, кто будет работать со сборками даже в 100 деталей (возможно это исправлено в 2012 версии). На первой машине результат вполне достойный, с тестом 100 на 100 он справился лучше остальных, но на остальных машинах результат напоминает то, что показал КОМПАС.

P.S.:

Итак, если у вас уже есть достаточно мощная машина, даже игровая, смело выбирайте себе любую CAD-систему для ее изучения. Наличие профессиональной графики дает прирост, но смысл ее приобретать если вы не уверены, что будете профессионально работать, пожалуй не стоит.

Если компьютер старый, но все же мощнее, нашего «позорника» (DualCore), то изучить работу тоже можно во всех системах, но работать с большими сборками (больше 100 деталей) даже при наличии профессиональной графики, будет затруднительно.

К ноутбукам требования серьезнее, т.к. сделать замену комплектующих там сложнее, но в целом все примерно тоже самое.

Для SolidWorks наличие дискретной графики обязательно!

habr.com

САПР: структура, классификация, возможности, применение

Текущее состояние рынка продукции и, обостряющаяся конкуренция межу производителями, накладывает жесткие условия на все этапы жизненного цикла производства изделий. В условиях постоянно сокращающегося времени между возникновением новой идеи и ее моральным устареванием конкурентоспособность производителя достигается за счет оптимизации, унификации и автоматизации стандартных процедур, сопутствующих выпуску новых товаров. Для реализации этих задач проектные организации используют специализированное программное обеспечение, являющееся частью САПР.

Аббревиатура САПР расшифровывается как система автоматизированного проектирования и, зачастую, воспринимается обывателями, как набор программ для черчения. Однако, согласно действующему ГОСТ 23501.101-87, термин САПР трактуется обширнее и подразумевает всю организационно-техническую инфраструктуру проектного отдела или организации. Затрачивая внушительную часть бюджета на развитие и поддержание структуры САПР, предприятия преследуют единственную цель — повышение качества выпускаемой продукции и оперативное реагирование на обратную связь от потребителей.

Скачать ГОСТ 23501.101-87

Возможности и области применения

Наиболее очевидной и востребованной функцией комплексов САПР является возможность построения компьютерной 2D- и 3D-модели разрабатываемого изделия. Однако, применение САПР не ограничивается только разработкой и каталогизацией проектной документации, хотя уже этот момент помогает экономить массу времени и трудозатрат инженера, позволяя в ходе работы менять элементы чертежей, ничуть не заботясь о влиянии этих изменений на проект в целом.

Пользователь современной САПР имеет в своем распоряжении богатый выбор стандартных элементов, избавляющий от необходимости многократно проделывать одну и ту же работу и унифицирующий стандартные проектные процедуры. Мощный математический аппарат упрощает инженерные расчеты, позволяя в режиме реального времени визуально оценивать контролируемую величину и ее зависимость от изменения проектируемой конструкции. Наиболее актуально эта задача проявляется в системах с распределенными параметрами, расчет которых крайне трудоемок. В качестве примеров можно привести анализ напряжений в узлах механических систем, строительных конструкций, тепловой расчет электронных устройств и т.д. Сложно переоценить возможности САПР в плане компьютерной анимации и симуляции разрабатываемых устройств, позволяющие увидеть их работу до изготовления прототипа и устранить ошибки и недочеты, сделанные при проектировании.

Исторически сложилось, что САПР получили широкое применение в машиностроении, автомобилестроении и строительстве. Однако, в настоящее время с их помощью можно автоматизировать практически любой процесс, начиная от раскроя и пошива одежды и, заканчивая разработкой поточной линии крупного завода.

Структура САПР

Являясь разновидностью информационных систем, классифицируемых по сфере применения, САПР относятся к сложным многоуровневым структурам, образуемым совокупностью средств вычислительной техники, различными видами обеспечения, а также обслуживающим их персоналом.

Структура САПР регламентирована ГОСТ 23501.101-87 и включает в себя два класса подсистем: проектирующие и обслуживающие. Основным назначением проектирующих модулей выступает решение конкретных проектных задач, а функции информационного обмена между ними возложены на подсистемы обслуживания, к задачам которых можно отнести:

  • Управление процессами проектирования.
  • Документирование процессов проектирования.
  • Реализация графического интерфейса.
  • Организация и ведение банка данных.

Согласно стандарту, компоненты САПР строятся на основе следующих видов обеспечения:

  • Техническое обеспечение объединяет вычислительное, телекоммуникационное оборудование и линии связи.
  • Программное обеспечение состоит из средств нижнего и верхнего уровней. Это операционная система с комплектом драйверов периферии и, собственно, сами компоненты САПР.
  • Совокупность данных, необходимых для реализации процесса разработки включается в информационное обеспечение САПР. Это нормативная информация, данные о прототипах проектируемых объектов, готовые шаблоны.
  • Математическое обеспечение объединяет в себе алгоритмы и математические модели, необходимые для реализаций проектных задач.
  • Лингвистическое обеспечение включает набор интерфейсов для организации межмодульного взаимодействия, а также специальные языки проблемно-ориентированного программирования.
  • К методическому обеспечению относится общая и внутренняя нормативная документация, регламентирующая процессы обслуживания и эксплуатации САПР.

Несмотря на разнообразие решений для автоматизации проектной деятельности, их архитектура также регламентирована. Разработка САПР должна вестись строго в соответствии с принципами создания информационных систем. Одним из них является принцип системного единства, согласно которому, разрабатываемая система должна иметь свойства целостности и взаимосвязанности отдельных компонентов и структуры, а сам процесс проектирования должен носить индуктивный характер, то есть вестись от частного к целому.

Функционирование подсистем и компонентов САПР должно быть подчинено принципу совместимости, в соответствии с которым составные части информационных систем должны решать свои задачи в строгом взаимодействии. Кроме того все элементы подлежат унификации, обеспечивая взаимозаменяемость и открытость.

САПР строится с учетом возможной интеграции с другими информационными системами, а также модификации и пополнения их компонентов.

Классификация САПР

Для более укрупненного описания систем автоматизированного проектирования принята классификация САПР по набору определенных отличительных особенностей. В отечественной практике применяется ГОСТ 23501.108-85, выделяющий среди таких особенностей тип, разновидность и сложность разрабатываемого объекта, уровень автоматизации и ее комплексность, номенклатура подготавливаемой документации, а также сложность структуры технического обеспечения.

Международные стандарты рассматривают такие комплексы в аспекте отраслевого и целевого назначения.

Скачать ГОСТ 23501.108-85

По отраслевому назначению

Признак классификации по отраслевому назначению отчасти перекликается с отечественным типом объекта проектирования и подразделяет все САПР на:

  • Машиностроительные — позволяют выполнять разработку элементов механических систем, а также создавать из них сборки, получая сложные механизмы.
  • Приборостроительные — используются для создания радиоэлектронного оборудования, интегральных микросхем и трассировки печатных плат.
  • Архитектурные — применяются в промышленном и гражданском строительстве, позволяют моделировать конструкции зданий и сооружений.

Следует отметить, что приведенная классификация несколько условна и не охватывает весь перечень отраслей, в которых применяются САПР. Комплексы не попавшие в общепринятую классификацию, трактуются стандартом как «Прочие».

По целевому назначению

Согласно данному классификационному признаку различают CAD-, CAE- и CAM-системы.

  • CAD-системы объединяют в себе инструментарий конструирования различных деталей, подготовки чертежей, спецификаций и сопутствующей документации. Большинство современных программ обладают функциями создания 3D-моделей, используемых в CAM и CAE-системах.
  • CAM-системы позволяют выполнять технологическую поддержку производства изделия. Примером может служить генерация управляющей программы для станков и обрабатывающих центров с ЧПУ.
  • CAE-системы обладают обширными средствами поддержки математического анализа. С помощью них моделируют и прогнозируют процессы в области теплотехники, гидравлики, механики; выполняют сложные расчеты с использованием расширенного математического аппарата. CAE системы позволяют оценить работоспособность проектируемого изделия до его производства.

Англоязычный эквивалент

С 1990 года в нашей стране англоязычный термин CAD нормативно закреплен за определением «автоматизированное проектирование», хотя и не соответствует в полной мере российскому значению САПР. По сути, под понятием CAD понимается применение информационных технологий для поддержки процесса конструирования. Зарубежные CAM системы эквивалентны отечественным автоматизированным системам технологической подготовки производства.

Наиболее полное соответствие прослеживается между определениями САПР и CAE, поскольку включают в себе обе вышеперечисленные системы и представляя собой более широкое понятие.

Популярные программы

На текущий момент существует большое разнообразие CAD-систем разного уровня сложности, что вполне соответствует классификации по комплексности автоматизации проектирования.

К примерам комплексов верхнего уровня можно отнести:

  • NX (разработчик — Siemens PLM Software) — программный продукт с большими возможностями в сфере промышленного дизайна, конструирования, проектирования оснастки (штампов, литейных форм), программирования станков с ЧПУ, инженерного анализа. NX построен на геометрическом ядре Parasolid. NX нашла свое применение в области энергомашиностроения, транспортного машиностроения, при производстве газотурбинных двигателей, а авиационной и автомобильной промышленности.
  • CATIA (разработчик — Dassault Systemes). Нишей данного программного комплекса выступают такие отрасли как авиастроение и кораблестроение, тяжелое машиностроение. Эта САПР построена на ядре CGM (Convergence Geometric Modeler), которое жестко связано с самой системой.  Особенностью CATIA является возможность совместной работы в режиме реального времени. Данный программный комплекс включает в себя порядка трех сотен подключаемых модулей.

Эти программные комплексы соответствуют классу CAE.

К среднему уровню можно отнести:

  • Mechanical Desktop (разработчик ・Autodesk) предназначен для подготовки проектных решений как отдельных деталей, так сборок, а также сопроводительной технической документации. Имеет возможности трехмерного твердотельного моделирования, позволяет спроектировать объекты произвольной геометрической формы и степени сложности. Имеет обширную базу стандартных изделий, в том числе ЕСКД.
  • Mastercam (разработчик — CNC Software, Inc.) представляет собой универсальный, используемый в различных областях программный продукт, предлагающий возможность многовариантных решений в разных режимах работы. Имеет удобный, понятный интерфейс и широкие возможности настройки параметров. Поддерживает трехмерное моделирование, позволяет создавать программы для обработки деталей по 2 — 5 осям на фрезерных, токарных станках, поддерживает операции штамповки и резки листового материала.

Пакеты нижнего уровня:

  • Bricscad (разработчик — Bricsys) программный продукт, предназначенный для создания двумерных чертежей и трехмерного моделирования. Широко используется в машиностроении, строительстве, электрике и автоматике. Основная особенность — единый формат для 2D и 3D объектов.
  • КОМПАС (разработчик АСКОН) представляет собой программу для моделирования. Дает возможность вести конструкторскую документацию, поддерживает отечественные стандарты ЕСКД. Однако не является кросс платформенной системой, так как формат чертежей не поддерживается другими пакетами.

Самой популярной САПР в мире стала программа AutoCAD. Существуя на рынке уже более тридцати лет, она занимает лидирующее положение среди аналогичных программных решений среднего уровня. Имея в своем арсенале развитый инструментарий разработки и адаптации, она представляет собой универсальную платформу на базе которой создано большое количество специализированных приложений, решающих задачи проектирования в области механики, электроники, архитектуры, строительства.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

stankiexpert.ru

Система автоматизированного проектирования — Википедия

Материал из Википедии — свободной энциклопедии

Система автоматизированного проектирования — автоматизированная система, реализующая информационную технологию выполнения функций проектирования[1], представляет собой организационно-техническую систему, предназначенную для автоматизации процесса проектирования, состоящую из персонала и комплекса технических, программных и других средств автоматизации его деятельности[2][3]. Также для обозначения подобных систем широко используется аббревиатура САПР.

Создавалась после окончания Второй мировой войны научно-исследовательскими организациями ВПК США для применения в аппаратно-программном комплексе управления силами и средствами континентальной противовоздушной обороны, — первая такая система была создана американцами в 1947 г.[4] Первая советская система автоматизированного проектирования была разработана в конце 1980-х гг. рабочей группой Челябинского политехнического института, под руководством профессора Кошина А. А.[5]

Расшифровки и толкования аббревиатуры

  • Система автоматизированного проектирования. Наиболее популярная расшифровка в современной технической, учебной литературе и государственных стандартах аббревиатура САПР раскрывается именно так.
  • Система автоматизации проектных работ. Такая расшифровка точнее соответствует аббревиатуре, однако более тяжеловесна и используется реже.
  • Система автоматического проектирования. Это неверное толкование. Понятие «автоматический» подразумевает самостоятельную работу системы без участия человека. В САПР часть функций выполняет человек, а автоматическими являются только отдельные проектные операции и процедуры. Слово «автоматизированный», по сравнению со словом «автоматический», подчёркивает участие человека в процессе.
  • Программное средство для автоматизации проектирования. Это излишне узкое толкование. В настоящее время часто понимают САПР лишь как прикладное программное обеспечение для осуществления проектной деятельности. Однако в отечественной литературе и государственных стандартах САПР определяется как более ёмкое понятие, включающее не только программные средства.

Английский эквивалент

Для перевода САПР на английский язык зачастую используется аббревиатура CAD[6][7] (англ. computer-aided design), подразумевающая использование компьютерных технологий в проектировании. Однако в ГОСТ 15971-90[8] это словосочетание приводится как стандартизированный англоязычный эквивалент термина «автоматизированное проектирование». Понятие CAD не явля

wiki2.red

САПР - это системы автоматизированного проектирования

На многих современных предприятиях используются системы автоматизированного проектирования, или САПР. Существует большое количество поставщиков подобных решений. Функции и возможности данных систем проектирования, в частности представленных специализированным ПО соответствующего назначения, могут быть самыми разными. В чем заключается сущность САПР? Каковы нюансы разработки данных систем?

Что представляют собой системы автоматизированного проектирования?

САПР — это автоматизированные системы, которые призваны реализовывать ту или иную информационную технологию осуществления проектирования. На практике они представляют собой технические системы, позволяющие, таким образом, автоматизировать, обеспечить независимое от человека функционирование процессов, составляющих разработку проектов. В зависимости от контекста под САПР может пониматься:

- программное обеспечение, используемое в качестве основного элемента соответствующей инфраструктуры;

- совокупность кадровых и технических систем (включая те, что предполагают задействование САПР в виде ПО), применяемых предприятием в целях автоматизации разработки проектов.

Таким образом, можно выделить более широкую и узкую трактовку термина, о котором идет речь. Сложно сказать, какая из них применяется в бизнесе чаще, все зависит от конкретной сферы использования САПР, тех задач, которые призваны решать данные системы. К примеру, в контексте отдельно взятого производственного цеха под САПР, вероятно, будет пониматься конкретная программа для автоматизированного проектирования. Если речь идет о стратегическом планировании развития предприятия, данное понятие будет, вероятно, соответствовать более масштабной инфраструктуре, задействуемой в целях повышения эффективности разработки различных проектов.

Стоит отметить, что САПР — это аббревиатура, которая и расшифровываться может по-разному. В общем случае она соответствует словосочетанию «система автоматизированного проектирования». Вместе с тем есть и другие варианты расшифровки соответствующей аббревиатуры. Например, она может звучать как «система автоматизации проектных работ».

В английском языке российскому термину САПР по смыслу соответствует аббревиатура CAD, в некоторых случаях — CAX. Рассмотрим более подробно, в каких целях могут создаваться системы автоматизированного проектирования в машиностроении и иных сферах.

Цели создания САПР

Главная цель разработки САПР — повышение эффективности труда специалистов предприятия, решающих различные производственные задачи. В частности, связанные с инженерным проектированием. Повышение эффективности в данном случае может осуществляться за счет:

- снижения трудоемкости процесса проектирования на производстве;

- сокращения сроков реализации проектов;

- снижения себестоимости проектных работ, а также издержек, связанных с эксплуатацией;

- обеспечения повышения качества инфраструктуры проектирования;

- снижения издержек на моделирование, а также проведение испытаний.

САПР — это инструмент, позволяющий добиться отмеченных преимуществ за счет:

- автоматизации документации;

- эффективной информационной поддержки специалистов, участвующих в разработке проектов;

- применения концепций параллельного проектирования;

- унификации различных решений;

- осуществления стратегического проектирования;

- применения математического моделирования как альтернативы дорогостоящим испытаниям;

- повышения качества процессов управления бизнесом;

- оптимизации методов проектирования.

Рассмотрим теперь, в какой структуре может быть представлена САПР.

Структура САПР

Система автоматизированного проектирования технологических процессов, к примеру, может включать следующие компоненты:

- комплекс элементов автоматизации;

- программно-техническую инфраструктуру;

- методические инструменты;

- элементы поддержки функциональности САПР.

Распространен подход, в соответствии с которым в структуре САПР следует выделять различные подсистемы. Ключевыми принято считать:

- обслуживающие подсистемы, которые поддерживают функционирование основных проектирующих компонентов САПР, инфраструктуры, отвечающей за обработку данных, поддержание ПО;

- проектирующие подсистемы, которые в зависимости от соотнесения с объектом разработки могут быть представлены с объектными задачами или же инвариантными, то есть связанные с реализацией конкретных проектов или же с совокупностью нескольких.

САПР — это системы, которые включают в себя определенные функциональные компоненты. Рассмотрим их особенности.

Компоненты САПР

Автоматизированное проектирование систем управления и промышленной инфраструктуры, как мы уже знаем, состоит из различных подсистем. В свою очередь, их составляющими являются компоненты, которые обеспечивают функционирование соответствующих элементов САПР. Например, это может быть та или иная программа, файл, аппаратное обеспечение. Компоненты, обладающие общими признаками, формируют средства обеспечения систем проектирования. Таковые могут быть представлены следующими основными разновидностями:

- техническим обеспечением, которое представляет собой совокупность различных технических средств, таких как компьютеры, сетевые компоненты, измерительные приборы;

- математическими моделями, которые объединяют те или иные алгоритмы, что задействуются в целях решения различных задач;

- программным обеспечением — системным, прикладным;

- информационным обеспечением, представляющим собой совокупность различных данных, что необходимы в целях внедрения проектирования;

- лингвистическими моделями, представляющими собой совокупность различных языков, которые применяются в САПР в целях отражения сведений о проектировании;

- методическим обеспечением, представляющим собой совокупность подходов к обеспечению функционирования САПР, различных методов подбора технологических концепций для достижения оптимальных результатов при реализации тех или иных проектов;

- организационным обеспечением, которое представлено главным образом источниками, которые определяют структуру проектной документации, а также характеристики системы автоматизации и то, каким образом должны отражаться результаты реализации проектов.

Автоматизированные системы проектирования, обработки информации могут быть классифицированы по различным критериям. Рассмотрим их специфику.

Классификация САПР

В числе распространенных критериев классификации САПР — отраслевое назначение соответствующих систем. Так, выделяют:

- автоматизированное проектирование инфраструктуры машиностроения;

- САПР для электронного оборудования;

- автоматизированное проектирование в сфере строительства.

Первый тип систем САПР используется в широком спектре отраслей — в автомобилестроении, авиастроении, судостроении, в сегментах выпуска различных товаров народного потребления. Соответствующая инфраструктура применяется в целях разработки как отдельных деталей, так и различных механизмов с использованием всевозможных подходов в рамках параметрического проектирования, моделирования.

Второй тип САПР применяется для проектирования готового электронного оборудования, а также отдельных его элементов, например процессоров, интегральных микросхем и прочих видов аппаратного обеспечения.

Третий тип САПР задействуется в целях проектирования различных зданий, сооружений, элементов инфраструктуры.

Следующий критерий, по которому могут быть классифицированы системы автоматизированного проектирования, программирования, — целевое назначение САПР. Так, выделяют:

- средства проектирования, задействуемые в целях автоматизации двумерных либо трехмерных геометрических моделей, формирования конструкторской документации;

- системы, применяемые в целях разработки различных чертежей;

- САПР, созданные для геометрического моделирования;

- системы, предназначенные для автоматизации расчетов в рамках инженерных проектов, а также динамического моделирования;

- САПР, предназначенные для осуществления компьютерного анализа различных параметров по проектам;

- средства автоматизации, используемые в целях технологической оптимизации проектов;

- САПР, используемые в целях автоматизации планирования.

Стоит отметить, что данную классификацию следует считать условной.

Автоматизированная система технологического проектирования может включать в себя самый широкий спектр функций из числа тех, что перечислены выше, и не только. Конкретный перечень возможностей САПР определяет прежде всего разработчик соответствующей системы. Рассмотрим, какие в принципе задачи он может решать.

Разработка САПР

Проектирование автоматизированных систем обработки информации, управления, программирования и реализации иных функций, направленных на повышение эффективности разработки проектов в тех или иных отраслях, — процесс, который характеризуется высоким уровнем сложности и требует от его участников осуществления вложения значительных ресурсов — трудовых, финансовых. Эксперты выделяют несколько основных принципов, в соответствии с которыми может вестись разработка САПР. В числе таковых:

- унификация;

- комплексность;

- открытость;

- интерактивность.

Рассмотрим их подробнее.

Унификация как принцип разработки САПР

Работа с системами автоматизированного проектирования как на стадии их разработки, так и в период пользования соответствующей инфраструктурой предполагает следование принципу унификации, в соответствии с которым, те или иные решения могут одинаково эффективно и по схожим алгоритмам внедряться в различных отраслях производства. Данный принцип предполагает, что человек, использующий знакомый ему модуль САПР или, к примеру, методику автоматизированного проектирования в одной среде, без труда сможет адаптировать их к специфике применения в иных условиях.

Унификация САПР имеет значение и с точки зрения развития предприятия - разработчика соответствующей системы: чем более универсальными будут модули и подходы, которые данный хозяйствующий субъект предлагает рынку, тем более интенсивным может быть его рост, тем выше конкурентоспособность и готовность новых потребителей к сотрудничеству.

Комплексность как принцип разработки САПР

Следующий принцип, который характеризует процесс проектирования автоматизированных систем, — комплексность. Он предполагает, что производитель САПР сможет наделить свой продукт компонентами, которые позволят его пользователю решать поставленные задачи на самых разных уровнях реализации проекта. Данный аспект, возможно, является ключевым с точки зрения обеспечения конкурентоспособности продукта и освоения им новых рынков. Но при этом следует иметь в виду, что даже самые комплексные решения должны удовлетворять иным ключевым принципам разработки САПР. В числе таковых — открытость.

Открытость как принцип разработки САПР

Открытость в данном контексте может пониматься по-разному, но во всех случаях ее интерпретация будет уместной. Разработка системы автоматизированного проектирования — процесс, который должен прежде всего характеризоваться открытостью с точки зрения формирования обратной связи между производителем САПР и ее пользователями. Человек, задействующий соответствующую систему, должен иметь возможность информировать ее разработчика о выявленных проблемах, особенностях функционирования САПР в различных условиях, передавать бренду-производителю свои пожелания касательно улучшения продукта.

Открытость в разработке САПР также может выражаться в готовности производителя осуществлять активный мониторинг технологических разработок, в том числе от конкурирующих производителей, отслеживать различные тренды. В данном случае ведущую роль в бизнесе могут играть не только технологические подразделения, но, к примеру, маркетологи компании, специалисты по PR, менеджеры, отвечающие за переговоры фирмы с партнерами.

Открытость при разработке САПР — это также готовность разработчика соответствующей системы к прямому диалогу с другими поставщиками, которые опять же могут быть его прямыми конкурентами. Обмен технологиями, позволяющими создавать продукты, посредством которых может быть осуществлено эффективное автоматизированное проектирование систем управления, промышленной инфраструктуры, инженерных разработок, также является значимым фактором повышения конкурентоспособности бренда, поставляющего САПР в тех или иных сегментах рынка.

Интерактивность как принцип разработки САПР

Следующий важнейший принцип создания САПР — интерактивность. Он предполагает прежде всего создание разработчиком соответствующих систем интерфейсов, максимально облегчающих процедуру их задействования человеком, а также осуществления им необходимых коммуникаций с другими пользователями САПР.

Еще один аспект интерактивности — обеспечение в необходимых случаях взаимодействия между различными модулями систем автоматизированного проектирования в рамках формирования производственной инфраструктуры.

Можно отметить, что принцип интерактивности тесно связан с первым — унификацией. Дело в том, что обмен данными в рамках тех или иных интерактивных процедур наиболее эффективным будет при условии необходимой стандартизации взаимодействия между теми или иными субъктами. Это может выражаться в унификации файловых форматов, документов, процедур, языка, инженерных подходов при разработке тех или иных проектов.

Особенно большое значение рассматриваемый принцип играет в САПР, посредством которых осуществляется автоматизированное проектирование информационных систем. Данная сфера применения САПР характеризуется, в частности, высокой степенью потребности пользователей соответствующей инфраструктуры:

- в регулярном, динамичном взаимодействии между собой;

- обеспечении связей между большим количеством модулей САПР;

- осуществлении оптимизации различных интерактивных процедур;

- оперативном формировании отчетности.

Только при условии достаточной интерактивности систем автоматизированного проектирования пользователи вправе рассчитывать на эффективное решение подобных производственных задач.

fb.ru

автоматизация проектирования

Система автоматизированного проектирования в конструкторской подготовке производства

Системы автоматизированного проектирования (САПР) в настоящее время полностью себя оправдывают и являются во многих случаях единственно возможными методами при кон­струировании новых видов изделий (например, интегральных микросхем).

Под автоматизацией проектирования понимается автома­тизированный конструкторский синтез устройства с выпуском необходимой конструкторской документации (КД).

В отличие от проектирования вручную, результаты которо­го во многом определяются инженерной подготовкой конст­рукторов, их производственным опытом, профессиональной интуицией и т. п., автоматизированное проектирование позво­ляет исключить субъективизм при принятии решений, значи­тельно повысить точность расчетов, выбрать варианты для реализации на основе строгого математического анализа, зна­чительно повысить качество конструкторской документации, повысить производительность труда проектировщиков, сни­зить трудоемкость, существенно сократить сроки конструктор­ской и технологической подготовки производства в цикле СОНТ, эффективнее использовать технологическое оборудо­вание с ЧПУ.

Важным результатом внедрения САПР являются и социо­логические факторы: повышение престижности и культуры труда при замене неавтоматизированных методов автомати­зированными; повышение квалификации исполнителей; со­кращение численности работников, занятых рутинными опе­рациями.

Наибольшую эффективность от внедрения <^mi и получить при автоматизации всего процесса проектирования - от постановки задачи, выбора предпочтительных вариантов построения изделия до технологической подготовки его про­изводства и выпуска.

До внедрения САПР на предприятии нужно прежде всего решить, применительно к каким задачам (или работам) про­ектирования наиболее эффективно ее применение, сформу­лировать требования к ней, определить в общем виде струк­туру, выделить этапы разработки системы и составить пере­чень необходимых для этого исследований, а также устано­вить, в каком объеме и виде она будет выдавать техническую документацию проекта и соответствие ее действующим нор­мативно-техническим документам (ГОСТ, ОСТ, СТП, РТМ и т. д.). Кроме того, должны быть выполнены работы по форма­лизации задач выбора и оптимизации проектных и конструк­торских решений, формированию библиотек типовых техни­ческих и проектных решений, информационных баз, пакетов прикладных программ и технологии автоматизированного про­ектирования.

САПР представляет собой организационно-техническую систему, состоящую из комплекса средств автоматизации про­ектирования, взаимосвязанного с проектировщиками и под­разделениями проектной организации. Проектировщик (кон­структор, технолог) входит в состав любой САПР и является ее пользователем, так как без человека автоматизированная си­стема не может функционировать. Объектом автоматизации в САПР являются действия проектировщиков, разрабатывающих изделия или технологические процессы. САПР нельзя создать вне конкретного производства, на котором она будет исполь­зована.

Комплекс средств автоматизации включает математиче­ское, лингвистическое, программное, информационное, методическое, организационное, аппаратное и техническое

обеспечение.

Математическое обеспечение составляют математические методы, модели и алгоритмы, необходимые для осуществле­ния автоматизированного проектирования.

Лингвистическое обеспечение - совокупность специаль­ных языковых средств проектирования, предназначенных для общения человека с техническими и программными компонен­тами САПР. Практика использования ЭВМ в проектировании привела к созданию наряду с универсальными алгоритмичес­кими языками программирования (АЛГОЛ, ФОРТРАН и др.) проблемно-ориентированных алгоритмических языков, специ­ализированных для проектных задач. Например, для автома­тизации вычерчивания изображений служат графические язы­ки ГП-ЕС, ГРАФОР, РЕДГРАФ, ФАП-КФ и др.

Программное обеспечение является непосредственным производным компонентом от математического обеспечения и представляет собой комплекс всех программ и эксплуата­ционной документации к ним.

Информационное обеспечение - это информация о про­тотипах проектируемых изделий или процессов, комплектую­щих изделиях и материалах, об используемом режущем инст­рументе, о правилах и нормах проектирования, а также любая другая справочная информация, используемая проектировщи­ками для выработки проектных решений. Основная часть ин­формационного обеспечения содержится в банках данных, состоящих из баз данных и систем управления базами данных.

Организационное обеспечение устанавливает взаимодей­ствие проектирующих и обслуживающих подразделений, от­ветственность специалистов за определение вида работ, при­оритеты пользования средствами САПР и другие регламенты организационного характера. Соответствующий комплект до­кументов составляют необходимые инструкции, приказы и штатные расписания.

Техническое обеспечение - комплекс всех технических средств, используемых при автоматизированном проктирова-нии и для поддержания средств автоматизации в работоспо­собном состоянии.

Некоторые виды обеспечений объединены в группы, со­ответствующие наиболее простому представлению состава САПР, которому часто следуют на практике, когда не все обес­печения САПР разрабатываются, например, программно-ин­формационное обеспечение, которое воплощается в виде программ и сопровождающей документации. На этот вид обеспечения, как правило, приходится основная трудоем-

кость разработки. В общей трудоемкости разработки слож­ных САПР его доля достигает 75 % и более. Организационно-методическое обеспечение включает весь комплекс обеспе­чивающих мероприятий, а также регламентирующую и орга­низующую процесс автоматизированного проектирования документацию применительно к условиям конкретной проек­тной организации.

Решающими условиями возможности и целесообразнос­ти создания САПР являются: а) единство принципов построе­ния объектов проектирования; б) высокий уровень типизации и стандартизации элементов, из которых компонуют объекты проектирования; в) высокий уровень унификации процессов проектирования; г) большой объем проектных работ при ин­дивидуальных требованиях к объектам проектирования.

Эволюция средств и методов автоматизации проектиро­вания тесно связана с развитием вычислительной техники и программного обеспечения. На ранних стадиях создания САПР ЭВМ решала лишь отдельные инженерные задачи высокой трудоемкости. Затем с ее помощью стали выполняться в па­кетном режиме задачи технической подготовки производства, включающие: разработку плановых показателей; нормирова­ние расхода ресурсов; составление графиков запуска новых изделий, карт применяемости деталей, сборочных единиц, технологических карт; расчет режимов обработки деталей.

Однако это не позволило существенно сократить сроки запуска новых изделий в производство, так как при этом не охватывались проектно-конструкторские работы, на которые затрачивалось значительное время в цикле технической под­готовки производства.

С появлением средств машинной графики - графических дисплеев, графопостроителей, графических печатающих уст­ройств (плоттеров), кодировщиков и других - стало возмож­ным автоматизировать наиболее трудоемкие процессы про­ектирования изделий и технологий. В состав таких САПР обя­зательно входит развитое программное обеспечение, вклю­чая универсальные и специализированные пакеты прикладных программ, обеспечивающие, как правило, работу системы в интерактивном (диалоговом) режиме.

В общем случае процесс проектирования включает три эта­па: составление эскизного, технического и рабочего проектов.

Затраты труда на разработку объекта распределяются по эта пам приблизительно в таком соотношении: 10, 25 и 65 %

Наиболее творческой является стадия эскизного проекти рования, требующего применения интерактивных средств гра фики. С их помощью конструктор может строить трехмерное изображение детали и моделировать траекторию движения инструмента для ее обработки (без чертежей).

Техническое проектирование предусматривает исполнение конкретного замысла в заданном масштабе, а также осуще­ствление необходимых расчетов. Здесь используется значи­тельный объем информации о стандартных деталях, покупных изделиях и т. д.

На стадии рабочего проектирования создаются рабочие чертежи и техническая документация. Деталировка, опреде­ление и нанесение размеров, составление спецификаций пол­ностью формализуются и могут выполняться на ЭВМ с исполь­зованием средств машинной графики.

При автоматизации проектирования наиболее важной явля­ется формализация как самого процесса, так и его объекта Она позволяет представить процесс проектирования в виде цепоч­ки (набора) последовательно (параллельно-последовательно) выполняемых процедур, при которых информация преобразу­ется, а исходные варианты приближаются к заданным проект­ным задачам. При этом если проекты могут быть сформу­лированы в виде информационных массивов для ЭВМ а опе­раторы проектирования (определенные процедуры, форму­лы, комплексы программ, стандарты, методики, модели и т. п.) представлены в виде пакета машинных программ то та­кой процесс называют автоматической разработкой (генера­цией) проекта. Если разработке на ЭВМ подлежат лишь неко­торые подкомплексы на отдельных стадиях, то такой процесс проектирования называется автоматизированным. В том слу­чае, когда оператор проектирования применим для ряда сис­тем или подкомплексов, выполняется типовое проектирование Нахождение (разработка) таких операторов является одной из важнейших задач построения любой системы проектирования Полный цикл процесса проектирования включает последо­вательное выполнение человеко-машинных процедур и их вза­имосвязи (рис. 17.2).

При автоматизированном проектировании сложных систем и объектов применяется Системно-иерархический подход, ког­да сам процесс и объект расчленяются на уровни. На верхнем уровне отражаются только самые общие черты и особенности проектируемого объекта. На каждом последующем уровне разработки степень детализации возрастает.

В соответствии с этапностью создания новой техники в комплексной (интегрированной) САПР выделяются следующие автоматизированные системы: управления процессами про­ектирования (АСУПП), проектирования (АСП), конструирова­ния (АСК), технологической подготовки производства (АСТПП), управления технологическими процессами изготовления опытных образцов (АСУТП), комплексных испытаний и обра­ботки изделий (АСКИО).

Каждая из функциональных составляющих базируется на едином комплексе средств автоматизации проектирования, включающих обеспечивающие системы типа автоматизиро­ванных банков данных (АБД), а также вычислительную систе­му, систему информационного обмена, графическую систему и систему разработки машинных программ.

Исходя из особенностей графических работ из состава комплексной САПР выделяют в виде самостоятельной графи­ческую подсистему, или подсистему автоматизированного черчения (ПАЧ), обслуживающую все функциональные систе­мы. Оперативные средства выполнения графических работ входят в состав комплекса технических средств каждой функ­циональной системы, имеющей терминал.

Основу автоматизации стадии конструкторской подго­товки производства составляют две функциональные части комплексной САПР: автоматизированная система проекти­рования (АСП) и автоматизированная система конструиро­вания (АСК).

Автоматизированная система проектирования использует­ся как инструментальная подсистема САПР. Она создает про­граммы автоматизированного проектирования, и от ее эффек­тивности в значительной мере зависит эффективность дей­ствия комплексной САПР. Эта система выполняет несколько видов проектных процедур на стадиях разработки техничес­кого задания, технических предложений, эскизного и техни­ческого проектирования: анализ исходных данных, формирование технических характеристик, определение эффективно­сти изделия на стадии проработки изделия, когда перед про­ектировщиком стоит проблема выбора прототипа будущей новинки на основе упрощенной математической модели. Ре­зультатом функционирования АСП является структурная схе­ма изделия с данными расчета проектных параметров.

Автоматизированная система конструирования использу­ется на этапах технического и рабочего проектирования для проведения уточненных расчетов по всему изделию и отдель­ным его элементам, а также изготовления конструкторской до­кументации.

Для САПР любого уровня сложности основным структурным элементом является функциональная подсистема. Подсистемы обладают значительной функциональной автономностью и реа­лизуют определенный этап (фрагмент) процесса проектирова­ния. Однако САПР и их подсистемы взаимоувязаны с различны­ми компонентами интегрированных систем управления предпри­ятием или объединением (рис. 17.3).

studfile.net

СИСТЕМЫ АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ ЭЛЕКТРОННЫХ УСТРОЙСТВ И СИСТЕМ

Языки программирования используются как языки высокого уровня – для написания текстов программ (визуальная часть и интерфейс), так и машинно-ориентированные языки (ассемблеры), позволяющие создавать программы, наиболее эффективные в смысле вычислительных затрат (математическое обеспечение САПР).

Языки проектирования ориентированы на пользователей-проектировщиков и предназначены для эксплуатации САПР. Эта группа языков делится на следующие:

входные языки для задания исходной информации об объектах и задачах проектирования и включают в себя языки описания объектов и языки описания заданий. Первые служат для описания свойств проектируемых объектов, а вторые − для описания заданий на выполнение проектных операций и процедур;

выходные языки для представления результатов проектирования на ПК;

языки сопровождения для корректировки и редактирования данных при выполнении проектных про-

цедур;

языки управления для представления управляющей информации, например, для устройств документирования;

промежуточные и внутренние языки для представления информации на определенных стадиях ее переработки в ЭВМ.

Программное обеспечение САПР. В ПО САПР принято выделять системное и прикладное ПО. Системное ПО предназначено для организации функционирования технических средств, т.е. для планирования

иуправления вычислительным процессом, распределения имеющихся ресурсов, и представлено операционными системами ПК. Системное ПО не отражает специфику САПР. В прикладном ПО реализуется математическое обеспечение для непосредственного выполнения проектных процедур.

Информационное обеспечение САПР. Информационное обеспечение (ИО) САПР объединяет всевозможные данные, необходимые для выполнения автоматизированного проектирования. Эти данные могут быть представлены в виде тех или иных документов на различных носителях, содержащих сведения справочного характера о материалах, комплектующих изделиях, типовых проектных решениях, параметрах элементов, сведения о состоянии текущих разработок в виде промежуточных и окончательных проектных решений, структур и параметров проектируемых объектов и т.п. Основная часть ИО САПР – банк данных, представляющий собой совокупность средств для централизованного накопления и коллективного использования данных в САПР. Банк данных состоит из базы данных и системы управления базой данных.

Основные требования к ИО – полнота, гибкая организация структур данных и способов управления ими, позволяющая пополнять, корректировать и удалять данные без их существенной перестройки, а также быстрый и простой поиск нужных данных.

Техническое обеспечение САПР. Техническое обеспечение (ТО) САПР включает в себя различные технические средства (hardware), используемые для выполнения автоматизированного проектирования, а именно: ПК, периферийные устройства (принтеры, плоттеры, сканеры), сетевое оборудование, оборудование вспомогательных систем (например, измерительных).

Используемые в САПР технические средства должны обеспечивать:

1) выполнение всех необходимых проектных процедур, для которых имеется соответствующее ПО; 2) поддержку интерактивного режима работы взаимодействия между проектировщиками и ПК;

3) коллективную разработку (взаимодействие между членами коллектива, работающими над общим проектом).

Первое из этих требований выполняется при наличии в САПР компьютеров с достаточными производительностью и памятью.

Второе требование относится к пользовательскому интерфейсу и выполняется за счет включения в САПР удобных средств ввода-вывода данных и, прежде всего, устройств обмена графической информацией.

Третье требование обусловливает объединение аппаратных средств САПР в локальную или глобальную вычислительную сеть. На рабочих местах должны быть средства для интерфейса проектировщика с компьютером. Вычислительная мощность при этом может быть распределена между различными узлами вычислительной сети.

Методическое обеспечение САПР. Методическое обеспечение САПР составляют документы, характеризующие состав, правила отбора и эксплуатации средств автоматизированного проектирования. Допускается более широкое толкование понятия методического обеспечения, под которым подразумевают совокупность математического, лингвистического обеспечения и названных документов, реализующих правила использования средств проектирования.

1.4.Классификация САПР

Внастоящее время используется ряд устоявшихся англоязычных терминов, применяемых для классификации программных приложений и средств автоматизации САПР по отраслевому и целевому назначению.

studfile.net

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *