Экструдированный пенополистирол для фасада: Утепление фасада экструдированным пенополистиролом по шагам

Содержание

Как облицевать пенополистирол экструдированный для фасада?

Оглавление Скрыть ▲ Показать ▼

В необходимости утеплить уже построенный дом либо создать современную теплоизоляционную систему во время строительства – убеждать никого уже не нужно. Даже жители южных регионов стремятся снизить теплопроводность ограждающих конструкций своих домов, так как применение пенополистирола экструдированного для утепления фасадов позволяет повысить комфортность проживания зимой и летом, сохраняя прохладу в доме в жаркое время года. Утепление фасада экструдированным пенополистиролом, несмотря на свою относительно высокую стоимость, окупается снижением расходов на отопление, да и продолжительный срок использования, которое демонстрирует утепление фасада дома экструдированным пенополистиролом – позволяет длительное время обходиться без ремонта.

Виды отделки наружного утеплителя

Универсальность современного утеплителя, коим является пенополистирол экструдированный для фасада, заключается не только в большом перечне теплотехнических характеристик, позволяющих использовать его для утепления всех конструктивных элементов здания, но и в возможности применять различные способы финишной отделки утепленной снаружи стены дома, а именно:

  1. Нанесение штукатурного состава по штукатурной сетке, в результате чего – экструдированный пенополистирол для мокрого фасада покрывается армирующим слоем из сетки и фасадной штукатурки.
  2. Облицовка клинкерной плиткой – предусматривает использование в качестве финишного отделочного слоя утеплителя декоративной плитки «под кирпич».
  3. Облицовка натуральным либо искусственным камнем, называемая еще «тяжелая облицовка».
  4. Облицовка декоративными панелями, имитирующими бревенчатый сруб (блок-хаус) либо устройство сайдинга.
  5. Одним из вариантов является устройство вентилируемого фасада – оптимального варианта финишной облицовки утеплителя, однако, стоимость подобного способа высока.

Экструдированный пенополистирол для фасада – цена которого зависит от марки, выбирается в соответствии с финансовыми возможностями и потребительской доступностью утеплителя.

Технология утепления и отделки наружной стены

Весь комплекс работ по утеплению стен здания снаружи не требует особых навыков и знаний, достаточно лишь придерживаться следующего порядка выполнения работ:

  1. На подготовленную (очищенную от грязи, остатков штукатурки, пыли) ровную поверхность стены крепится фасадный экструдированный пенополистирол.
  2. При этом могут использоваться как клеющие смеси, так и тарельчатые дюбеля с пластиковыми сердечниками.
  3. Оптимальным вариантом является комбинированное применение двух способов крепления.
  4. Используя штукатурную стекло волоконную сетку, нанести армирующий (защитный) слой стартовой шпаклевки.
  5. После высыхания – нанести финишную шпаклевку, стараясь создать на поверхности стены ровный и гладкий слой.
  6. Выполнить окончательную (мокрую) отделку утеплителя – покрасить либо нанести слой декоративной штукатурки.
  7. Благодаря этому выполняется огнезащита фасада утепленного – экструдированный пенополистирол, надежно закрытый армирующим слоем, становится недоступным для открытого огня.

Облицовка утеплителя клинкерной плиткой

Основной трудностью данного способа облицовки является то, что отделка фасада экструдированным пенополистиролом должна создать надежное и прочное основание для приклеивания клинкерной плитки, которая выполняет защитную и декоративную функции. Несмотря на свои прочностные характеристики, утеплитель имеет определенную пластичность, поэтому без создания надежного армирующего слоя – не обойтись. Ранее, в этом случае, применялась металлическая сетка, однако современные марки стекло волоконной штукатурной сетки не отличаются по своим характеристикам от металлического аналога, обладая несомненным преимущество – они не подвержены воздействию коррозии, а облицовка фасада по плитам из экструдированного пенополистирола с армирующим слоем, выполняется в соответствии с инструкцией на облицовочную плиту.

Использовать экструдированный пенополистирол на фасаде, в данном случае, не представляет особого труда, так как монтаж утеплителя и создание армирующего слоя выполняются традиционным способом. А вот красиво и надежно наклеить клинкерную плитку на утеплитель – это уже тяжелее, так как необходимы определенные навыки и клеящие смеси для плитки. Гораздо легче работать, используя те возможности, которые предоставляет фасадная плитка из экструдированного пенополистирола, которая представляет собой готовый утеплитель с наклеенной на него в заводских условиях декоративно-защитной плиткой (клинкерной, под кирпич). Подобный способ, называемый еще утепление фасада термопанелями на экструдированном пенополистироле, гораздо легче, так как имеющиеся в комбинированных термопанелях места крепления – обозначены специальными закладными втулками, через которые и выполняется крепеж к стене с помощью дюбелей (предварительно просверлив отверстия в стене). Фасад коттеджей из экструдированного пенополистирола на основе клинкерных термопанелей смотрится стильно и эффектно.


Утепление фасада: чек-лист – XPS Корпорации ТЕХНОНИКОЛЬ

Каждый, кто задумывается о строительстве собственного дома, в какой-то момент понимает, что правильное утепление – ключ к реальной экономии средств и залог долговечности строения. Проведя много часов на строительных порталах и форумах, вы можете узнать десятки историй о том, как даже самые лучшие материалы подводили хозяев дома во время эксплуатации: либо дом получался холодным, а счета за отопление – огромными, либо обваливалась штукатурка и приходилось делать дорогостоящий ремонт. Как ни странно, почти все эти строительные «ужастики» имеют в основе всего лишь пять типичных ошибок, которые допускают раз за разом строители и сами хозяева, которые «присматривают» за утеплением, не зная толком, куда смотреть.

1. Мало утеплителя

Для начала вам нужно понять, какой именно толщины должен быть слой утеплителя именно для вашего дома – в зависимости от толщины стен, материала, из которого они построены, и климатической зоны. Опасно думать, что главное просто «купить утеплитель» — суть в том, что его толщины должно быть достаточно, чтобы стены не промерзали, а точка росы не смещалась внутрь стены или внутрь самого помещения. Как известно, вода при замерзании расширяется, и при частом «переходе через ноль» недостаточно утепленную стену в буквальном смысле разрывает на части частицами льда, которые образуются из накопившейся влаги. Мало того, что жить в таком доме будет не очень приятно, он еще и прослужит гораздо меньше, чем вы рассчитываете. Поэтому прежде, чем открывать в интернете калькулятор стройматериалов с графой «толщина утеплителя», поймите, какой материал вы хотите покупать и каким слоем требуется покрыть стены.

Для выбора конкретного типа материала приведем сравнительный анализ наиболее популярных марок теплоизоляций, применяемых для утепления фасада: минвата, вспененный пенополистирол (ЕПС/EPS/пенопласт) и экструзионный пенополистирол ЭППС/XPS/экструзия. Всю информация по материалам можно найти в интернете.

Характеристика Мин.вата  EPS  XPS  Комментарий
Теплопроводность, Вт/(м·К) 0,039 0,041 0,030 Чем меньше показатель,
 тем меньше нужна толщина теплоизоляции
Прочность на сжатие при 10 % деформации, не менее, кПа 40 100 150 Влияет на устойчивость к динамическим нагрузкам, ударную прочность, вандалоустойчивость.
Водопоглощение 1,0 2,0-4,0 0,2-0,7 Чем больше водопоглощение, тем интенсивнее материал может терять свою теплоизолирующую способность.
Плотность 130-160 14-17 20-35 Влияет на вес материала, удобство при монтаже и транспортировке.
Группа горючести НГ Г3-Г4 Г3-Г4 Для систем штукатурных фасадов определяющий фактор – огнестойкость
системы, а не материала. Поэтому группу горючести материала можно не учитывать.

Если вы хотите сделать слой теплоизоляции максимально тонким, легким и технологичным, логичным выбором будет XPS или экструзионный пенополистирол. В средней полосе России обычная толщина слоя XPS, достаточная для хорошей теплоизоляции помещения, составляет ~100 мм; в регионах с суровым климатом – около 120 мм. Опираясь на сравнительные характеристики современных теплоизоляционных материалов, вы можете рассчитать, какой слой другого теплоизолирующего материала нужен вам – и с этим знанием уже обращаться к интернет-калькуляторам. Для этого необходимо рассчитать толщину слоя теплоизоляции, зная ее теплопроводность и требуемое термическое сопротивление для фасада в конкретном регионе.

2. Неправильные слои утепляющего пирога

Купив достаточное количество хорошего утеплителя, необходимо позаботиться о других материалах для так называемого «пирога» — так на профессиональном сленге называют инженерную конструкцию, которая защищает дом от непогоды и теплопотерь. Пирог состоит, как правило, из следующих компонентов:
— пароизоляционный слой

— несущая конструкция (стена из кирпича, бетона и т.д.)

— выравнивающий слой

— клеевой слой для теплоизоляции

— теплоизоляционный слой

— базовый армирующий слой

— армирующая сетка (щелочестойкая)

— декоративный слой (декоративная штукатурка)

Важно, чтобы все слои пирога шли именно в таком порядке и соответствовали рекомендациям производителя. Проще и надежнее всего выбирать так называемые «решения для фасадов», в которых все компоненты подобраны с учетом их химических, пароизолирующих и прочих свойств. Такое соответствие необходимо, чтобы защитить стены от промерзания, плесени и прочих неприятностей, и сохранить благоприятный микроклимат в доме.

3. Неровное и грязное основание

Как ни странно, одна из самых распространенных ошибок при утеплении фасада – плохая подготовка основания. Технологи недаром постоянно повторяют: стена, на которую крепится утеплитель, должна быть ровной и чистой. Однако до сих пор сплошь и рядом встречаются люди, закупившие хорошие материалы, нанявшие не самую дешевую бригаду, но при этом допускающие монтаж теплоизоляции на стены с пустотами, выбоинами, покрытые пылью и грязью. Результатом такой небрежности станет отслойка теплоизоляционного слоя с разрушением финишного покрытия. Исключений не бывает – вопрос только во времени.

4. Экономия на клее и крепеже

Опять очень странная, но очень распространенная ошибка. Потратившись на отличный материал, экономить на клее и крепеже, мягко говоря, недальновидно. Купите клей, рекомендованный производителем для выбранного вами утеплителя, и достаточное количество крепежа. Так, при монтаже системы с применением экструзионного пенополистирола XPS ТЕХНОНИКОЛЬ CARBON ECO FAS производитель рекомендует приклеивать плиты полимерными смесями, предназначенными для работы с полимерной изоляцией, а фиксировать плиты утеплителя – тарельчатыми пластиковыми фасадными дюбелями из расчета 4-5 штук на 1 м², в угловых частях здания и по периметру проемов – 8 штук на 1 м². С учетом того, что взамен вам обещают надежную службу пирога в течение минимум 50 лет – стоит ли экономить на мелочах?

5. Мостики холода

При укладке утеплителя самое важное – не допустить образования так называемых «мостиков холода», то есть мест утечки тепла. Такими мостиками становятся швы между утепляющими элементами, открытые, оголенные участки каменного основания и так далее. Проще всего избежать образования мостиков холода, используя для утепления плиты XPS со специальной L-образной кромкой: такие детали ложатся плотно внахлест, не давая холоду ни малейшего шанса.

Современные строительные материалы позволяют утеплить дом эффективно, технологично и быстро. Выбирайте правильные материалы и не допускайте очевидных ошибок – и ваш теплый дом прослужит вам долгие годы.

Теги: 

Отделка фасадов частных и многоэтажных домов – Repair-Home.net

С развитием современных технологий появилось большое количество новых строительных материалов, которые за короткое время заняли лидирующие места в строительстве. Одним из таких материалов можно с уверенностью назвать экструдированный пенополистирол. Ни одна стройка сейчас не обходится без применения этого удобного и надежного утеплительного материла. Что же позволило экструдированному пенополистиролу завоевать такую популярность?

Описание и свойства материала

Характеристики экструдированного пенополистирола позволяют широко применять его как утеплитель в различных областях строительства. Основными областями применения экструдированного пенополистирола являются утепление кровли, стен и фундаментов зданий, строительстве бассейнов, а также в дорожном строительстве.

Экструдированный пенополистирол – это материал, полученный из обычного полистирола путем вспенивания и продавливания его через экструдер (машину, формирующую однородные по размеру гранулы). Затем в специальной камере при высокой температуре и под высоким давлением происходит соединение гранул и формирование плит заданного размера, готовых к применению в строительстве.

Технические характеристики экструдированного пенополистирола

Материал очень устойчив к воздействию внешней среды, имеет очень низкую водопоглощаемость и низкую теплопроводность. При использовании экструдированного пенополистирола нет необходимости использовать дополнительно другие виды гидроутеплителей. На рынке представлен в виде плит размером 600 на 1200 мм и 600 на 2400 мм. Толщина плиты от 20 до 100 мм, в зависимости от области применения пенополистирола.

Очень прочен, не пропускает пар, плохо горит (группа горючести от Г1 до Г3), не разрушается при долговременном использовании, не загрязняет экологию, безвреден для человека и практически не плавится. Материал также очень устойчив к цементу, различным смолам, некоторым видам красителей и растворам солей и кислот. В тоже время плохо переносит воздействие прямых солнечных лучей, а также бензина, солярки, мазута, керосина и масляных красок.

Характеристики экструдированного пенополистирола позволяют этому материалу хорошо клеится практически на любые поверхности (бетон, дерево, металл и т.д.). Диапазон температур, при которых допускается эксплуатация этого материала составляет от -50 градусов Цельсия до +75. Работать с ним очень легко, так как он достаточно прост в монтаже и обработке, а также в любую погоду и время года.

Применение экструдированного пенополистирола при утеплении фасадов зданий

Экструдированный пенополистирол очень легок в монтаже, поэтому позволяет утеплить любое здание за очень короткие сроки. Высокая скорость монтажа и большая прочность пенополистирола, по сравнению с традиционно используемым при утеплении фасадов пенополистирилом, позволила этому материалу стать действительно самым популярным утеплителем.

Относительно более высокая цена экструдированного пенополистирола с успехом компенсируется в процессе эксплуатации зданий за счет сохранения до 30% дополнительного тепла, которое было бы потеряно при использовании зданий без этого утепления. Последние исследования показали, что технические характеристики экструдированного пенополистирола позволяют экономить на энергетических ресурсах (электричестве, газе, и т. д.), используемых при отоплении различных видов зданий. В результате экономии срок окупаемости материала в процессе эксплуатации составляет 5 лет.

При утеплении фасадов зданий полистирол крепится к стенам с помощью специального клея и дополнительных крепежных материалов, таких как перфорированные уголки, цокольные планки и, так называемые, фасадные дюбели-зонтики. Количество дюбелей на 1 кв. метр пенополистирола – 5-6 штук.

В заключении хочется сказать, что доверять утепление зданий экструдированным пенополистиролом стоит все-таки специалистам, гарантирующим качество выполненных работ. Это поможет вам избежать в дальнейшем дополнительных расходов, связанных с неправильным монтажом этого материала. Также рекомендую ознакомиться со статьей по утеплении фасадов минеральной ватой, так как и этот материал, безусловно, заслуживает внимания.

преимущества экструзионного XPS и технология утепления фасада

Теплоизоляция является важным атрибутом каждого жилого дома. С ее помощью создаются оптимальные условия проживания. Основным элементом такой системы является теплоизоляционный материал. На современном рынке представлено несколько видов данных продуктов, отличающихся местом использования и техническими параметрами. Поэтому так важно правильно подбирать их для решения определенных задач.

Особенности: достоинства и недостатки

Экструдированный пенополистирол «Технониколь» представляет разновидность утеплителей, которые выпускаются одноименной компанией. Получают его методом экструзии, предполагающей вспенивание полимера и продавливание его сквозь специальные отверстия. При таком воздействии вещество становится пористым.

Следует обратить внимание, что размер пор внутри материала является практически одинаковым. Это значение варьируется в диапазоне от 0,1 до 0,2 мм.

Пенополистирол этой марки можно использовать для утепления фасадов как промышленных, так и бытовых зданий. Высокая популярность теплоизоляции обусловлена несколькими ее преимуществами:

  • Высокая стойкость. Материал практически не разрушается под воздействием влаги и плесени. Еще одной особенностью можно считать стойкость к сжатию. Вещество способно поддерживать форму на протяжении длительного времени.
  • Простота монтажа. Фиксируется материал к основанию с помощью клея или специальных метизов. Сделать это можно, даже не имея опыта работы с подобными продуктами.
  • Длительный срок службы. Пенополистирол сохраняет свои первоначальные характеристики на протяжении многих лет, что позволяет создавать надежные и качественные теплоизоляционные системы.
  • Экологическая чистота. Материал не выделяет никаких запахов и вредных веществ. Но все-таки вещество является искусственным, поэтому безопасность его для здоровья человека еще полностью не изучена.
  • Широкий диапазон эксплуатационных температур. Теплоизолятор можно использовать в условиях от -75 до + 75 градусов.
  • Минимальные показатели теплопроводности.

Единственным недостатком пенополистирола можно считать его низкую стойкость к возгоранию. Этот материал очень хорошо воспламеняется и поддерживает горение. Данные показатели практически аналогичны тем, что присутствуют у пенопласта. Также при горении теплоизолятор выделяет токсичные вещества, которые вредны для здоровья человека.

Чтобы минимизировать подобные недочеты, производитель добавляет в состав продукта различные вспомогательные вещества. С их помощью значительно снижается качество горения и улучшается характеристика самозатухания материала.

Технические характеристики

Плиты пенополистирола распространены довольно широко. Характеризуется эта продукция несколькими уникальными показателями:

  • Коэффициент теплопроводности. Это значение зависит от типа пенополистирола. В среднем, он варьируется в диапазоне 0,032-0,036 Вт/мК.
  • Паропроницаемость. Данный показатель примерно равен 0,01 мг/м ч Па.
  • Плотность. Значение может изменяться в диапазоне 26-35 кг/м.
  • Влагопоглошение. Материал плохо поглощает воду. Этот коэффициент не превышает 0,2% от того объема, который будет погружен в жидкость.
  • Показатель упругости достигает 17 МПа.
  • Характеристики прочности составляют 0,35 МПа (изгиб).
  • Чтобы деформировать материал на 10%, при сжатии следует приложить усилие от 200 до 400 кПа.
  • Период службы составляет до 50 лет.

Выпускают пенополистирол в виде плит, которые легко поддаются резке. Сегодня на рынке представлено множество их размеров. Теплоизоляционные характеристики вещества в большинстве случаев зависят от толщины. Стандартные показатели этого параметра составляют:

  • 20 мм;
  • 50 мм;
  • 100 мм.

Чем толще лист, тем лучше он удерживает тепло. Что касается типоразмеров плит, то здесь есть также несколько стандартных значений:

  • 50x580x1180 мм;
  • 1180х580х50 мм;
  • 100x580x1180 мм;
  • 1200х600х20 мм;
  • 2380х600х50 мм.

Следует отметить также изделия с уклоном, у которых толщина изменяется в зависимости от стороны конструкции. Широкое разнообразие габаритов позволяет подобать оптимальный вид продукции для решения конкретных задач.

Разновидности

Экструдированный пенополистирол «ТехноНИКОЛЬ» пользуется огромной популярностью среди строителей. Это привело к появлению множества разновидностей подобной продукции, которая отличается различными показателями.

Сегодня среди всего этого разнообразия можно выделить несколько марок материалов:

  • «Carbon Prof». Самый качественный продукт «Техноплекс XPS» с минимальными показателями теплопотерь. Коэффициент теплоизоляции составляет всего 0,028 Вт/мК. Еще следует выделить высокую прочность материала. Зачастую этот экструзионный продукт используют при отделке стен, кровель или фундаментов торговых, складских или промышленных зданий. Очень часто на кровли устанавливают клиновидные материалы, позволяющие создать нужный уровень уклона ската. Данную марку также еще делят на несколько разновидностей с определенными отличительными характеристиками.
  • «Carbon Solid». Отличительной особенностью данного продукта является высокий коэффициент прочности на сжатие, который достигает 500-1000 кПа. Поэтому этот материал востребован при строительстве полов, полигонов, автомобильных или железных дорог.
  • «Carbon Sand». Один из самых простых продуктов данной группы. Его очень часто применяют в качестве промежуточных теплоизоляционных слоев при изготовлении сэндвич-панелей, а также кузовов грузовых автомобилей.
  • «Carbon Eco». Продукция характеризуется уникальными теплоизоляционными и прочностными параметрами. Производитель для изменения свойств добавляет в материал определенное количество углеродных частиц. Данная категория теплоизоляторов включает в себя специальные дренажные разновидности. В их структуре присутствует много мелких дренажных канав. Это способствует более качественному отводу воды. Используют материалы как для обустройства дренажей, так и утепления фундаментов, кровель и других мест.
  • «Техноплекс». Универсальный материал общего предназначения. В большинстве случаев его рекомендовано использовать только внутри помещений. Поэтому этим теплоизолятором утепляют полы, стены и перегородки.
  • «Carbon Fas». Изделия отличаются шероховатой поверхностью. Такая структура позволяет повышать адгезию материала и оснований. Поэтому все чаще их используют для отделки фасадов, которые после этого планируется покрывать различными видами штукатурок.

Назначение

Пенополистирол «ТехноНИИКОЛЬ» используется очень часто. Сегодня с его помощью решают несколько основных задач:

  • Утепление стен. Зачастую теплоизолятор монтируют на внешних поверхностях балконов или лоджий. Иногда его можно встретить и в качестве основного утеплителя фасадов небольших частных домов.
  • Утепление полов. Подобные полимерные теплоизоляторы прекрасно подходят для укладки под ламинат и другие подобные покрытия. Это позволяет создавать оптимальные и комфортные условия для перемещения человека.
  • Утепление фундаментов. Для таких работ обязательно нужно проектировать технологическую карту, где проводятся все основные расчеты. Но для подобных операций применяют только специальные виды теплоизоляторов, способных выдерживать агрессивные среды.
  • Теплоизоляция кровель. Полимеры используются в качестве промежуточных слоев, которые затем покрывают слоем гидроизоляторов. Практичность использования продукции в этом направлении связано с тем, что вещество способно выдержать высокие нагрузки, сохранив при этом свои первоначальные свойства.
  • Строительство дорог. Очень часто подобными материалами утепляют грунты, на которых планируется расположение взлетных полос и т. д.

Пенополистирол является довольно востребованным материалом, так как его применяют для решения как стандартных, так и специализированных задач.

Советы по выбору

При выборе подобной продукции следует обращать внимание на несколько параметров:

  1. Технические характеристики. Важно, чтобы материал соответствовал месту, где он будет применяться. К примеру, если вещество будет поддаваться большим нагрузкам, тогда обращают внимание на прочность. Когда же важен уровень теплоизоляции, следует учитывать коэффициент теплопотерь.
  2. Качественные показатели. Определить их можно довольно просто. Для этого просто отламывается небольшой кусок и анализируется поверхность разрыва. Когда поверхность относительно ровная, а мелкие фракции имеют форму многогранников, то это свидетельствует о высоком качестве. Если структура отличается наличием мелких шаров, тогда пенополистирол по своему составу близок к пенопласту и не является качественным.

Особое внимание следует также уделить материалам, которыми планируется крепить теплоизолятор. Полимер не способен выдерживать различные химические воздействия. Поэтому все вещества для работы с ним не должны содержать такие вещества:

  • битумный клей;
  • этилацетат;
  • ацетон и другие органические растворители;
  • каменноугольную смолу.

Технология утепления фасада

Экструдированный пенополистирол отличается высокой пористостью и минимальными показателями прочности. Его монтаж – довольно простая операция, которую легко осуществить своими руками без наличия опыта.

Обратите внимание, что подобный материал можно укладывать не только на фасады, но и осуществлять монтаж полов.

Рассмотрим технологию отделки стен более детально. Состоит этот процесс из нескольких последовательных шагов:

  • Подготовительные операции. Изначально следует обработать фасад, чтобы получить прочное основание. Подготовка стен предполагает удаление грязи, устранение щелей и выравнивание поверхности. Последний шаг не всегда является обязательным. Минимизировать неровности можно с помощью различной толщины клея, который будет располагаться на плитке пенополистирола. После очистки фасады грунтуются специальными растворами. Такая обработка позволяет повысить адгезию между стыкующимися материалами.
  • Фиксация плит. Изначально следует приложить листы к стене и сквозь них проделать крепежные отверстия под дюбели. При этом важно точно определить расположение материала вдоль всех плоскостей. После этого на плиту наносят клей и прикладывают ее к стене. Обратите внимание, что некоторые виды клея не желательно сразу использовать. Производители рекомендуют подождать немного времени, чтобы состав впитался в структуру полимера. Завершается процедура дополнительным креплением материалов с помощью специальных дюбелей.
  • Отделка. Когда клей высохнет, на плиты можно наносить отделку. В большинстве случаев здесь используют штукатурку, но можно сформировать и подложку под клинкер или другой вид плитки. Все это нужно учитывать в зависимости от рекомендаций конкретного производителя.

Производство

Получают экструдированный пенополистирол в несколько последовательных этапов:

  1. Изначально суспензионный полистирол смешивается с различными добавками. Они нужны для того, чтобы изменить его физические характеристики. Зачастую производители используют антипирены, осветлители и красители. Когда состав готов, его загружают в экструдер.
  2. На данном шаге сырье поддается предварительному вспениванию. Структура материала насыщается большим количеством воздуха.
  3. Когда обработка завершена, массу поддают спеканию и формовке. После этого смесь охлаждают. В большинстве случаев пена стынет естественным путем. На данном этапе состав также дополнительно вспенивают.
  4. Завершается процедура экструзией материала, его стабилизацией и окончательной обработкой поверхности. В самом конце вещество режут на плиты и подают на упаковку.

Экструдированный пенополистирол – это уникальный теплоизолятор, позволяющий быстро получить оптимальный уровень тепоризоляции с минимальными затратами.

О том, как утеплить пол при помощи экструдированного пенополистерола, смотрите далее.

Как правильно монтировать экструдированный пенополистирол на цоколь

Принято считать, что важным аспектом строительства загородного дома является укладка фундамента. Да, конечно, это основа основ. Но и цоколю стоит уделить особое внимание. На него оказывают давление и грунтовые воды, и влага при выпадении осадков. Утепление и изоляция нижней части здания не менее важна, чем остальная теплоизоляция. Более того, для цоколя необходимо использовать другой материал — экструдированный пенополистирол. Его отличительным свойством является абсолютная водонепроницаемость. Теплоизоляционный материал не впитывает влагу совершенно. Главное правильно смонтировать его на наружные стены.

Предварительный этап

Перед использованием XPS стены выравниваются и подготавливаются грунтовочными смесями, чтобы исключить деформацию, смешение листов и образование «мостиков холода» при негерметичном соединении.

Нанесение клея

Клеящий состав наносится на плиты XPS 3 способами:

  • Точечно в виде кругов на расстоянии 30 мм друг от друга, не доходя до края плит 10-20 мм.
  • Зигзагообразной линией, отступив от края 10-20 мм.
  • Пунктирной линий по краям и по центру плиты, оставив отступ от края 10-20 мм.

Отступление от края плит важно при любом способе нанесения, чтобы клей не попал на стыки плит. Материал сразу монтируется после нанесения клея.

Принцип монтажа плит XPS 3

  • Плита прикладывается к стене на расстоянии 20 мм от нужного места ее укладки.
  • С помощью нажима на плиту ее смещают в заданное положение.
  • Для фиксации используются постукивание деревянным молоточком.
  • После приклеивания осуществляется дополнительная фиксация с помощью дюбелей.
  • Расход крепежа: 4 дюбеля на м2 по основному полотну цоколя, 6-8 штук на м2 по углам здания.
  • На утеплитель устанавливается и покрывается клеем армирующая сетка для придания прочности и долговечности теплоизоляции.
  • В качестве финишного декорированного слоя на фасаде используется декоративная штукатурка.

Дополнительные советы

  • Допустимым зазором является щель между стуками плит не более 2 мм. Заполнять ее клеем нельзя.
  • Для учета температурного расширения швах оставляется зазор 15 мм и заполняется мастикой.
  • При необходимости укладки экструзионного пенополистирола с несколько слоев, последующие надо перевязывать по принципу кирпичной кладки, устанавливая листы в шахматном порядке.

Использование экструлированного пенополистирола для цоколя в системе утепления заметно увеличивает шансы эксплуатации дома без трещин, сколов, образования темных пятен на фасаде.

Мифы о пенопласте

Особенности нашего климатического пояса и резко растущие цены на газ и электричество заставляют людей всё чаще и чаще посматривать в сторону экономии энергоресурсов за счёт утепления стен дома или квартиры. А ведь в Европе и США уже давно утепляются! Экономичность утепления фасадов домов, складов, загородных коттеджей и прочих зданий давно доказана опытом в цивилизованных и экономически развитых странах. Чем же лучше утеплять дом? Утеплителей для системы теплоизоляции фасада на сегодняшний день достаточно много, но лучше вспененного пенополистирола (по-нашему — пенопласт) пока ничего не придумали. Несмотря на попытки производителей минеральной ваты или экструдированного пенополистирола разыграть кампанию против своего бесспорного конкурента, который на голову выше по свойствам утепления фасада и прочим показателям, пенополистирольные плиты марки ПСБ-С-15, ПСБ-С-25 и даже ПСБ-С-35 продолжают активно участвовать в утепление  фасадов, как на высотках, так и при утеплении дач, частных домов, загородных коттеджей и даже нежилых помещений. К тому же, фасадные декоративные штукатурки, которые можно использовать при утеплении фасада пенопластом, радуют многообразием. Но, как и любое новшество, теплоизоляция успела нахвататься слухов и заблуждений. Недостаток достоверной информации по утеплению фасадов пенопластом жилых домов приводит к проблемам в реальных условиях эксплуатации утеплённого фасада. Также часто нарушается технология выполнения работ при утеплении фасада пенопластом. А ещё чаще неопытный конечный потребитель умудряется купить не тот пенопласт, позариться на низкую цену фасадного клея для пенопласта, выбрать строительную бригаду фасадчиков дилетантов… Пришло время развеять мифы об утеплении фасадов пенопластом.

Миф №1. Экструдированный пенополистирол теплее и надёжней

Если Вы собираетесь ссориться с соседом, у которого в сарае стоит катапульта времён средневековых войн, то экструдированный пенополистирол Вам, безусловно, подойдёт — он гораздо прочнее пенопласта, но тепло удерживает хуже (см. Миф №1). Под сомнением также его долговечность из-за ограниченного срока пригодности клеящих и армирующих материалов. Ведь нет никакого смысла в том, что через 25 лет на Вашем фасаде останется голый обвисший экструдированный пенополистирол. 

Миф №2. Минвата дешевле

Да, сама по себе минвата намного дешевле, чем пенопласт. Но чтобы в доме было по-настоящему тепло и комфортно, нужна не обычная минеральная вата в рулонах, а минераловатные плиты, которые стоят дороже, чем пенополистирольные плиты, и имеют ряд своих недостатков по сравнению с пенопластом.

Миф №3. пенополистирол хорошо горит

Действительно, пенополистирол, как и любые материалы с полимерными добавками, является горючим материалом. Однако правильное использование с выполнением всех существующих правил монтажа и эксплуатации, требований пожарной безопасности позволяют успешно применять его в строительстве.

Горючие строительные материалы делятся на четыре группы: Г1 (слабогорючие), Г2 (умеренногорючие), Г3 (нормальногорючие), Г4 (сильногорючие). «Анализируя результаты опытов можно сказать, что при определенной химической обработке пенополистирола степень его горючести может достигать показателей Г1, Г2, Г3», – заверил Борис Серков, заместитель руководителя органа пожарной сертификации Академии Государственной противопожарной службы. Для сравнения: минеральная вата, не менее популярный теплоизоляционный материал, если ее испытать по методике проверки пенополистирольных плит, относится к группе горючести Г4.

Температура самовозгорания пенополистирола +491 ºС. Это в 2,1 раза выше, чем температура возгорания бумаги (+ 230 ºС), и в 1,8 раза выше, чем у древесины (+260 ºС). Тепловой энергии, при горении, пенополистирол выделяет от 1000 до 3000 МДж/кг. Для сравнения, при горении сухой древесины выделяется 70008000 МДж/м3. Таким образом, пенополистирол дает незначительное повышение температуры в отличие от других, участвующих при пожаре материалов (мебель, линолеум и т. д.). Огнестойкость (горючесть) пенополистирольных плит определяется не только их физико-химическими свойствами, но и «соседями». Речь идет о комбинациях с другими строительными материалами, а также о наличии необходимых защитных слоев. При соблюдении правил противопожарной безопасности пенопласт марки ПСБ-С менее опасен, чем другие широко распространенные строительные материалы.

Миф №4. Тёплый фасад не даёт существенного прироста тепла

Да, прироста тепла «мокрый фасад» не даёт, зато удерживает внутри помещения более 30% тепла, которое было бы потеряно при отсутствии утеплителя. Не утепляя фасад, Вы «отапливаете улицу» за свои деньги.

Миф №5. Недолговечность пенопласта

Вопрос о долговечности пенополистирола также волнует строителей. Производство пенополистирола началось только в 50-х годах, поэтому говорить о том, что его долговечность проверена временем, конечно, пока еще рано. Но заключение ученых испытательной лаборатории НИИСФ уже в наши дни свидетельствует о том, что «пенополистирольные плиты успешно выдержали циклические испытания на температурно-влажностные воздействия в количестве 80 условных лет эксплуатации в многослойных ограждающих конструкциях с амплитудой воздействий ± 40° С».

Из химии – пластмасса, являясь инертным в биологическом отношении материалом, стоит на втором месте по времени разложения после стекла. Время разрушения пенопласта, как изделия, определяется качеством его изготовления.

Единственные враги пенополистирола это ультрафиолетовое излучение и механические воздействия. Именно поэтому пенопласт необходимо окружать материалами которые будут препятствовать этим воздействиям.

Миф №6. Утеплять фасад не выгодно (дорого)

Те, кто так считают, по-своему правы. Ведь это не совсем дешёвое удовольствие. Зато Вы получаете возможность одним махом укрепить стены, утеплить жильё, украсить фасад. А утеплённый фасад – это комфорт и уют домашнего очага, здоровье Вашей семьи, изысканный европейский стиль Вашего дома, надёжность и прочность на долгие годы. А то, что уже через 5 лет эти же деньги вернутся к Вам путём экономии энергоресурсов, а после Вы начнёте «зарабатывать», вообще приводит данный миф в полнейшую неактуальность.

Миф №7. Опасность для здоровья и окружающей среды

Пенополистирол абсолютно не токсичен, им можно пользоваться без каких бы то ни было опасений. Это подтверждается и тем, что уже на протяжении многих лет его используют для изготовления продовольственных упаковок, предполагающих прямой контакт с пищевыми продуктами. Пенополистирол не содержит и никогда не содержал хлорофторированных углеводородов или не полностью галогенированных хлорофторированных углеводородов.

Также и в строительстве, пенополистирол – безопасный изолятор, который может быть использован без риска и принятия дополнительных мер безопасности. В составе пенополистирола нет никаких опасных, ядовитых, токсичных веществ, за все время его использования не потребовалось никаких дополнительных средств защиты (например, респираторных масок или перчаток). Не было зарегистрировано ни одного случая профессионального заболевания, связанного с пенополистиролом.

Пенополистирол эффективно противостоит оседанию (уплотнению) и гарантирует долговечность своих теплоизоляционных свойств. После многих лет использования, пенопласт находит себе применение в областях биологии и микробиологии, еще раз доказывая, что он не представляет никакой опасности для здоровья человека.

Столь хорошее положение дел объясняется природой пенополистирола: обладая инертной структурой, пенополистирол биологически нейтрален и устойчив на протяжении многих лет. В окружающей нас среде, мономерный стирол можно найти в смолах растений, а также в продуктах питания как земляника, фасоль, орехи, пиво, вино и т. д. Не содержащий никакого другого газа кроме воздуха, пенополистирол гарантирует отсутствие возникновения аллергий или скрытых болезней.

Миф №8. Пенопласт едят грызуны

Самый простой способ выяснить этот вопрос для себя – дать какому-нибудь грызуну шарики пенополистирола или часть плиты. Уверяем Вас – есть этот «деликатес» никакой грызун не будет.

Вопрос в том, что грызуны, особенно домовые мыши, уже давно стали постоянными спутниками жизни людей. Для них уже нет преград на пути к жилищу человека. Будь Ваш дом утеплен пенополистиролом или состоять только из кирпича для них нет никакой разницы.

Надеяться и ждать, что грызуны уйдут самостоятельно? С ними необходимо бороться, уменьшая тем самым их численность. Грызуны, в том числе крысы и мыши, являются источниками и переносчиками многих инфекционных и паразитных заболеваний, опасных для человека. Поэтому не надо бояться, что мыши съедят пенопласт, нужно бороться с мышами – разносчиками страшных болезней.

Миф №9. стены утепленные пенополистиролом не «дышат»

Естественный процесс циркуляции и испарения влаги идет внутри любого помещения. Стены дома похожи на многослойный пирог, и если внешний слой отделки стены имеет больший уровень паропроницаемости чем внутренний, то возникает непроходимость пара и оседание его на более плотной части стены.

Термин «дыхание стен» не является техническим термином. Он появляется лишь в многочисленных высказываниях строительных специалистов, количество которых у нас настолько же велико, как и количество врачей. Они говорят, что какая-то стена «дышит» или «не дышит», причем этот термин ими объясняется как первичный термин, не нуждающийся в определении.

Поток водяного пара, проходящий через внешние стены из полного кирпича типичного жилища, составляет от 0,5 до почти 3 % полного потока водяного пара, устраняемого из жилища – эта незначительная разница зависит от исправности вентиляции (главным образом) и влажности в помещении, а в меньшей степени от вида термоизоляции стен, а также от содержания водяного пара во внешнем воздухе.

Типичные внешние стены не в состоянии, даже частично, заменить вентиляцию в роли устранения водяного пара из помещений, поскольку объемы водяного пара многократно выше от того его количества, которое в действительности может проникнуть через внешние стены жилища, даже если отказаться от их утепления пенопластом.

Не находит также обоснования проведение специальных операций, служащих для обеспечения внешних стен большей паропроницаемостью. Вину за чрезмерную влажность в помещениях на внешние стены, как «не дышащие», перебрасывают на утеплитель – пенопласт. В особенности, результаты расчетов дают право сформулировать специальные рекомендации для проектирования жилых домов – направленные на обеспечение максимального утепления.

Миф №10. Пенопласт хороший звуковой проводник (плохой звукоизоляционный материал)

«Обладая рядом одинаковых свойств, звукопоглощающие и звукоизоляционные материалы все же различаются, как по акустическим свойствам так и по назначению. Звукопоглощающие материалы и конструкции из них предназначены для поглощения падающего на них звука, а звукоизоляционные – для ослабления звуковых волн, передающихся через конструкции здания из одного помещения в другое.

Звукоизолирующие материалы применяются как упругий прокладочный материал в междуэтажных перекрытиях и стеновых панелях для изоляции отдельных помещений от возникающего в них структурного и, в частности, ударного звука. Структурный звук, вызываемый шагами, ударами или передвижением мебели или вибрациями какого либо механизма, легко распространяется в не имеющих звукоизоляционных прокладок перекрытиях, стенах и перегородках с очень не большим затуханием.» [Воробьев В.А., Андрианов Р.А. «Полимерные теплоизоляционные материалы» Москва-1972г.]

Пенополистирол действительно плохой звукопоглотитель, но звукоизоляционный материал из него – замечательный.

Звукоизоляция перегородки (ГКЛ – Пенополистирол 50мм – ГКЛ), Rw=41Дб (испытания проводились по ГОСТ 27296-87 Защита от шума в строительстве. Звукоизоляция ограждающих конструкций)

Индекс улучшения изоляции структурного шума в конструкции пола =23Дб (испытания проводились по ГОСТ 16297-80. Материалы звукоизоляционные и звукопоглощающие. Методы испытаний).

Утепление фасада экструдированным пенополистиролом: технология монтажа

Автор fasaditut На чтение 8 мин. Просмотров 815 Опубликовано

Утепление фасада экструдированным пенополистиролом — это один из современных способов повышения энергоэффективности дома, улучшения микроклимата в нем и, как следствие, экономии расходов на потребление ресурсов. На рынке подобного рода утеплители представлены, в том числе и отечественными, пользующимися популярностью у потребителей марками (например, «Пеноплекс» и «Техноплекс»).

Утепление фасада пенополистиролом — современный способ повышения энергоэффективности дома

Достоинства и недостатки экструдированного пенополистирола

Материал, полученный методом экструзии, обладает большей плотностью, чем родственный ему пенопласт. Это качество позволяет использовать пенополистирол для отделки стен зданий снаружи. Экструдированные плиты обладают несколько худшими характеристиками по теплоизоляции, чем панели вспененного полистирола, однако, они намного лучше сопротивляются механическим нагрузкам, воздействию атмосферных факторов и агрессивных сред. Нужно добавить, что коэффициент теплопроводности пенополистирола более чем в 10 раз ниже подобного показателя кирпича и в 3 раза меньше, чем у древесины.

При соблюдении технологии утепления, пенополистирол не имеет недостатков
  • Плотный пенополистирол не пропускает воду. Стройматериал несложен в обработке и отличается простотой монтажа, поэтому утепление фасада пенополистиролом можно выполнить своими руками. Приобретение плит и расходных материалов не требует значительных финансовых средств.
  • Экструдированный полистирол значительно лучше пенопласта по огнестойкости. Что касается безопасности стройматериала для здоровья обитателей дома, то никакой угрозы он не несет, так как плиты располагаются на наружных стенах. Чтобы защитить утеплитель от повреждений и до минимума уменьшить испарение стирола (который в большей или меньшей степени выделяет пенопласт любого вида), обработанные стены закрывают слоем облицовочной отделки.

Некоторые домовладельцы совершают ошибку, утепляя стены дома пенополистиролом не снаружи, а внутри. Можно понять причины такого решения, но необходимо отметить, что подобная теплоизоляция свои задачи выполнять не будет. Она не защитит фасад от промерзания. Следствием этого будет образование плесени между стеной и утеплителем и разрушение несущих конструкций здания.

Внутренний утеплитель ухудшит паропроницаемость перегородок, поэтому в комнатах уровень влажности будет повышен. Кроме того, он может представлять опасность для жильцов, выделяя в помещении вредные вещества. Если случится пожар, то ядовитый дым от пенополистирола станет причиной как минимум тяжелого отравления.

В пользу использования утеплителей снаружи свидетельствует еще одно обстоятельство: при таком способе площадь помещений остается неизменной.

Условия качественного утепления фасадов

В утеплении фасадов пенополистиролом технологии выполнения работ нужно следовать обязательно. Хотя сама операция не является слишком сложной, недочеты, допущенные в монтаже панелей, могут свести на нет усилия по минимизации теплопотерь через стены. Должным образом не зафиксированные плиты грозят такими неприятностями, как отслоение (незакрепленную панель может сорвать ветер), попадание под утеплитель влаги, образование грибка и т. п. Уже через непродолжительное время несущим конструкциям здания потребуется ремонт.

Чтобы утеплить здание качественно, необходимо соблюдать поэтапность монтажа

Чтобы обеспечить качественный результат, необходимо не только точно соблюдать инструкцию по выполнению работ, но и следовать рекомендациям по использованию материалов и выбору приспособлений.

Нужно учесть следующее:

  1. Утепление дома пенополистиролом следует проводить только в теплое время года, однако, нежелательно выбирать для его монтажа жаркие дни. Оптимально вести работы при температуре от +15 °С до +25 °C.
  2. Нельзя устанавливать теплоизоляцию в дождливую погоду или в периоды, когда уровень влажности воздуха превышает 80%.
  3. Приклеенный, но не защищенный покрытием пенополистирол нужно оградить от солнечных лучей и попадания воды. Стену на время длительных перерывов можно завешивать полотном, например, полиэтиленовым.

Необходимые для работы материалы и инструменты

Перед тем как утеплить фасад дома своими руками, необходимо приготовить:

  1. Панели пенополистирола плотностью не менее 25 кг/м³. Откосы можно облицовывать листами толщиной 2–3 см. Для отделки стен, как правило, применяют 5-сантиметровые плиты (в южных регионах фасады иногда утепляют листами толщиной 3 см).
  2. Цокольный профиль и планки для защиты углов строения.
  3. Крепеж. Теплоизоляция фиксируется тарельчатыми дюбель-гвоздями.
  4. Монтажную пену и клей.
  5. Армирующую сетку, грунтовку, шпатлевку или штукатурную смесь.
  6. Краску для финишной отделки.
Перед тем, как приступить к монтажу, необходимо запастись необходимыми материалами и инструментами

Понадобятся следующие инструменты:

  • шуруповерт и дрель;
  • кисть или валик;
  • строительный уровень и отвес;
  • шпатели;
  • молоток;
  • наждачная бумага с бруском.

На подготовительном этапе могут потребоваться зубило и шлифмашинка, ножовка по металлу и т. п.

Подготовка фасада к утеплению

Прежде чем начинают утепление фасадов пенополистиролом, с подлежащей отделке поверхности удаляют все выступающие элементы. С нее снимают желоба, с оконных и дверных проемов — наличники, отливы и т. п. Стену необходимо очистить от пыли, загрязнений, старой краски, рыхлой штукатурки и отслаивающихся фрагментов. Все это будет мешать надежному контакту полистирола с поверхностью. Кроме того, стена должна быть ровной, чтобы плиты утеплителя прилегали к ней плотнее. В оставшихся под пенополистиролом пустотах накопится конденсат, а бугры помешают надежной фиксации листов.

Перед утеплением необходимо добиться плоскости здания

Тем не менее добиваться идеальной плоскости фасада не нужно: достаточно срубить с него значительные выступы и заделать штукатурным раствором глубокие впадины. Небольшие неровности проблемы не представляют, так как отклонения от плоскости нивелируются клеем. Кроме того, контактирующую со стеной на месте выступа грань плиты можно обработать абразивным инструментом.

Условие качественной подготовки поверхности к утеплению — это ее тщательный ремонт. Трещины в стене, швах кирпичной кладки и т. п., заштукатуривают. Перед заделкой края щелей должны быть разделаны, чтобы раствор не замазывал их, а попал внутрь. Швы лучше очистить на глубину не менее 1–2 см.

Перед оштукатуриванием кромки грунтуют составом глубокого проникновения. Он укрепит их и улучшит адгезионные свойства поверхности. С этой же целью грунтовкой обрабатывают всю плоскость фасада, подлежащего утеплению. Однако перед грунтованием желательно пропитать стену антисептиком, который защитит ее от грибка.

В небольшой доработке нуждаются и листы экструдированного пенополистирола. Теплоизоляция не зафиксируется надежно, если ее контактная сторона будет слишком гладкой (этим отличается, например, «Пеноплекс»). Превратить ее в более пористую можно, если сделать на грани маленькие насечки строительным ножом, проколоть ее игольчатым валиком или потереть наждачной бумагой.

Монтаж теплоизоляции

Утепление здания начинается со стартового профиля
  • Утепление фасадов экструдированным пенополистиролом начинают с установки цокольного (стартового) профиля. Планка удержит закрепленные листы теплоизолятора в нужном положении, не давая им сползти до застывания клея. Профиль ставят, проверяя его горизонтальность уровнем. Для фиксации планки используют саморезы или дюбель-гвозди. Их располагают с таким шагом, чтобы исключить прогибание профиля под весом теплоизолятора.
  • Перед приклеиванием полистирола тонкими плитами отделывают откосы дверных и оконных проемов. Ширина листов должна быть на 1 см больше расстояния от внешнего края стены до окна или дверной коробки. Выступающие за плоскость наружной стены панели позволят обеспечить лучшую стыковку утеплителей.
  • Состав для фиксации теплоизоляции следует готовить в соответствии с инструкцией производителя в таком объеме, чтобы не допустить его преждевременного застывания. Массу делают заранее. Стены покрывают сплошным слоем клея. На пенополистирол раствор накладывают точечно, по краям и в центральной части.
  • Первый ряд плит крепят вдоль стартового профиля. Панели стыкуют друг с другом плотно, чтобы не оставалось зазоров. Если это случилось, щели можно заполнить монтажной пеной или размягченным ацетоном пенопластом. Широкие прорехи заделывают обрезками пенополистирола и клеем.
  • Панели следующего ряда утеплителя устанавливают, смещая на половину длины относительно плит первого. Таким же образом монтируют остальные пояса теплоизоляции. Правильность монтажа пенополистирола проверяют уровнем.
  • Через 3 дня после приклеивания листы дополнительно закрепляют тарельчатыми дюбель-гвоздями. Каждую плиту фиксируют в 5 точках. Крепеж должен погружаться в стену не менее чем на 5 см. Перед вбиванием дюбелей в панелях сверлят сквозные 10-миллиметровые отверстия. После установки шляпки крепежа обмазывают клеем.

Иногда теплоизоляция монтируется на стену в 2 слоя. В подобных случаях горизонтальные и вертикальные швы покрытий не должны совпадать друг с другом. Второй слой приклеивают после полной фиксации первого. Затем ставят тарельчатый крепеж.

Подготовка стены к финишной отделке

Финишную отделку начинают после армирования утеплителя

Финишную отделку фасада можно начинать только после армирования утеплителя. Закрепленная на нем сетка предотвратит растрескивание декоративного покрытия. Кроме того, она сделает конструкцию более монолитной. К стене приклеивают материал с поверхностной плотностью 150 г/м².

  • Для армирования откосов можно использовать менее прочную сетку. Ее прикладывают к стене после нанесения клеящего состава. Полосы сетки фиксируют внахлест. Ширина ленты материала должна превышать ширину обработанной клеем поверхности на 8–10 см, что позволит избежать появления неровностей при склеивании соседних кромок.
  • Сетку вдавливают в клей резиновым шпателем. Ее разглаживают от центра к краям. Затем клеящий состав наносят на следующий участок фасада, включая полосу под краем закрепленного материала и т. д. По окончании армирования высохшую поверхность затирают наждачной бумагой.
  • Стену еще раз выравнивают шпаклёвочной смесью. После ее застывания и затирки абразивным инструментом наносят грунтовку. Финишную отделку фасада завершают оштукатуриванием или окрашиванием.

Изоляция: сравнение пенополистирола и XPS

Обновлено 17.03.2016

С сегодняшними целями экологичности и энергоэффективности, ориентированными на дизайн, правильное использование изоляции становится как никогда важным. Есть много разных способов утеплить здание, и существуют десятки изоляционных сборок. Эта конкретная статья посвящена двум типам изоляции, которые популярны в различных установках для ограждающих конструкций всего здания: EPS и XPS.

Пенополистирол Пенопласт (EPS) – это изоляция с закрытыми порами, которая изготавливается путем «расширения» полистирольного полимера; Внешний вид, как правило, представляет собой белый изоляционный материал из пенопласта (подобные ему можно найти в качестве товарной упаковки). Экструдированный пенополистирол (XPS) – это жесткая изоляция, которая также формируется из полистирольного полимера, но производится с использованием процесса экструзии и часто изготавливается с характерным цветом для идентификации бренда продукта.

Хотя EPS и XPS – два разных продукта, они с по имеют некоторые схожие характеристики и подпадают под один производственный стандарт: Стандартные технические условия ASTM C578 для жесткой теплоизоляции из ячеистого полистирола .

Эта конкретная спецификация охватывает различные типы и физические свойства пенополистирола, предназначенного для использования в качестве теплоизоляции.

Изоляционные материалы из полистирола, подпадающие под действие ASTM C578 , делятся на несколько различных классификаций: от типа I до типа XII (за исключением типа III, который больше не доступен).Различные классификации напрямую связаны с физическими характеристиками каждого типа, в первую очередь с плотностью, сопротивлением сжатию и значением R. Диапазон плотности и прочности на сжатие позволяет использовать его в различных частях здания.

Изоляция из полистирола изготавливается из плит различных размеров – обычно толщиной не менее 1 дюйма. Конические элементы также производятся для использования в кровельных сборках, где изоляция используется для создания уклона для положительного дренажа.Одним из наиболее распространенных применений в кровле является сборка однослойной крыши с балластом, когда кровельная мембрана помещается поверх изоляции и балластируется камнем, бетонной брусчаткой или другим материалом.

Изоляция из полистирола может использоваться в системах кровли с асфальтовым покрытием; однако необходимо принять меры для защиты изоляции от тепла (например, горячего битума или горелки) и продуктов на основе растворителей (например, клеев). Кроме того, для некоторых термопластичных кровельных мембран требуется разделительный слой между слоем изоляции и мембраной.

EPS и XPS устойчивы к влаге; тем не менее, XPS более распространен для гидроизоляции ниже уровня и кровельных систем, где изоляция размещается поверх кровельной мембраны (IRMA или сборка перевернутой кровельной мембраны). Концепция IRMA также используется для изоляции стен зданий, когда изоляция из полистирола размещается поверх барьерной мембраны, а сайдинг или система облицовки устанавливаются поверх изоляционного слоя.

Использование изоляции EPS и XPS в строительстве зданий обеспечивает большую гибкость, совместимость и тепловую эффективность для использования на всех участках ограждающей конструкции здания.Выбор между ними будет зависеть от конкретного использования; выбор подходящего типа имеет решающее значение для обеспечения надлежащих характеристик изоляции.

Стивен Л. Макбрайд – президент компании Professional Roof Consultants Inc., Портленд, штат Орегон.

Хотите больше изоляционного покрытия? Подпишитесь на нашу рассылку новостей

ОБНОВЛЕНИЕ РЕДАКТОРА ЗДАНИЙ 17 марта 2016 г.

Для специалистов, заинтересованных в изоляции из переработанного содержимого, XPS и EPS могут предложить решения.Согласно Министерству внутренних дел, «переработанная пластиковая смола используется в некоторых экструдированных и пенополистиролах. Amoco Foam Products использует 50% переработанной смолы в своем экструдированном полистироле Amofoam®-RCY (XPS), половина которого, по данным компании … Пенополистирол (EPS) также может быть изготовлен из переработанного полистирола. Самая простая переработка включает в себя крошку старого EPS на мелкие кусочки и преобразование их в пригодные формы. Любой полистирол может быть переработан в изоляцию здания, но из-за антипирены, старую изоляцию зданий, как правило, нельзя вторично использовать для целей, не связанных со строительством.”Щелкните здесь, чтобы получить дополнительную информацию об экологических аспектах теплоизоляции зданий.

Экструдированный пенополистирол, XPS 30

Экструдированный полистирол XPS – это современный изоляционный материал. Благодаря внутренней структуре с закрытыми ячейками он демонстрирует ряд уникальных свойств, которые особенно хорошо подходят для использования в строительной отрасли. Экструдированный полистирол XPS отличается очень хорошей теплоизоляцией, устойчивостью к воздействию влаги и высокой прочностью.XPS – это однородный строительный материал с гладкой поверхностью и структурой, состоящей из небольших закрытых ячеек. Такая структура делает его идеальным продуктом для множества теплоизоляционных применений.

XPS – термоизоляционный материал, которому в процессе экструзии и прямого выдувания придали форму плиты. Это пена низкой плотности со специфической мелкячеистой структурой. Продукт не содержит антипиренов. Он изготовлен из полистирольной смолы, сырья, безопасного для здоровья человека и одобренного для использования в контакте с пищевыми продуктами.Продукт не содержит вспенивающих агентов, таких как CFC (хлорфторуглероды), HCFC (гидрохлорфторуглероды) или HFC (гидрофторуглероды).

Область применения

  • Изоляция стен по периметру ниже уровня земли
  • изоляция полов и перекрытий
  • Изоляция ленточных и плитных фундаментов
  • Изоляция инвертированных и классических плоских кровель
  • изоляция транспортных путей и стоянок
  • изоляция железных и трамвайных путей
  • Утепление террас, лоджий и балконов
  • изоляция элементов сельскохозяйственных, хозяйственных и животноводческих построек
  • изоляция мест, где могут появиться мостики холода
  • опалубка
  • другое применение термоизоляции в строительстве в соответствии с местными нормами и стандартами

Характеристики

Превосходный коэффициент теплопроводности

  • Закрыто-ячеистая структура
  • Очень низкое водопоглощение
  • Высокая прочность на сжатие
  • Простая сборка плат
  • Подходит для полной переработки
  • Из-за наличия воздуха внутри ячеек теплоизоляционные свойства не ухудшаются со временем, а улучшаются при понижении температуры окружающей среды (за счет уменьшения значения коэффициента теплопроводности)

Хранение и обслуживание

Плиты

XPS следует хранить в защищенных от горючих и летучих соединений помещениях, вентилируемых, лучше всего покрытых крышей, чтобы плиты не подвергались разрушению их поверхности и внутренней структуры под воздействием интенсивного солнца.При длительном хранении на открытом воздухе доски следует защитить от солнца светлым материалом. Источники тепла с температурой выше 75 ° C могут расплавить, деформировать или разрушить структуру при контакте с плитами XPS, как и все изделия из полистирола. Плиты XPS, как и все изделия из полистирола, горючие. В случае воздействия открытого огня они могут быстро загореться. Таким образом, на каждом этапе работы с XPS плиты не должны подвергаться воздействию открытого огня или других источников тепла.

Сборка

Плиты

XPS нельзя использовать в прямом контакте с веществами, которые разрушают полистирол (например, органические растворители, такие как ацетон, бензол, нитрорастворители…) или другими образцами, содержащими такие органические соединения. По этой причине для сборки рекомендуется использовать клеи, не содержащие растворителей. Перед использованием следует проверить, предназначен ли клей для пенополистирола. Сборка при низких температурах требует обеспечения достаточного расстояния между досками для обеспечения надлежащего расширения.Производитель не заявляет о сохранении стабильности размеров с помощью XPS в условиях температуры выше 70 ° C и при уровне влажности окружающей среды выше 95%.

Характеристики XPS 30
Обработка кромок – I (квадрат), L (притирка до половины), N (язычок и паз) Я, Л, Н *
Поверхность Glatt (I, L, N) или Gerippt (IR)
Плотность ρ [кг / м³] 30 – 39
Формат [м] * 1,25×0,6
Огнестойкость [Еврокласс] F
Коэффициент теплопроводности (10 ° C) λ [Вт / (мК)] ** 0,032
Заявленная теплоизоляция Rd [м²К / Вт] ** 1,15
Заявленное напряжение на сжатие или прочность на сжатие при 10% деформации σ10 [кПа] ≥ 300
Среднее достигнутое долгосрочное водопоглощение Wlt [%] ** ≤ 0,30

Толщина шт. / Упак. м2 / упаковка Пакетов / Поддон м2 / поддон м3 / поддон м3 / поддон Высота поддона
20 20 15,00 12 180 0,3 3,60 2,48
30 14 10,50 12 126 0,315 3,78 2,60
40 10 7,50 12 90 0,3 3,60 2,48
50 8 6,00 12 72 0,3 3,60 2,48
60 7 5,25 12 63 0,315 3,78 2,60
70 6 4,50 12 54 0,315 3,78 2,60
80 5 3,75 12 45 0,3 3,60 2,48
100 4 3,00 12 36 0,3 3,60 2,48
120 4 3,00 10 30 0,36 3,60 2,48
140 3 2,25 12 27 0,315 3,78 2,60
150 3 2,25 10 22,5 0,3375 3,38 2,33
160 3 2,25 10 22,5 0,36 3,60 2,48

Утепление фасада пенополистиролом.Технология утепления фасадов

Утепление фасада пенополистиролом сейчас проводится хозяевами домов довольно часто. И это не случайно. Такая популярность обусловлена ​​эксплуатационными свойствами материала. К тому же технология утепления фасада с его использованием достаточно проста и понятна.

Общие сведения

У пенополистирола много положительных качеств. В связи с этим материал становится все более популярным.Однако многие владельцы жилых домов сомневаются, стоит ли проводить утепление фасада пенополистиролом. Далее разберемся, действительно ли хороший материал.

Изоляционные свойства

Для материалов, которые используются в качестве изоляции, важна низкая теплопроводность. В противном случае в комнате будет холодно и неуютно. Пенополистирол имеет пониженный коэффициент теплопроводности. Таким образом, благодаря его использованию обеспечивается комфорт в квартире или доме.

Security

Пенопласт – абсолютно нетоксичный и инертный материал, в отличие, например, от искусственного камня, который иногда может испускать вредное излучение. Пенополистирол безопасен для людей и окружающей среды в целом. Это подтверждается тем, что особых требований к производству материала нет.

Экологичность

Из зданий, изоляция которых производится с применением пенополистирола, в атмосферу выбрасывается небольшое количество углерода.Пенополистирол не содержит хлора и фтора. Эти соединения способны разрушать озоновый слой. При производстве пенополистирола используется пентан. Это ациклический насыщенный углеводород из класса алканов. Пентан не относится к категории парниковых газов и не действует деструктивно на озоновый слой.

Экономичный

Процесс изготовления материала достаточно дешевый. Во время производственного процесса нет значительных затрат на электроэнергию.Кроме того, повторно используются отходы производства. Например, идут на изготовление специальных добавок для различных материалов (от бетона до полнотелого кирпича). Однако стоимость утепления фасада пенополистиролом относительно высока. Она варьируется от 1600 до 2000 за м 2 . Поэтому многие решают самостоятельно провести утепление фасада пенополистиролом. Цена материала зависит от его толщины и плотности. Обычные листы можно приобрести от 30 рублей за штуку.

Экструдированный пенополистирол

Этот вид материала был разработан в Америке. Утепление фасадов экструдированным пенополистиролом стало популярным сравнительно недавно. Материал хорош тем, что его можно использовать на различных частях здания. Однако для фасада идеально подойдет экструдированный пенополистирол. Материал получается путем смешивания гранулированного полимера со специальным пенообразователем на основе диоксида углерода и фреона. Смесь нагревается до высокой температуры и пропускается через специальный аппарат, называемый экструдером.Обеспечивает лучшее перемешивание компонентов и дополнительное вспенивание рецептуры. Полученную смесь формуют в плиты. В процессе застывания образуется прочный и легкий материал.

Плюсы материала

К преимуществам экструдированного пенополистирола можно отнести:

  • Низкая паропроницаемость.
  • Устойчивость к негативному воздействию внешних факторов.
  • Прочность. Срок эксплуатации около 50 лет при правильной упаковке.
  • Пожарная безопасность.

Коэффициент теплопроводности экструдированного полистирола 0,03 Вт / м 3 . Этот показатель свидетельствует о высоких изоляционных свойствах материала. В его состав входит более 90% воздуха, содержащегося в камерах. Стоимость экструдированного пенополистирола в среднем в два раза выше обычного.

Устройство внешней изоляции: общие сведения

Пенополистирол, как правило, используется для изоляции снаружи конструкции. Утепление может проводиться как на этапе строительства, так и после его завершения или при реконструкции здания.Преимущество внешнего утепления – сохранение полезного пространства внутри помещения. К тому же внешняя изоляция более подходит и выгодна по многим другим параметрам. Во внешнем утеплении используются плиты пенополистирола толщиной 80-100 мм или слои тонких листов (30-40 мм), уложенные в два слоя. Защищая здание таким образом, можно сэкономить на отоплении, сократив расходы до 50%. Надо сказать, что внешнее утепление здания проводится при температуре окружающего воздуха не менее пяти градусов, всегда в сухую погоду.

Подготовительный этап

Как начать утепление фасада пенополистиролом? Техника установки предполагает подготовку поверхности. В первую очередь основание очищается от грязи. Затем вам нужно удалить все, что может мешать укладке. Например, выступающие куски раствора, арматуры, всевозможные выступы (если они не являются архитектурным элементом). Затем следует заделать большие трещины и трещины. После этого поверхность грунтуется.Для обработки цоколя можно использовать раствор «Аквастоп». Смесью следует обработать стену на высоте 1-1,5 метра от отмостки.

Установка вертикальных провисаний

Для этого можно использовать, например, шнуры из капрона. Устанавливаются с шагом 0,5-0,7 м. Это необходимо, чтобы увидеть, где на стене есть выпуклости или провалы, что позволит добавить клей в нужных местах или протереть поверхность поролона теркой. Важно провести теплоизоляцию фасада пенополистиролом.Техника установки довольно проста. Не забывайте об эстетической составляющей. Во время укладки необходимо проверять плоскостность плит. Сделать это можно при помощи строительного уровня.

Крепежные листы

Утепление фасада пенополистиролом осуществляется собственным клеем. Смесь готовится в соответствии с инструкцией на упаковке. При нормальной температуре клей расходуется в течение полутора часов, в жаркую или холодную погоду – за 40 или 60 минут.Раствор наносится «лепешками» по пять точек на тарелку. После этого края листа следует покрыть равномерным слоем клея. Если материал закреплен на идеально ровной поверхности, то распределение раствора лучше производить гребенчатым шпателем.

Обвязка пластин

Второй ряд нужно начинать с разреза листа пополам. Утепление фасада пенополистиролом следует проводить таким образом, чтобы швы рядов не совпадали. Щели между плитами должны быть закрыты кусками материала или его жидкой формой.Не рекомендуется использовать для этого монтажную пену. Несоответствия, возникающие на стыках, устраняют теркой.

Механическое крепление

Утепление фасада пенополистиролом выполняется для надежного утепления здания. Поэтому, чтобы пластины не отрывались от поверхности, их дополнительно фиксируют дюбелями-валиками: «грибочки», «парашюты», «зонтики». Рекомендуемое количество крепежных элементов 5-6 на лист.После завершения утепления фасада пенополистиролом можно приступать к заливке дюбелей клеевым раствором и армированию поверхности.

Завершающий этап

Армирование утеплителя осуществляется специальной фасадной пленкой, основой которой является стекловолокно. Сетка для стены должна быть жесткой и плотной, для откосов, элементов декора и углов – мягкой. Оштукатуривание поверхности производится полимерными составами. Они обладают высокой устойчивостью к негативному воздействию окружающей среды.Полимерные штукатурки не боятся влаги, низких температур, не разрушаются под воздействием прямых солнечных лучей.

Утепление пустотелых стен

Сегодня существуют различные технологии возведения конструкций. Один из них предполагает использование пустотелых элементов. Это достаточно экономичный вариант постройки, поскольку позволяет экономить на материалах. Утепление производится непосредственно в толще стены, при возведении конструкции. Это значительно улучшает характеристики утеплителя, поскольку материал не контактирует с внешней средой.Сама несущая конструкция сформирована из достаточно прочных элементов. Материалы обладают способностью выдерживать различные нагрузки. А при наличии утеплителя внутри полости это качество заметно улучшается. Отделка проводится прямо на поверхности.

Огнестойкость фасадов из композитной системы внешней теплоизоляции (ETICS) с изоляцией из пенополистирола (EPS) и тонкой штукатуркой

  • 1.

    Хаккарайнен Т., Оксанен Т. (2000) Оценка пожарной безопасности деревянных фасадов.Fire Mater 26: 7–27

    Статья Google ученый

  • 2.

    Клопович С., Туран О.Ф. (2001) Комплексное исследование пламени с внешней вентиляцией – часть I: экспериментальные характеристики шлейфа для условий сквозной и непротяжной вентиляции и повторяемость. Fire Saf J 36: 99–133

    Артикул Google ученый

  • 3.

    Клопович С., Туран О.Ф. (2001) Комплексное исследование пламени, выходящего извне – часть II: сравнение температуры оболочки шлейфа и средней линии, вторичные пожары, ветровые эффекты и система управления задымлением.Fire Saf J 36: 135–172

    Артикул Google ученый

  • 4.

    Хокуго А., Хасеми Ю., Хаяси Ю., Йошида М. (2000) Механизм распространения восходящего огня через балконы основан на исследовании и экспериментах по изучению многоэтажного пожара в многоэтажном многоквартирном доме. В: Наука о пожарной безопасности – материалы шестого международного симпозиума Международной ассоциации наук о пожарной безопасности

  • 5.

    Сузуки Т., Секизава А., Ямада Т., Янаи Э., Сато Х., Куриока Х., Кимура Ю. (2000) Экспериментальное исследование выброшенного пламени высотного дома – влияние глубины балкона на выброшенное пламя.В: Материалы четвертого Азиатско-Океанского симпозиума по пожарной науке и технике. Международная ассоциация науки о пожарной безопасности

  • 6.

    Лу К.Х., Ху Л.Х., Танг Ф., Хе Л.Х., Чжан XC, Цю З.В. (2014) Экспериментальное исследование высоты пламени на фасаде, выбрасываемого из окна, с различными ограничениями длины боковых стенок и глобальной корреляцией. Int J Heat Mass Tran 78: 17–24

    Артикул Google ученый

  • 7.

    Тан Ф., Ху Л.Х., Делихациос М.А., Лу К.Х., Чжу В. (2012) Глобальное поведение огня в ограждении и высота пламени на фасаде при нормальном и пониженном атмосферном давлении на двух высотах.Int J Heat Mass Tran 56: 119–126

    Google ученый

  • 8.

    Hu LH, Tang F, Delichatsios MA, Lu KH (2013) Математическая модель поперечного температурного профиля всплывающего шлейфа разлива из окна от пожара отсека. Int J Heat Mass Tran 56: 447–453

    Статья Google ученый

  • 9.

    Chow WK, Hung WY (2006) Влияние глубины полости на распространение дыма двустенного фасада.Build Environ 41: 970–979

    Статья Google ученый

  • 10.

    Chow WK, Hung WY, Gao Y, Zou G, Dong H (2007) Экспериментальное исследование движения дыма, приводящего к повреждению стекла в двустенном фасаде. Construct Build Mater 21: 556–566

    Статья Google ученый

  • 11.

    Chow CL (2011) Численные исследования распространения дыма в полости двустенного фасада. J Civ Eng Manag 17: 371392

    Статья Google ученый

  • 12.

    Chow CL (2013) Полномасштабные испытания на горение двустенных фасадных пожаров. Fire Mater 37: 17–34

    Статья Google ученый

  • 13.

    Oleszkiewicz I (1990) Воздействие огня на внешние стены и распространение пламени по горючей облицовке. Fire Technol 26: 357–375

    Статья Google ученый

  • 14.

    Johannesson P, Larsson G (1958) Испытания на огнестойкость легких ненесущих внешних стен.Шведский национальный исследовательский и испытательный институт, Стокгольм

    Google ученый

  • 15.

    Ондрус Дж., Петтерсон О. (1986) Пожарная опасность фасадов с внешней дополнительной теплоизоляцией – натурные эксперименты. Отчет LUTVDG / (TVBB – 3025). Лундский технологический институт, Лунд

  • 16.

    Макгуайр Дж. Х. (1967) Воспламеняемость внешней облицовки. Fire Technol 3: 137–141

    Статья Google ученый

  • 17.

    Nishio Y, Yoshioka H, ​​Noguchi T, Ando T, Tamura M (2013) Экспериментальное исследование распространения огня по горючим внешним фасадам в Японии. 1-й международный семинар по пожарной безопасности фасадов, сеть конференций MATEC 9: 04001

  • 18.

    Xin H, Zhaopeng N, Lei P, Ping Z (2013) Экспериментальное исследование противопожарных барьеров, предотвращающих вертикальное распространение огня в ETIC. 1-й международный семинар по пожарной безопасности фасадов, сеть конференций MATEC 9: 04003

  • 19.

    Oleszkiewicz I (1991) Вертикальное разделение окон с помощью перегородок и горизонтальных выступов.Fire Technol 27: 334–340

    Статья Google ученый

  • 20.

    Технический отчет EOTA (2013) N073 – крупномасштабные испытания огнестойкости систем наружной облицовки стен. Европейская организация технической оценки, Брюссель

  • 21.

    ISO, DIS 13785-1 (2000) Испытания на огнестойкость фасадов – часть 1: промежуточные испытания. Международная организация по стандартизации, Женева

  • 22.

    ISO, DIS 13785–2 (2000) Испытания на огнестойкость фасадов – часть 2: широкомасштабные испытания.Международная организация по стандартизации, Женева

  • 23.

    Бабраускас В. (1996) Испытания фасадов на огнестойкость: соответствие международным стандартам испытаний. Fire Technol 32: 219–230

    Статья Google ученый

  • 24.

    Смолка М., Мессершмидт Б., Скотт Дж., Ле Мадек Б. (2013) Полунатуральные методы испытаний для оценки пожарной безопасности облицовки стен. 1-й международный семинар по пожарной безопасности фасадов, сеть конференций MATEC 9: 02012

  • 25.

    Antonatus E (2013) Пожарная безопасность этих материалов со свойствами материала EPS и значимостью для пожарной безопасности во время транспортировки, строительства и в условиях конечного использования в системах компонентов внешней теплоизоляции. 1-й международный семинар по пожарной безопасности фасадов, сеть конференций MATEC 9: 02008

  • 26.

    Dragsted A, Vestergaard AB (2013) Новый подход к датским руководящим принципам противопожарной защиты горючей изоляции. 1-й международный семинар по пожарной безопасности фасадов, сеть конференций MATEC 9: 01001

  • 27.

    Yan Z, Zhao C, Liu Y, Deng X, Ceng X, Liu S, Lan B, Nilsson R, Jeansson S (2013) Экспериментальное исследование и расширенное моделирование CFD характеристик пожарной безопасности системы изоляции внешних стен здания. 1-й международный семинар по пожарной безопасности фасадов, сеть конференций MATEC 9: 03005

  • 28.

    White N, Delichatsios M, Ahrens M, Kimball A (2013) Пожарная опасность конструкций наружных стен, содержащих горючие компоненты. 1-й международный семинар по пожарной безопасности фасадов, сеть конференций MATEC 9: 02005

  • 29.

    Mikkola E, Hakkarainen T, Matala A (2013) Пожарная безопасность фасадов с пенополистиролом в жилых многоэтажных домах. 1-й международный семинар по пожарной безопасности фасадов, сеть конференций MATEC 9: 04002

  • 30.

    Янссон Р., Андерсон Дж. (2012) Экспериментальное и численное исследование динамики пожара на стенде для испытаний фасада. В: Труды компьютерного моделирования пожаров, Сантандер, Испания, 18–19 октября 2012 г.

  • 31.

    Флори П.Дж. (1953) Принципы химии полимеров.Cornell University Press, Итака

    Google ученый

  • 32.

    Гаур У., Вундерлих Б. (1982) Теплоемкость и другие термодинамические свойства линейных макромолекул против полистирола. J Phys Chem Ref Data 11: 313–325

    Статья Google ученый

  • 33.

    Варма-Наир М., Вундерлих Б. (1991) Теплоемкость и другие термодинамические свойства линейных макромолекул X.Обновление банка данных ATHAS 1980 г. J Phys Chem Ref Data 20: 349–404

    Статья Google ученый

  • 34.

    Справочник по технике противопожарной защиты SFPE (1995) Национальная ассоциация противопожарной защиты. One Batterymarch Park, Quincy

  • 35.

    Martins CR, Ruggeri G, De Paoli MA (2003) Синтез в масштабе экспериментальной установки и физические свойства сульфированного полистирола. J Braz Chem Soc 14: 797–802

    Статья Google ученый

  • 36.

    Kuhn MCA, da Silva JL, Casagrande ACA, Casagrande OL Jr ​​(2008) Полимеризация стирола никелевыми и титановыми катализаторами на основе трис (пиразолил) боратных лигандов. J Braz Chem Soc 19: 1560–1566

    Статья Google ученый

  • 37.

    Петерсон Дж. Д., Вязовкин С., Уайт К. А. (2001) Кинетика термической и термоокислительной деструкции полистирола, полиэтилена и полипропилена. Macromol Chem Phys 202: 775–784

    Статья Google ученый

  • 38.

    Столяров С.И., Вальтерс Р.Н. (2008) Определение теплоты газификации полимеров с помощью дифференциальной сканирующей калориметрии. Polymer Degrad Stabil 93: 422–427

    Артикул Google ученый

  • 39.

    Shi L, Chew MYL (2013) Обзор моделирования пожарных процессов горючих материалов при внешнем тепловом потоке. Топливо 106: 30–50

    Артикул Google ученый

  • 40.

    FDS версии 5; Руководство пользователя (2007) Национальный институт стандартов и технологий, Гейтерсбург

  • 41.

    ABAQUS CFD, версия 6.12; документация, (2012) DS-Simulia, Providence. R.I. AISC, Род-Айленд, США

  • 42.

    ANSYS CFX Release 14.0; документация (2011) Ansys Inc., Cecil Township

  • 43.

    ANSYS Fluent Release 12.0; документация (2009) Fluent Inc., Cecil Township

  • 44.

    EN 13823: 2010, (2010) Реакция на огнестойкость строительных изделий, строительных изделий, за исключением полов, подвергшихся термическому воздействию от одного горящего предмета.Европейский комитет по стандартизации, Брюссель

  • 45.

    Zhang J, Delichatsios M, Colober M (2010) Симулятор оценки динамики пожара для прогнозирования теплового потока и высоты пламени от пожаров в тестах SBI. Fire Technol 46: 291–306

    Статья Google ученый

  • 46.

    EN 13501-1 + A1 (2009) Пожарная классификация строительных изделий и строительных элементов – часть 1: классификация с использованием данных испытаний по реакции на огнестойкость.Европейский комитет по стандартизации, Брюссель

  • 47.

    Бабраускас В. (2006) Эффективная теплота сгорания при пламенном сгорании хвойных деревьев. Can J For Res 36: 659663

    Статья Google ученый

  • 48.

    Код FTP: Международный кодекс по применению процедур испытаний на огнестойкость (1998) Международная морская организация, Лондон, Великобритания

  • 49.

    Нараянан Н., Рамамурти К. (2000) Структура и свойства пенобетона: обзор .Цемент Конкр Компос 22: 321–329

    Артикул Google ученый

  • 50.

    МакЭлрой Д.Л., Кимпфлен Дж.Ф. (редакторы) (1990) Изоляционные материалы, испытания и применения. Американское общество испытаний и материалов, Балтимор

    Google ученый

  • 51.

    Еврокод 2 (2004) Проектирование бетонных конструкций, часть 1.2: пожарное проектирование конструкций. Европейский комитет по стандартизации, Брюссель

  • 52.

    Matala A (2008) Оценка параметров твердофазной реакции для моделирования пожара. Магистерская диссертация, Хельсинкский технологический университет, Хельсинки

  • 53.

    Бьюкенен А.Х. (редактор) (1994) Руководство по проектированию пожарной техники. Центр передовых технологий, Кентерберийский университет, Крайстчерч

    Google ученый

  • Экспериментальное исследование реакции на огонь из пенополистирола (EPS) Внешняя теплоизоляция композитных систем (ETICS) кирпичного фасада Японский метод распространения огня на фасадах JIS A 1310.

    Предложен метод комплексной оценки пожарного риска INDEX EPS ETICS, основанный на профилях площади горения EPS и температуры поверхности фасада в соответствии с испытаниями JIS A 1310: INDEX ≤0,825 является приемлемым уровнем; INDEX ≥0,836 – недопустимый уровень; 0,825≤ ИНДЕКС ≤0,836 – критический уровень.

    Реферат

    Композитные системы внешней теплоизоляции (ETICS), состоящие из изоляционного сердечника и материалов отделки поверхности, довольно часто встречаются в новых постройках и реконструируемых зданиях с ориентированными на дизайн целями устойчивости и энергоэффективности.Однако горючий изоляционный сердечник вызвал серьезные последствия разрушительных последствий пожаров. Термопластический пенополистирол (EPS), выступающий в качестве изоляционного наполнителя, широко и вертикально устанавливается в ETICS. В настоящее время с целью оценки огнестойкости EPS ETICS, серия образцов EPS ETICS различной толщины EPS от 50 до 300 мм, типа полимерного раствора, включая раствор из полимера SBR и раствор из акриловой смолы, армирование, включая однослойную и двухслойную стекловолоконную сетку. , и метод обработки кромки проема отличается от метода обратной обертывания до метода противопожарной защиты, испытаны с помощью крупномасштабного японского метода распространения огня на фасаде JIS A 1310 с интенсивностью нагрева от 100 кВт до 1100 кВт.Предлагается комплексная оценка пожарного риска INDEX EPS ETICS на основе профилей площади горения EPS и температуры поверхности фасада в соответствии с испытаниями JIS A 1310. Он может легко классифицировать влияние раствора, арматуры, толщины пенополистирола и метода обработки кромок проема на огнестойкость EPS ETICS. Сделан вывод, что в методе JIS A 1310 пожарный риск EPS ETICS можно классифицировать по методу INDEX следующим образом: INDEX ≤0,825 является приемлемым уровнем; индекс INDEX ≥0.836 – недопустимый уровень; 0,825≤ ИНДЕКС ≤0,836 – критический уровень. Индекс распространения огня ( FPI ) считается потенциальным методом прогнозирования для оценки пожарного риска EPS ETICS перед испытаниями JIS A 1310. FPI классифицируется следующим образом: FPI ≤17,3 является приемлемым уровнем; FPI ≥21,4 – недопустимый уровень; 17,3≤ FPI ≤21,4 – критический уровень.

    Ключевые слова

    Композитная система внешней теплоизоляции (ETICS)

    Метод испытания фасада на огнестойкость JIS A 1310

    Индекс распространения огня ( FPI )

    Комплексный метод оценки пожарной опасности INDEX

    Пенополистирол (EPS)

    Рекомендуемые статьиЦитирующие статьи (0)

    Полный текст

    © 2018 Elsevier Ltd.Все права защищены.

    Рекомендуемые артикулы

    Ссылки на статьи

    Полистирол EPS Фасад белый – 50 мм

    Описание продукта

    Полистирол EPS Фасад белый

    Внешняя плита EPS Premium (белая) используется для внешней изоляции стен. Он хорошо сочетается с отделкой деревянных или пластиковых обшивок, плиток или любых других систем облицовки или армированной штукатурки.

    Толщина: 50 мм
    Длина: 1000 мм
    Ширина: 500 мм
    Доступные толщины: 10 мм, 20 мм, 30 мм, 50 мм, 80 мм, 100 мм
    Покрытие платы: 0.5м2
    Покрытие упаковки: 6м2
    Вес / м2: 0,5 кг
    Термостойкость: 1,16 м2К / Вт
    Размер упаковки: (12 листов в упаковке)
    Класс огнестойкости (реакция на огонь): E
    Марка: Styropoz

    Пенополистирольные плиты – идеальный изоляционный материал для бесшовных систем теплоизоляции внешних стен зданий (легкие – мокрые) или в качестве изоляционного и конструктивного элемента в клееных сэндвич-панелях.Высокая устойчивость к разрыву и срезанию плит при небольшом весе обеспечивает надежную изоляцию всех типов тонкослойных штукатурок: минеральных, акриловых или силикатных. Наша продукция высочайшего качества используется в жилищном и промышленном строительстве, при реализации зданий, возводимых с применением современных технологий.

    50мм полистирол EPS белый-6м2 / 12листов

    При заказе на сайте opencartworks.com вы получите электронное письмо с подтверждением. Как только ваш заказ будет отправлен, вам по электронной почте будет отправлена ​​информация для отслеживания доставки вашего заказа.Вы можете выбрать предпочтительный способ доставки на странице информации о заказе во время оформления заказа.

    Общее время, необходимое для получения вашего заказа, показано ниже:

    Общее время доставки рассчитывается с момента размещения вашего заказа до момента его доставки вам. Общее время доставки делится на время обработки и время доставки.

    Время обработки: Время, необходимое для подготовки вашего товара (ов) к отправке с нашего склада.Это включает в себя подготовку ваших товаров, выполнение проверки качества и упаковку для отправки.

    Время доставки: Время, в течение которого ваши товары должны быть доставлены с нашего склада в пункт назначения.

    Доставка с вашего местного склада значительно быстрее. Может взиматься некоторая плата.

    Кроме того, время доставки зависит от того, где вы находитесь и откуда пришла ваша посылка. Если вы хотите узнать больше, обратитесь в службу поддержки клиентов. Мы решим вашу проблему в кратчайшие сроки.Приятных покупок!

    Все расходы по доставке включены в конечную корзину покупок и зависят от продуктов Scottish Highlands & the Islands, для которых будут применяться дополнительные сборы за доставку.

    Обратите внимание, что не для всех продуктов будет взиматься дополнительная плата за доставку в Шотландское нагорье и на острова – это основано на расходах производителя, дистрибьютора или курьера, осуществляющего доставку от нашего имени. Если ваш адрес доставки находится на Шотландских высокогорных островах, сотрудник нашей службы поддержки свяжется с вами до обработки ваших заказов, если потребуется дополнительная плата за доставку.

    Несмотря на то, что мы прилагаем все усилия, чтобы заказы были доставлены в установленный срок, мы не можем гарантировать наличие товара по данным производителя или его графикам поставок.

    О любых изменениях указанной даты доставки через Интернет будет сообщено вам по электронной почте или по телефону. Если мы не можем осуществить доставку из-за невозможности доступа, мы оставляем за собой право взимать плату за неудавшуюся доставку.

    ИЗОЛЯЦИЯ ИЗ ЭКСТРУДИРОВАННОЙ ПОЛИСТИРОЛОВОЙ Пены (XPS) || PROF.LV®

    ТЕХНОНИКОЛЬ XPS применяется в гражданском строительстве при устройстве тепловой защиты подвала, крыш, полов, теплоизоляции фасадов.Экструдированный пенополистирол (другое название – экструдированный пенополистирол) – новое слово в области теплоизоляционных технологий. Несмотря на то, что его производство началось более 60 лет назад, аналогов ему пока нет ни в России, ни в мире.

    ТЕХНОНИКОЛЬ XPS – универсальный изоляционный материал во всех отношениях. Во-первых, экструдированный пенополистирол позволяет эффективно изолировать широкий спектр различных объектов, конструкций и построек.Другими словами, у него действительно широкая область применения. ТЕХНОНИКОЛЬ XPS применяется для теплоизоляции полов, стен, подвалов, крыш, а также различных инженерных сооружений и дорог. Таким образом, экструдированный пенополистирол можно использовать как в промышленном строительстве, так и в частном домостроении.

    Во-вторых, ТЕХНОНИКОЛЬ XPS обрабатывает уникальные рабочие характеристики. По общему признанию, экструдированный пенополистирол имеет самый низкий показатель теплопроводности среди аналогичных продуктов.

    Кроме того, ТЕХНОНИКОЛЬ XPS отличается химической стойкостью, высокой прочностью на сжатие, водо- и паростойкостью, а также устойчивостью к росту плесени и грибка. Таким образом, экструдированный пенополистирол ТЕХНОНИКОЛЬ XPS обеспечивает не только качественную теплоизоляцию, но и останавливает ряд других ухудшающих и негативных факторов. Более того, экструдированный пенополистирол относится к экологически чистым материалам. Эта особенность ставит его выше любой конкуренции с другими изоляционными материалами.Экструдированный (экструдированный) пенополистирол производится Корпорацией ТехноНИКОЛЬ с применением новейших технологий и современного оборудования.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *