Фронталь на чертеже: Начертательная геометрия

Содержание

Термины и определения начертательной геометрии

Содержание

  1. Термины и определения;
  2. Условные обозначения;
  3. Способы задания плоскости на чертеже.

Термины и определения

Комплексный чертеж (эпюр Монжа) – чертеж, составленный из взаимосвязанных ортогональных проекций геометрической фигуры. Чтобы преобразовать пространственный макет в эпюр, нужно совместить плоскости проекций П1 и П3 с третьей плоскостью П2, вращая П1 вокруг оси x, а П3 вокруг оси z.

Конкурирующие точки – точки, расположенные на одной проецирующей прямой, но при этом удаленные от плоскости проекций на разное расстояние.

Линии уровня – прямые, параллельные одной из плоскостей проекций.

  • Горизонталь, h – прямая, параллельная горизонтальной плоскости;
  • Фронталь, f – прямая, параллельная фронтальной плоскости;
  • Профильная прямая, p – прямая, параллельная профильной плоскости.

Метрические задачи – это задачи, целью решения которых является нахождение натуральных величин отрезков, углов, расстояний.

Октант – часть пространства, ограниченная плоскостями проекций П

1, П2, П3. В начертательной геометрии выделяют восемь октантов, нумерация и взаимное расположение которых показаны на рисунке.

Отрезок – участок прямой, ограниченный двумя точками.

Плоскости общего положения – плоскости, которые не перпендикулярны ни одной из плоскостей проекций.

Плоскости уровня – плоскости, параллельные одной из плоскостей проекций.

Позиционные задачи – это задачи, целью решения которых является определение взаимного расположения фигур, нахождение точек и линий их пересечения.

Проецирующие плоскости – плоскости, перпендикулярные одной из плоскостей проекций.

Прямые общего положения – прямые, не параллельные ни одной из плоскостей проекций.

Проецирующие прямые – прямые, перпендикулярные одной из плоскостей проекций.

Следы плоскости – прямые, по которым данная плоскость пересекается с плоскостями проекций.

Следы прямой – точки пересечения прямой с плоскостями проекций.

Угол между прямой и плоскостью – угол между прямой и её проекцией на эту плоскость.

Условные обозначения

Оси координат:

  • x – ось абсцисс;
  • y – ось ординат;
  • z – ось аппликат.

Проекции точек:

  • A', B', C' … Z' или A1, B1, C1 … Z1 – горизонтальные;
  • A'', B'', C'' … Z'' или A2, B2, C2 … Z2 – фронтальные;
  • A''', B''', C''' … Z''' или A3, B3, C3 … Z3 – профильные.

Проекции прямых:

  • a', b', c' … z' или a1, b1, c1 … z1 – горизонтальные;
  • a'', b'', c'' … z'' или a2, b2, c2 … z2 – фронтальные;
  • a''', b''', c''' … z''' или a3, b3, c3 … z3 – профильные.

Плоскости проекций:

  • П1 или H – горизонтальная;
  • П2 или V – фронтальная;
  • П3 или W – профильная.

Следы плоскости α:

  • h – горизонтальный;
  • f – фронтальный;
  • p – профильный.

Следы прямой l:

  • Hl – горизонтальный;
  • Fl – фронтальный;
  • Wl – профильный.

Способы задания плоскости на комплексном чертеже

Плоскость на комплексном чертеже может быть задана шестью различными способами:

  1. Тремя точками, которые не лежат на одной прямой. На рисунке это т. A, B, C.
  2. Прямой и точкой, не лежащей на этой прямой.
  3. Двумя пересекающимися прямыми.
  4. Двумя параллельными прямыми (пересекающимися в несобственной точке).
  5. Отсеком плоской фигуры Ф.
  6. Следами. Этот способ удобен тем, что позволяет наглядно представить расположение плоскости в пространстве.

Дополнительные материалы:

Фронталь

f (f1, f2, f3)  П2

Рис. 1-35

Если взять карандаш в руки и расположить его параллельно стене, находящейся перед наблюдателем, то длина карандаша спроецируется на плоскость стены без искажения. У фронтали f =

f 2 , угол наклона кП1-cпроецируется без искажения.

Графический признак фронтали - ее горизонтальная проекция перпендикулярна линиям связи (с нее всегда начинается графическое построение фронтали - f)

Профильная прямая

р (р1, р2, р3)  П3

Рис. 1-36

p = p3 - натуральная (истинная) величина

Углы наклона профильной прямой к П1иП2проецируются наП3без искажения.

Графический признак профильной прямой - ее горизонтальная и фронтальная проекции совпадают с линиями связи в системе П1 – П2.

Рассмотренные примеры позволяют отметить особенности задания прямых уровня на комплексном чертеже:

1. Одна из проекций прямых уровня перпендикулярна линиям связи установленного направления

2. Одна из проекций прямой уровня параллельна самой прямой и дает истинную величину, а также показывает без вспомогательных построений угол наклона к одной из плоскостей проекций (h, f), к двум плоскостям проекций (p).

Проецирующие прямые

Прямые, перпендикулярные какой - либо плоскости проекций, называются проецирующими прямыми.

Рис. 1-37

Графический признак горизонтально проецирующей прямой - ее горизонтальная проекция есть точка, она называется главной проекцией

Дадим понятие любой проецирующей геометрической фигуре, которое будем использовать и в дальнейшем, как при изучении геометрических фигур, так и при решении позиционных и метрических задач.

Геометрическая фигура называется проецирующей, если одна из ее проекций есть геометрическая фигура на единицу меньшего измерения, она называется главной проекцией и обладает собирательными свойствами.

а1- главная проекция, которая обладает "собирательными" свойствами. Любая точка, взятая на этой прямой совпадет с ее горизонтальной проекцией а

1 = А1 = В1

Точки АиВ- горизонтально конкурирующие.

Фронтально проецирующая прямая

в(в1, в2, в3) П2 П1 и П3)

Рис. 1-38

Графический признак фронтально проецирующей прямой, ее фронтальная проекция есть точка, она называется главной проекцией

в2- главная проекция, которая обладает "собирательными" свойствами. Любая точка, взятая на этой прямой совпадет с ее фронтальной проекцией в2 = M2 = N2

Точки MиN- фронтально конкурирующие.

Профильно проецирующая прямая

с(с1, с2, с3) П3 П1 и П2

)

Рис. 1-39

Графический признак профильно проецирующей прямой: ее профильная проекция есть точка, она называется главной проекцией.

с3- главная проекция, которая обладает "собирательными" свойствами. Любая точка, взятая на этой прямой совпадет с ее профильной проекцией с3 = E3 = F3

Отличительным признаком проецирующих прямых на комплексном чертеже является то, что одна из проекций прямой вырождается в точку.

Контрольные вопросы

1. На какие группы делятся прямые в зависимости от расположения по отношению к

плоскостям проекций?

2. Каковы характерные признаки чертежей:

а) прямой общего положения?

б) горизонтали?

в) фронтали?

г) профильной прямой?

д) горизонтально проецирующей прямой

е) фронтально проецирующей прямой?

ж) профильно проецирующей прямой?

Обучающий тест по теме задание прямой на комплексном чертеже. Ответы на этот тест Вы найдете в конце этого Модуля.

Тест №2

1. Укажите чертежи прямых общего положения.

2. Укажите профильно проецирующую прямую.

3. Укажите горизонтально проецирующую прямую.

4. Укажите фронтально проецирующую прямую.

5. Укажите, в каком случае на чертеже можно замерить угол наклона прямой к П1.

Взаимное положение прямых на комплексном чертеже

Как Вы думаете?

1. Могут ли проекции скрещивающихся прямых быть параллельны?

2. Могут ли проекции пересекающихся прямых изображены одной линией?

3. Имеют ли скрещивающиеся прямые общую точку, а их проекции?

Две прямые в пространстве могут:

1. пересекаться (а в),

2. быть параллельными (а  в)

3. скрещиваться (а в).

Пресекающиеся прямые

Прямые называются пересекающимися, если они имеют единственную общую точку. Они всегда лежат в одной плоскости.

Рис. 1-40

Если прямые пересекаются, то существует единственная точка пересечения: а в = К.

На основании свойства принадлежности: а

в = К a1 в1 = К1, a2 в2 = К2

Согласно свойству чертежа Монжа, обе проекции (К1и К2) точки К лежат на одной линии связи данного установленного направления.

Графический признак а в: точки пересечения одноименных проекций лежат на одной линии связи, установленного направления.

Линии уровня в плоскости общего положения

Линиями уровня плоскости называются прямые, параллельные плоскостям проекций и лежащие в данной плоскости. В практике наиболее часто применяются горизонтали и фронтали плоскости. Горизонталью данной плоскости называется прямая, лежащая в этой плоскости и параллельная горизонтальной плоскости проекций П1.

На рис. 108, а такой прямой является горизонталь h||П1. Она параллельна горизонтали l, являющейся горизонтальным следом плоскости kXl. Установив эту параллельность, мы легко построим проекции горизонтали h, зная, что у параллельных прямых параллельны их одноименные проекции: h

1||l1 и h2||l2 (или оси x12). Установленное свойство формулируется так: горизонтальная проекция горизонтали данной плоскости параллельна горизонтальной проекции горизонтального следа этой плоскости, а ее фронтальная проекция параллельна оси проекций. Горизонталь на двух плоскостях проекций имеет один фронтальный след N. На комплексном чертеже (рис. 108, б) фронтальная проекция V2 следа горизонтали N будет находиться на фронтальной проекции k2 фронтального следа плоскости, а горизонтальная проекция — на горизонтальной проекции k1 этого следа.

n
n

TBegin-->TEnd-->

n

n

Фронталью данной плоскости называется прямая, лежащая в этой плоскости и параллельная фронтальной плоскости проекций П2 (рис. 109, а).

Фронталь f параллельнафронта-льному следу k плоскости; из этого следует, что f2||k2 и f1||k1 (или оси х12), т. е. фронтальная проекция фронтали данной плоскости параллельна фронтальной проекции фронтального следа этой плоскости, а ее горизонтальная проекция параллельна оси проекций. На комплексном чертеже проекции фронтали f удобно строить, используя проекции М

1 и М2 горизонтального следа фронтали М (рис. 109, б). Через проекции точки М проводим k2 и оси х12 прямые f2 и fx, соответственно параллельные k2 и оси x12.

n
n

TBegin-->TEnd-->

n

n

Выведенные свойства проекций горизонтали и фронтали легко использовать при построении этих прямых, принадлежащих плоскостям, заданным плоским отсеком.

Пусть требуется построить горизонталь плоскости треугольника АBС (рис. 110, а). Зная, что фронтальная проекция горизонтали всегда перпендикулярна вертикальным линиям связи (горизонтальна), проводим фронтальную проекцию горизонтали в любом месте фронтальной проекции A2В2С2 треугольника. Линия фпг пересечет стороны треугольника в точках D2 и E2. Чтобы точка D принадлежала прямой АВ, необходимо, чтобы ее горизонтальная проекция D1 принадлежала горизонтальной проекции А1В1 стороны треугольника; проводим из точки D2 вертикальную линию связи и в точке пересечения прямых находим точку D1. Рассуждая таким же образом, находим точку Е1 на горизонтальной проекции В1С1Х. Полученные при этом точки D1 и Е1 соединяем; линия D1Е1 — горизонтальная проекция горизонтали (сокращенно — гпг).

Линия D2E2 — фпг. Построение можно было несколько упростить, проведя фронтальную проекцию горизонтали не в произвольном месте, а через точку А2; в этом случае нужно было бы построить только одну новую точку Е.

n
n

TBegin-->TEnd-->

n

n

Аналогично строится фронталь плоскости общего положения (рис. 110 б). Построение начинаем с проведения горизонтальной проекции фронтали (гпф), поскольку известно ее горизонтальное направление. Эту прямую для упрощения проводим через точку Н1; прямая пересекает проекцию F1G1 стороны FG треугольника в точке К1. С помощью вертикальной линии связи находим фронтальную проекцию К2 на фронтальной проекции F1G1, Проводим фронтальную проекцию K2H2 фронтали КН (фпф).

Горизонтали и фронтали плоскостей общего положения, заданных плоскими отсеками, часто используются при решении различных задач начертательной геометрии.

Комплексный чертеж отрезка прямой - презентация онлайн

И.Ю. Амирджанова
«НАЧЕРТАТЕЛЬНАЯ
ГЕОМЕТРИЯ»
Слайдовый лекционный курс
Лекция 2

2. КОМПЛЕКСНЫЙ ЧЕРТЕЖ ОТРЕЗКА ПРЯМОЙ

Пространственный чертеж
Плоский чертеж
Свойства двухкартинного комплексного чертежа Монжа:
1. Две проекции точки всегда лежат на одной линии связи
установленного направления.
2. Все линии связи одного установленного направления
параллельны между собой.

3. БЕЗОСНЫЙ ЧЕРТЁЖ

Если совмещённые плоскости П1 и П2 перемещать
параллельно самим себе на произвольные расстояния,
то будут меняться расстояния от отрезка до плоскостей
проекций. Однако, сами проекции отрезка АВ при
параллельном перемещении плоскостей проекций не
меняются.

4. ДОКАЗАТЕЛЬСТВО ОБРАТИМОСТИ ЧЕРТЕЖА МОНЖА. МЕТОД ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКА

Пространственный чертеж
Плоский чертеж
AB - отрезок прямой в пространстве.
A1B1 - горизонтальная проекция отрезка.
|АВ0| = |А1В1| - один из катетов прямоугольного треугольника равен проекции
отрезка АВ на плоскость проекций П1.
Второй катет, есть разность удалений концов отрезка от плоскости проекций П1.
|A1B'0 | = |АВ |
ПОЛОЖЕНИЯ ТОЧЕК И ПРЯМОЙ ЛИНИИ НА
ЧЕРТЕЖЕ
точка А расположена ниже и дальше прямой l;
точка В расположена перед прямой, являясь фронтально конкурирующей точкой;
точка С принадлежит прямой l;
точка D расположена над прямой, являясь горизонтально конкурирующей точкой.

6. КОМПЛЕКСНЫЙ ЧЕРТЕЖ ПРЯМЫХ И КРИВЫХ ЛИНИЙ

ПРЯМЫЕ ОБЩЕГО И ЧАСТНОГО
ПОЛОЖЕНИЯ
Чтобы задать положение прямой линии в пространстве,
достаточно задать положение любых двух её точек.
По расположению прямых относительно основных плоскостей
проекций различают прямые общего и частного положения.
Прямая общего положения расположена произвольно
относительно основных плоскостей проекций, а её проекции образуют с
линиями связи углы, отличные от 0 и 90 град.
Прямые частного положения – это прямые, лежащие в
плоскости, параллельной одной из основных плоскостей проекций.
Среди прямых линий частного положения различают
проецирующие прямые и прямые уровня.
Проецирующие прямые линии:
Горизонтально проецирующие прямые, перпендикулярные горизонтальной
плоскости проекций.
Фронтально проецирующие прямые, перпендикулярные фронтальной плоскости
проекций.
Профильно проецирующие прямые, перпендикулярные профильной плоскости
проекций.
Прямые уровня
Горизонталь (h) – прямая, параллельная горизонтальной плоскости
проекций;
Фронталь (f) – прямая линия, параллельная фронтальной плоскости проекций;
Профильная прямая (p) – прямая, параллельная профильной плоскости
проекций.

8. ПРЯМЫЕ ОБЩЕГО ПОЛОЖЕНИЯ Прямая (отрезок), не параллельная и не перпендикулярная ни к одной из плоскостей проекций, называется

прямой общего
положения.
Пространственный чертеж
Плоский чертеж
Особенности задания чертежа прямой общего положения.
Любая проекция прямой общего положения искажает натуральную длину.
Любая проекция прямой общего положения наклонена к линиям связи под
углом, отличным от 90°. Ни одна из проекций не показывает
натуральную величину углов наклона к плоскостям проекций.
МЕТОД ПРЯМОУГОЛЬНОГО
ТРЕУГОЛЬНИКА ДЛЯ РЕШЕНИЯ
МЕТРИЧЕСКИХ ЗАДАЧ С ПРЯМОЙ
ОБЩЕГО ПОЛОЖЕНИЯ
ПРЯМЫЕ УРОВНЯ
Прямые уровня
– это все не проецирующие прямые, которые
лежат в плоскостях, параллельных основным плоскостям проекций. Уровень –
это положение, когда все точки геометрической фигуры находятся на одинаковом
расстоянии от параллельной ей плоскости проекций.
Различают следующие разновидности прямых уровня:
Горизонталь (h) – прямая,
проекций;
параллельная горизонтальной плоскости
Фронталь (f) – прямая линия, параллельная фронтальной плоскости
проекций;
Профильная прямая (p) – прямая, параллельная профильной плоскости
проекций.
ГОРИЗОНТАЛЬ (h) – прямая // П1
Пространственный чертеж
- угол наклона h к П2
Плоский чертеж

12. ФРОНТАЛЬ (f) – прямая // П2

Пространственный чертеж
Плоский чертеж
- угол наклона f к П1
Графический признак фронтали:
ее горизонтальная проекция перпендикулярна линиям связи

13. ПРОФИЛЬНАЯ ПРЯМАЯ (p) – прямая // П3

ПРОФИЛЬНАЯ ПРЯМАЯ (p)
прямая // П3
Пространственный чертеж

Плоский чертеж
- угол наклона p к П1
- угол наклона p к П2

14. ОСОБЕННОСТИ ЗАДАНИЯ ПРЯМЫХ УРОВНЯ НА КОМПЛЕКСНОМ ЧЕРТЕЖЕ

1. Одна из проекций прямых уровня перпендикулярна линиям
связи установленного направления
2. Одна из проекций прямой уровня параллельна самой прямой
и дает истинную величину, а также показывает без
вспомогательных построений угол наклона к одной из
плоскостей проекций

15. ПРОЕЦИРУЮЩИЕ ПРЯМЫЕ Прямые, перпендикулярные какой - либо плоскости проекций, называются проецирующими прямыми.

ГОРИЗОНТАЛЬНО ПРОЕЦИРУЮЩАЯ
ПРЯМАЯ
А и В горизонтально конкурирующие точки.
Конкурирующие точки – точки, проекции которых
совпадают на одной из плоскостей проекций.
ФРОНТАЛЬНО ПРОЕЦИРУЮЩАЯ ПРЯМАЯ
М и N фронтально конкурирующие точки
ПРОФИЛЬНО ПРОЕЦИРУЮЩАЯ ПРЯМАЯ
E и F профильно конкурирующие точки
ОСОБЕННОСТИ ПРОЕКЦИЙ
ПРОЕЦИРУЮЩИХ ПРЯМЫХ
Проекция проецирующей прямой на
перпендикулярную ей плоскость представляет
собой точку. Эту проекцию называют главной
проекцией прямой. Она обладает собирательным
свойством - является геометрическим местом проекций
всех точек этой прямой.
Другие проекции (не главные) проецирующей
прямой совпадают с линиями связи с главной проекцией,
составляя с ними угол 0 градусов, и равны истинной
величине прямой, поскольку эта прямая параллельна
данным плоскостям проекций.

19. ВЗАИМНОЕ ПОЛОЖЕНИЕ ПРЯМЫХ НА КОМПЛЕКСНОМ ЧЕРТЕЖЕ

ПРЕСЕКАЮЩИЕСЯ ПРЯМЫЕ
Прямые называются пересекающимися, если они
имеют единственную общую точку. Они всегда
лежат в одной плоскости.
Пространственный чертеж
Плоский чертеж
АВ СD =К А1В1 С1D1 = К1 ; А2В2 С2D2 = К2
ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕ
Пространственный чертеж
Плоский чертеж
АВ // СD А1В1 // С1D1 ; А2В2 // С2D2
СКРЕЩИВАЮЩИЕСЯ ПРЯМЫЕ
Если прямые не параллельны и не пересекаются, то
они называются скрещивающимися прямыми.
Точки А и В - горизонтально конкурирующие.
Точки С и D - фронтально конкурирующие.
СКРЕЩИВАЮЩИЕСЯ ПРЯМЫЕ
ВЗАИМНО ПЕРПЕНДИКУЛЯРНЫЕ ПРЯМЫЕ
Горизонталь ВС взаимно перпендикулярна с
пересекающей её прямой общего положения DB;
фронталь ВС взаимно перпендикулярна с пересекающей
её прямой общего положения DB

24. КОМПЛЕКСНЫЙ ЧЕРТЕЖ КРИВЫХ ЛИНИЙ

Кривые
Плоские
Пространственные
Закономерные
Незакономерные
Алгебраические
Трансцендентные
Если все точки кривой расположены в одной плоскости, то такую кривую
называют плоской (например эллипс, окружность).
Если все точки кривой невозможно совместить с одной плоскостью, то
такую кривую называют пространственной (например,винтовая линия).
Если существует математическое уравнение, описывающее движение
точки, то кривую называют закономерной.
Порядок алгебраической кривой равен степени ее уравнения или
определяется графически, т.е. числом точек ее возможного пересечения с
произвольной прямой.
СВОЙСТВА ПРОЕКЦИЙ
КРИВЫХ ЛИНИЙ КРИВОЙ
Проекцией кривой линии в общем
случае является кривая линия.
Касательная к кривой
проецируется в касательную к её
проекции.
Несобственная точка кривой
проецируется в несобственную
точку её проекции.
Порядок алгебраической кривой в
проекциях не изменяется.
Число точек пересечения кривой
сохраняется при проецировании.
ПРИМЕР ПРОСТРАНСТВЕННОЙ
КРИВОЙ ЛИНИИ
МЕТОД ХОРД
Если хорды кривой пересекаются
значит, кривая линия - плоская.
Хорды не пересекаются, а
скрещиваются значит кривая линия пространственная.
КАСАТЕЛЬНАЯ, НОРМАЛЬ К КРИВОЙ
Касательную (t в точке А) можно рассматривать как предельное
положение секущей, если т.В т.А.
n - нормаль кривой линии в данной точке, n t.

29. НЕКОТОРЫЕ АЛГЕБРАИЧЕСКИЕ ПЛОСКИЕ КРИВЫЕ ЛИНИИ

Гипербола
Парабола

30. ПОРЯДОК ПОСТРОЕНИЯ ЭЛЛИПСА

АВ - большая ось Разделить окружности на
СD - малая ось
12 равных частей

31. ПРОСТРАНСТВЕННЫЕ КРИВЫЕ ЦИЛИНДРИЧЕСКАЯ ВИНТОВАЯ ЛИНИЯ

Из закономерных
пространственных
кривых наибольшее
практическое
применение находят
винтовые линии:
цилиндрические и
конические
Примеры технического
применения винтовых
линий
КОМПЛЕКСНЫЙ ЧЕРТЕЖ
ЦИЛИНДРИЧЕСКОЙ ВИНТОВОЙ ЛИНИИ
Цилиндрическая винтовая линия образуется
вращением точки вокруг некоторой оси с
одновременным поступательным движением
вдоль этой же оси.
m1 –окружность
m2 – синусоида
f – касательная к винтовой линии в точке 2.
Винтовую линию называют правой, если точка
поднимается вверх и вправо по мере
удаления от наблюдателя и левой, если точка
поднимается вверх и влево по мере удаления
от наблюдателя

Прямые общего положения

Прямая (отрезок), не параллельная и не перпендикулярная ни к одной из плоскостей проекций, называется прямой общего положения

Рис. 1-30

Необходимо отметить особенности их задания на комплексном чертеже:

1. Любая проекция прямой общего положения искажает натуральную длину.

2. Любая проекция прямой общего положения наклонена к линиям связи под углом ¹ 90°, ни один из них не показывает натуральную величину углов наклона к плоскостям проекций.

3. Натуральная величина прямой общего положения находится методом прямоугольного треугольника

Примеры комплексных чертежей прямых общего положения:

Рис. 1-31

Прямая имеет одинаковые углы наклона к П1 и П2

Рис. 1-32

Точка пересечения проекций отрезка находится на оси X

Рис. 1-33

На безосных чертежах нет очертаний плоскостей проекций, но есть линии связи, поэтому положение геометрических фигур в пространстве будем определять положением их проекций относительно линий связи. линиям связи

 

Прямые уровня

Прямые, параллельные какой-либо плоскости проекций, называются прямыми уровня.

Существует три линии уровня: h, f, p

 

Горизонталь

h (h1, h2, h3) || П3

Рис. 1-34

Если взять карандаш в руки и расположить его параллельно столу, то длина карандаша спроецируется на плоскость стола без искажения. У горизонтали | h | = | h1 |, угол наклона к П2 -b проецируется без искажения..

Графический признак горизонтали - ее фронтальная проекция перпендикулярна линиям связи (с нее всегда начинается построение чертежа горизонтали - h)

 

Фронталь

f (f1, f2, f3) || П2

Рис. 1-35

Если взять карандаш в руки и расположить его параллельно стене, находящейся перед наблюдателем, то длина карандаша спроецируется на плоскость стены без искажения. У фронтали | f | = | f 2 |, угол наклона к П1 - a cпроецируется без искажения.

Графический признак фронтали - ее горизонтальная проекция перпендикулярна линиям связи (с нее всегда начинается графическое построение фронтали - f)

 

Профильная прямая

р (р1, р2, р3) || П3

Рис. 1-36

| p | = | p3 | - натуральная (истинная) величина

Углы наклона профильной прямой к П1 и П2 проецируются на П3 без искажения.

Графический признак профильной прямой - ее горизонтальная и фронтальная проекции совпадают с линиями связи в системе П1 – П2.

Рассмотренные примеры позволяют отметить особенности задания прямых уровня на комплексном чертеже:

1. Одна из проекций прямых уровня перпендикулярна линиям связи установленного направления

2. Одна из проекций прямой уровня параллельна самой прямой и дает истинную величину, а также показывает без вспомогательных построений угол наклона к одной из плоскостей проекций (h, f), к двум плоскостям проекций (p).

 


Узнать еще:

Начертательная геометрия, решение задач ОмГТУ

Рабочая тетрадь для решения задач

по дисциплинe «Начертательная геометрия»

(для студентов заочной формы обучения)


Тема 1. Изображение точек на комплексном чертеже.

З а д а ч а 1.   Построить точки А(40,20,30), В(40,30,0), С(0,0,30) и D(0,10,20) на комплексном чертеже.

З а д а ч а 2. Точки А, В и С принадлежат плоскостям проекций. Построить недостающие проекции этих точек и указать в какой плоскости каждая из них располагается.


Тема 2. Прямая. Взаимное расположение прямых.

З а д а ч а 3. Даны точки А(90,30,40), В(10,20,15), С(60,20,40) и D(30,40,15). Построить отрезки АВ и СD, обозначить и записать координаты конкурирующих точек.

З а д а ч а 4. Отложить на отрезке АВ отрезок АК=20мм и определить угол наклона отрезка АВ к плоскости проекций П1.

З а д а ч а 5. Пересечь прямые АВ и СD прямой MN, отстоящей от плоскости П1 на расстоянии 16 мм.

З а д а ч а 6.  Даны две скрещивающиеся прямые с и d. Построить отрезок МN, являющийся кратчайшим расстоянием между этими прямыми.

З а д а ч а 7.  Дано: точка А12) и прямая ВС общего положения. Построить сферу с центром в точке А, касательную к прямой ВС


Тема 3. Плоскость. Главные линии плоскости.

З а д а ч а 8. Дана плоскость сигмаABC), точки D и E в этой плоскости. Через точку Е провести горизонталь h, через точку D – фронталь f этой плоскости.

З а д а ч а 9. Построить недостающие проекции точек E и D, лежащих в плоскости сигма (АВ ∩ ВС).

З а д а ч а 10.   Дан плоский пятиугольник ABCDЕ, заданный горизонтальной и фронтальной проекциями двух смежных сторон. Достроить его фронтальную проекцию.

З а д а ч а 11. Дан треугольник АВС. Найти центр окружности, описанной вокруг заданного треугольника.


Тема 4. Взаимное расположение прямой и плоскости.

З а д а ч а 12.  Задана плоскость Р и прямая DE. Найти точку пересечения прямой с плоскостью. Определить видимость проекции прямой. (Р2 – фронтальный след плоскости). P (AB//FC).

З а д а ч а 13. Заданы плоскость Р(ΔАВС) и точка D: а) определить расстояние от точки D до плоскости Р; б) построить точку М, симметричную точке D относительно плоскости Р; в) построить шар с центром в точке D, касательный к плоскости Р.

З а д а ч а 14. Задан ΔАВС общего положения. Построить прямую призму с основанием ΔАВС и высотой равной 30 мм.


Тема 5. Взаимное положение плоскостей.

З а д а ч а 15.  Даны плоскости сигма(ΔАВС), гамма(DEF) и точка М: а) построить линию пересечения плоскостей. б) через точку М провести прямую l, параллельную плоскостям сигма и гамма. Задачу решить без использования способа замены плоскостей.

З а д а ч а 16 Даны плоскость Р(а//b) и точка М. Через точку М провести плоскость Г, параллельную плоскости Р.

З а д а ч а 17 Даны плоскость Р(а//b) и прямая CD. Через прямую CD провести плоскость Г перпендикул. Р. Г(ΔСDE)


З а д а ч а 18


Тема 7. Пересечение поверхности с плоскостью

З а д а ч а 19.  Построить проекции сечения данной поверхности проецирующей плоскостью Σ.


Тема 8. Пересечение прямой линии с поверхностью

З а д а ч а 20.  Построить точки пересечения прямой с заданной поверхностью. Установить видимость проекций прямой


Тема 10. Взаимное пересечение поверхностей.

З а д а ч а 21 Метод вспомогательных секущих плоскостей

З а д а ч а 22 Метод сферического посредника


%d1%84%d1%80%d0%be%d0%bd%d1%82%d0%b0%d0%bb%d1%8c — с русского на все языки

Все языкиАбхазскийАдыгейскийАфрикаансАйнский языкАканАлтайскийАрагонскийАрабскийАстурийскийАймараАзербайджанскийБашкирскийБагобоБелорусскийБолгарскийТибетскийБурятскийКаталанскийЧеченскийШорскийЧерокиШайенскогоКриЧешскийКрымскотатарскийЦерковнославянский (Старославянский)ЧувашскийВаллийскийДатскийНемецкийДолганскийГреческийАнглийскийЭсперантоИспанскийЭстонскийБаскскийЭвенкийскийПерсидскийФинскийФарерскийФранцузскийИрландскийГэльскийГуараниКлингонскийЭльзасскийИвритХиндиХорватскийВерхнелужицкийГаитянскийВенгерскийАрмянскийИндонезийскийИнупиакИнгушскийИсландскийИтальянскийЯпонскийГрузинскийКарачаевскийЧеркесскийКазахскийКхмерскийКорейскийКумыкскийКурдскийКомиКиргизскийЛатинскийЛюксембургскийСефардскийЛингалаЛитовскийЛатышскийМаньчжурскийМикенскийМокшанскийМаориМарийскийМакедонскийКомиМонгольскийМалайскийМайяЭрзянскийНидерландскийНорвежскийНауатльОрокскийНогайскийОсетинскийОсманскийПенджабскийПалиПольскийПапьяментоДревнерусский языкПортугальскийКечуаКвеньяРумынский, МолдавскийАрумынскийРусскийСанскритСеверносаамскийЯкутскийСловацкийСловенскийАлбанскийСербскийШведскийСуахилиШумерскийСилезскийТофаларскийТаджикскийТайскийТуркменскийТагальскийТурецкийТатарскийТувинскийТвиУдмурдскийУйгурскийУкраинскийУрдуУрумскийУзбекскийВьетнамскийВепсскийВарайскийЮпийскийИдишЙорубаКитайский

 

Все языкиАнглийскийНемецкийНорвежскийКитайскийИвритФранцузскийУкраинскийИтальянскийПортугальскийВенгерскийТурецкийПольскийДатскийЛатинскийИспанскийСловенскийГреческийЛатышскийФинскийПерсидскийНидерландскийШведскийЯпонскийЭстонскийТаджикскийАрабскийКазахскийТатарскийЧеченскийКарачаевскийСловацкийБелорусскийЧешскийАрмянскийАзербайджанскийУзбекскийШорскийРусскийЭсперантоКрымскотатарскийСуахилиЛитовскийТайскийОсетинскийАдыгейскийЯкутскийАйнский языкЦерковнославянский (Старославянский)ИсландскийИндонезийскийАварскийМонгольскийИдишИнгушскийЭрзянскийКорейскийИжорскийМарийскийМокшанскийУдмурдскийВодскийВепсскийАлтайскийЧувашскийКумыкскийТуркменскийУйгурскийУрумскийЭвенкийскийБашкирскийБаскский

Рисунок

, вид спереди

Нарисовать обнаженную фигуру спереди подразумевает ее персонализацию, превращая ее в конкретного человека, а не в общую модель. Таким образом, этот тип позы больше напоминает идею портрета. Хотя целью может быть не создание портрета, фронтальный вид обнаженной натуры заставляет художника серьезно относиться к лицу, а это означает наделение его выражением.

Фигура на виде спереди требует более индивидуальной обработки лица и более схематичного изображения остальной части тела; модель в профиль, напротив, требует более детальной обработки контуров тела.

Вид фигуры сзади требует небольшой персонализации, но требует большого моделирования, чтобы помочь описать объемы тела.

Обнаженная в профиль

Про обнаженную в профиль можно сказать прямо противоположное. Контур - это доминирующий аспект рисунка позы в профиль: форма головы, черты лица, плечи, туловище, живот, бедра - короче говоря, всей фигуры. Эти элементы могут быть представлены одной сплошной линией. Это не означает, что объем и моделирование не важны, а скорее, что они подчинены линии фигуры.Однако стоит помнить, что фигура редко бывает полностью в профиль. Некоторые части целого видны только спереди или сзади, поэтому рекомендуется просмотр в три четверти.

Обнаженная фигура, вид сзади

Вид обнаженной натуры сзади, особенно обнаженной женщины, часто встречается в жанре рисования интимных фигур. Эти рисунки создают эффект фигуры, которую зритель наблюдает без ее ведома.

Это впечатление естественности вызывает большой психологический интерес.Технически говоря, рендеринг спины - мужской или женской - может подчеркнуть анатомию до такой степени, что она становится интересной сама по себе.

Если нам трудно понять фигуру с разных позиций, мы можем использовать такую ​​модель, как этот деревянный манекен. В качестве упражнения очень практично поместить манекен в ту же позу, что и живая модель, поворачивая его и делая зарисовки с разных точек зрения.

Вид сзади фигуры требует небольшой персонализации, но требует большого моделирования, чтобы помочь описать объемы тела.

Фигура на виде спереди требует более индивидуальной обработки лица и более схематичного изображения остальной части тела; модель в профиль, напротив, требует более детальной обработки контуров тела.

Продолжите чтение здесь: Рисование отрицательного пространства

Была ли эта статья полезной?

Рисунок шаблона женской фронтальной фигуры

Рисунок шаблона женской фронтальной фигуры

Позвольте нашему специалисту научить вас рисовать переднюю и заднюю женскую фигуру спереди, используя пропорцию 9 голов.Она начинает с того, что блокирует фигуру, а затем втягивает мышцы простым методом наложения. Затем вы узнаете, как нарисовать фигуру как спереди, так и сзади, чтобы вы могли использовать ее в качестве шаблона для рисования своих дизайнов.

Модуль Описание Шаг
1 Нанесение на переднюю панель 1-9
2 Укрепление передних мышц 1-24
3 Рисование лицевого рисунка 1-7
4 Отображение спины 1-10
5 Укрепление мышц спины 1-14
6 Рукописный ввод на оборотной стороне 1-10
Полная стенограмма доступна при подписке.

МОДУЛЬ 1 • Отображение лицевой стороны

Шаг Описание
1 Я собираюсь начать передний полный крокис, и первое, что вы захотите сделать, это провести центральную линию внизу вашей страницы.
2 Затем нарисуйте отметки, которые дадут вам ориентир относительно того, сколько голов будет у вашей фигуры. В данном случае это 9 голов.
3A Вы начинаете сверху. Первым шагом будет наметить вашу фигуру. Здесь я уже запустил блок для головы. Закрываем вырез горловины, или форму шеи.

Чтобы видеть полную стенограмму и полный видеоурок, подпишитесь на University of Fashion!

© 2008-2018 University of Fashion ® - - Расшифровка стенограммы для использования только на уроках Университета моды и не разрешена для загрузки или распространения

Nú Фронтальный рисунок Антонио Соуза

Антонио Соуза (1957), um artista brasileiro autodidata, vive e mantém um estúdio na cidade de Praia Grande, em Сан-Паулу.Suas obras são fastemente impressionantes combinações de abstrato e expressionismo, por meio do figurativo. Suas obras de arte contemporâneas retratam a vida cotidiana repleta de elementos simbólicos, inteiramente instigantes e compreensíveis pelo observador; Rico Em Comentários e Signature Social Para Aqueles Que desejam Interference-Los. Principalmente em acrílico, arte de Antonio apresenta perspectivas únicas e uma atitude maior que a vida. As obras deste Artista premiado são procuradas.Sua arte é exibida regularmente em todo o mundo. Antonio expõe seus trabalhos desde o início dos anos 90 no Salão Anual de Artes Plásticas em Praia Grande, onde ganhou удостоен Medalha de Honra ao Mérito em 1993. Uma exiçãoo индивидуальный foi seguida no Banco do Brasil Boqueirão, em Santos. Coletivos de Arte na Galeria Coletiva Patricia Galvão em 1996. Em 2019, участник индивидуальной выставки, Solo - Muito Alem da Praia - Realizada na Galeria Heitor Penteado - Prod. Ана Коста - Гонзага - Сантос и но XX HALL DE Belas Artes - Galeria Heitor Penteado-Prodesan Declaração do artista: Мои художественные работы показывают повседневную жизнь людей.Моя художественная работа направлена ​​на то, чтобы показать нашу повседневную жизнь. Я выполняю свои работы с сильными и чистыми линиями в ясности темы для понимания и признания публики и для возможности увлечь их. Ясность моей живописи с современными чертами соответствует эволюции современной истории, поэтому я надеюсь на признание всех любителей художников и инвесторов Meu trabalho Artisto Mostra o cotidiano a vivencia dos povos. O foco do meu trabalho Artisto é realizar uma mostra do nosso cotidiano.Realizo meus trabalhos com traços fortes e limpos na clareza do tema para o entendimento e reconhecimento do publico e consguir cativa-los. Clareza da minha pintura com traços moderno, acompanha a evolução na Historia contemporânea p0or isso espero reconhecimento de todos amantes artistas e investidores «Os elementos revigorantes que são apresentados no meu trabalho dizeas Sant regiotes. Como elementos concretos da Favela ou edifícios que apresentam um caos urbano, meu desejo é capturar as forças dinâmicas que estão mudando nosso modo de vida."

Уильям Бейли - Обнаженная с вьющимися волосами (ранний полный фронтальный рисунок женской обнаженной кожи карандашом, нога поднята) на 1stDibs

На этом интимном обнаженном портрете изображена кудрявая молодая женщина, стоящая перед художником, подперев правую ногу. Этот ранний карандаш Рисунок подписан и датирован 1976 г. одним из ведущих художников-фигураторов Америки. Этот рисунок был создан до скандала, возникшего в 1982 г., когда Newsweek опубликовал на обложке Бейли. См. ниже: «Журнал Newsweek, возможно, загнал себя в угол, разместив на обложке своего номера от 7 июня портрет обнаженной натуры.Читатели, операторы газетных киосков и моральное большинство - все хотят прикрыть обложку. Прокурор города Лаббока, штат Техас, считает, что издание журнала может быть нарушением городского постановления, поскольку оно подвергает несовершеннолетних воздействию порнографии. Магазины и газетные киоски, продающие его, могут быть привлечены к ответственности. Речь идет о «Портрете S» Уильяма Бейли, ныне преподавателя рисования в Йельском университете, на котором изображена суровая задумчивая женщина, сидящая с опущенной вниз одеждой, обнажающей грудь. Сопроводительная статья озаглавлена ​​«Возрождение реализма.' Один из оптовых торговцев журналами в Сарасоте, штат Флорида, зашел так далеко, что наклеил на грудь женщины пирожки с резиновой подкладкой. Некоторые дилеры спрятали Newsweek за другими журналами, а в магазине Fast Fare в Роли, Северная Каролина, его можно получить по запросу - в стойке «только для взрослых». «Это картина, и лично меня она не беспокоит, но многие могут посчитать ее оскорбительной», - сказал менеджер магазина Чарли Смит. «Было всеобщее удивление, что Newsweek поместил что-то подобное на обложку, - сказал Марвин Роуз, оператор газетного киоска в Daily News Building в Нью-Йорке.«Мне пришлось заверить немало людей, что это Newsweek ... Некоторые из них сказали:« Это искусство? Что происходит с Newsweek? '' Эйвери Хант, директор по связям с общественностью Newsweek, сказал, что было распространено 3 миллиона копий, а продажи газетных киосков были вдвое выше, чем обычно в Нью-Йорке. Хант сказал, что в журнал поступило «около дюжины телефонных звонков» с протестом против обложки, и что «один или два звонивших требовали отмены подписки». «Я думал, что это был 1982 год, - сказал редактор Newsweek Лестер Бернстайн.Это просто говорит вам о том, что вокруг намного больше людей, которые не были в музее, чем вы могли подозревать. «Я ожидал, что могут появиться какие-то возражения, но я чувствовал, что это прекрасная картина, иллюстрирующая выдающуюся статью художественной критики. Любой другой взгляд на это - в глазах смотрящего ». Уильям Бейли (американец, 1930 г.р.) Уильям Бейли родился в Айове и учился в Школе изящных искусств Канзасского университета. Позже он получил степень бакалавра и магистра изящных искусств в Школе искусств Йельского университета.Он преподавал как в Университете Индианы, так и в Йельском университете, где некоторое время работал деканом Школы искусств. С 1979 года он работал профессором искусств Кингмана Брюстера в Школе искусств Йельского университета. Работы Бейли находятся в коллекции Чикагского института искусств, музея Хиршхорна, Музея современного искусства в Нью-Йорке, Национального музея американского искусства, Смитсоновского института и музея Уитни. Он является избранным членом Американской академии и Института искусств и литературы.Изображение оформлено в архиве.

Фронтальная нагота и базовый урок рисования, символизирующие жизнь в Йельском университете

Когда я пошел на первый курс «Основы рисования» - мой первый и последний набег на искусство в Йельском университете - я обнаружил, что это похоже на все остальные занятия по рисованию, которые я посещал.

Но была одна незначительная разница. Это был курс искусства в колледже. А в колледже вы можете рисовать обнаженных моделей.

После вводной недели набросков наших ботинок наш профессор принес модель: парня средних лет по имени Фрэнк.Он был лысым и имел мышечный тонус спелого баклажана.

Каждый день Фрэнк раздевался и растягивался на груде подушек посреди класса, как какая-то бледная волосатая египетская императрица. Через пять минут он пожаловался, что в комнате было холодно; мой профессор изготовил бы шаткий обогреватель и поставил его рядом с собой.

Затем Фрэнк засыпал до конца периода - за исключением, конечно, трех минут, когда мне приходилось делать наброски его интимных частей тела.В этот момент он просыпался и смотрел на меня. Я всегда старался рисовать так быстро, как мог - как Индиана Джонс, мчащийся через заминированный храм - но это выглядело так, как если бы его пах был оснащен крошечным датчиком, который неизменно обнаруживал мой взгляд.

Я почти решил пройти больше курсов на художественном факультете - особенно после того, как несколько раз натолкнулся на Фрэнка и его понимающую улыбку в тренажерном зале - но казалось, что если я хочу продолжать, мне придется посвятить всю свою энергию к искусству. У меня не было времени делать это хорошо, поэтому я решил вообще не заморачиваться.

Йель - не место, где можно баловаться. Это место, где можно постоянно заниматься одной или двумя «вещами», которые вы делаете превосходно. Независимо от вашей академической или внеклассной направленности, будьте готовы сделать это своей жизнью.

В моем случае бедный Фрэнк стал еще одной жертвой йельской неспособности расслабиться и сделать что-нибудь на полускоростке.

Я вижу доказательства этого мышления вокруг себя. У меня есть один друг, чья виолончель, не использованная, прислонена к его комоду, выставлена ​​на пастбище с тех пор, как он превратился в маньяка a cappella.Другой когда-то был математиком и звездой квартета парикмахерских своей старшей школы (представьте себе всех цыплят, которые у него были!), Но он бросил все, чтобы стать невротическим комиком-импровизатором.

Я уверен, что Фрэнк тоже был вынужден отложить некоторые из своих талантов на задний план, когда он приехал в Йельский университет и пожертвовал свое тело искусству. Возможно, когда-то он был звездой школьного хора, состоящего только из мальчиков, который гастролировал по ротари-клубу Среднего Запада на Рождество.

Мы оправдываем свой отказ от когда-то важных интересов, ссылаясь на нехватку свободного времени и заявляя, что если мы вообще собираемся что-то делать, мы хотим иметь энергию и талант, чтобы делать это правильно.Эти причины звучат достаточно благородно.

Или правда в том, что мы просто боимся небольшого провала?

Теоретически нас поощряют брать на себя академические риски благодаря щедрой программе Йельского университета Credit / D / Fail. Кредит / D / Fail должен побуждать нас экспериментировать с дисциплинами, которые мы никогда не пробовали, или брать уроки просто для развлечения и тратить большую часть нашей энергии на что-то другое.

Когда я впервые услышал о опции Credit / D / Fail на Bulldog Days, это прозвучало потрясающе. Может, когда я сюда приеду, подумал я, я действительно что-нибудь сниму со стены.Может быть, что-то связанное с калькулятором.

Но они не сказали мне, что 94 процента списков Синей книги помечены как «НЕТ, Абсолютно НЕТ кредита / D / Fail». А это означает, что для большинства из нас вы не получите пятерку, так что не берите ее. Как в учебе, так и после школы придерживаются такого образа мыслей: если вы не планируете работать над собой и достичь идеального мастерства, не делайте этого. Вы не можете просто ходить на уроки; вы должны их победить.

Я не виню администрацию Йельского университета в том, что мы придерживаемся принципа «все или ничего».Я виню их только в том, что они не смогли заново украсить наши тротуары причудливыми прошлогодними отпечатками лап бульдога.

С другой стороны, эта проблема возникла по нашей вине.

В прошлом семестре я пытался с этим бороться. Я записался на семинар, не связанный с кредитом / отказом / отказом. Я был совершенно не подготовлен - к материалу и к моим угрюмым одноклассникам из Восточной Европы - но я поклялся, что просто получу удовольствие от занятий. Я также пошел на базар для первокурсников и взял листовку для одного из трех десятков литературных журналов Йельского университета, намереваясь ходить на собрания так часто, как мне хочется.

Операция Slack Off провалилась. У меня не было ни времени, ни таланта для победы в классе или дневнике, и в итоге я почувствовал себя виноватым и обиженным.

Я бы предложил решение, но его нет. И быть не должно.

Наш перфекционистский, навязчивый подход привел нас в Йельский университет. Они движут нашим опытом здесь и являются двигателями, которые продвигают нас к славному и прибыльному будущему. Так что, если это означает, что мы вырастаем ходячими нервными окончаниями с высоким кровяным давлением, которые записывают наших трехлетних детей на уроки игры на альте по вторникам и на подготовительные курсы Lil ’Hands On Science Westinghouse по четвергам.

Мы должны быть благодарны за то, что мама Йель превращает нас в эффективные машины для достижения результатов. В конце концов, неудача - это плохо. Неудача означает, что вы никчемны, ленивы и, вероятно, уродливы.

Остается только надеяться, что эти четыре безумных года не заставят нас полностью забыть инструменты и виды спорта, которыми мы играли, или развлечения, которыми мы занимались - просто ради удовольствия.

Думаю, мне повезло. В ближайшее время я не забуду свой урок рисования. Года шоковой терапии не хватило бы, чтобы стереть жгучие мысленные образы Фрэнка во всей его бледной обнаженной красе.

Молли Вортен учится на первом курсе колледжа Джонатана Эдвардса. Ее колонки появляются по вторникам поочередно.

Учимся рисовать портрет / лицо спереди

В этом онлайн-уроке я хотел бы дать вам советы по рисованию портретов. Руководство предназначено в основном для начинающих, которые хотят научиться рисовать портреты. Поэтому мы начинаем с рисования лица спереди.

Советы и уловки - рисование портретов

Многие художники увлечены рисованием других людей и лиц. Однако у начинающих рисовать часто возникает определенное чувство разочарования, когда рисунок выглядит не так, как хотелось бы. В большинстве случаев это потому, что им не хватает важных базовых навыков рисования портретов. При этом вам часто приходится учитывать несколько небольших уловок при рисовании лиц.

Важно знать некоторые правила пропорций головы и лица.Эти пропорции, конечно, не одинаковы для каждого человека, поэтому правила пропорции, представленные здесь, следует понимать как руководство к рисованию портретов. Например, в этом руководстве вы найдете немного другую - более простую - процедуру: научитесь рисовать портрет


Разделение лица и головы - Обучение рисованию портрета

Пропорции - Голова и лицо - Метод 1

Первый метод, который я представляю в этом онлайн-руководстве по рисованию, является одним из наиболее распространенных учений о пропорциях лица при виде спереди.Этот метод может использоваться начинающими рисовать, чтобы научиться рисовать портрет, и его можно рассматривать как помощь в ориентировании и упражнении по рисованию.

Пропорции лица в высоту


Разделение лица для рисования портрета

Давайте сначала посмотрим на лицо спереди (рисунок выше). Лицо здесь разделено на три равные части, соответствующие высоте носа, плюс четвертая часть, представляющая линию роста волос.

Таким образом, три основные части имеют длину носа в качестве основной меры.Первая часть - это высота от подбородка до носа. Вторая часть соответствует носу или идет от кончика носа к бровям. Третья часть - лоб. Четвертая, меньшая часть, как уже было написано, - это линия роста волос. Это соответствует половине основного размера (= половине длины носа). В результате мы можем разделить голову на семь седьмых, как показано на рисунке ниже.


Деление лица на семь седьмых для рисования портрета

Другие советы по пропорциям лица по росту

• Уши лежат в районе 2-й части нашего подразделения и также соответствуют основному размеру по высоте.
• Глаза лежат на средней линии головы.
• Нижний конец нижней губы лежит на половине 1-й части или между первой и второй седьмой.
• Когда первая часть головы разделена на три части, рот находится на уровне второй трети.


Пример портретного рисунка спереди

Пропорции лица по ширине

Ориентация по ширине еще проще (см. Рисунок выше). Лицо можно разделить на пять частей.Каждая часть соответствует ширине глаза. Здесь мы разоблачаем две очень типичные ошибки персонажей, которые допускают многие новички при рисовании портрета:

1. Промежуток между глазами шире, чем при первом подходе. Эта часть шириной с глаз.
2. Область со стороны глаз - виски - также шириной с глаз. Эта часть часто слишком узкая.

Что еще заметно в пропорциях лица в ширину, так это то, что подбородок тоже имеет ширину одного глаза.Но это тоже всего лишь ориентация, и она может отличаться от человека к человеку. В целом также заметно, что подбородок у мужчин шире, чем у женщин.

Завершен

Если вы все сделаете правильно, портретный рисунок будет выглядеть как на картинке ниже.


Портретный рисунок спереди

Если вы рисуете портрет самостоятельно, вы можете нарисовать описанные линии ориентации на предварительном эскизе в самом начале. Затем вы поэтапно рисуете лицо на виде спереди.Когда рисунок будет закончен, можно убрать вспомогательные линии.
Теперь я хотел бы порекомендовать другие уроки по рисованию портретов и действию. Там вы также научитесь рисовать портреты в других ракурсах.

Линия, показывающая вид рта спереди и вид сбоку лица. Фондовый фото 4391-323: Superstock

.
Детали

Номер изображения: 4391-323
Права управляемого
Кредит: Национальный институт рака / Национальный институт рака
Разрешение модели: Нет
Разрешение собственности: Нет
Детали: 4552 x 4224px | 15.17 дюймов x 14,08 дюйма | 57.68MB | 300 точек на дюйм


ЛИЦЕНЗИРОВАНИЕ EASY RM

250 долларов США

Издательское дело / образование

400

Прямой маркетинг - внутреннее использование

$ 1600

Продлить лицензию

Для индивидуальных тарифных планов со скидкой, без водяных знаков или пакетов изображений для частных лиц или корпораций нажмите кнопку
НУЖНЫ ДОПОЛНИТЕЛЬНЫЕ ОПЦИИ ниже.


В поисках материалов для подписки посетите наш дочерний сайт PURESTOCK .

Добавить в корзину Нужны дополнительные параметры?

×

Свяжитесь с нами

Мы здесь, чтобы помочь! Свяжитесь с нами, если вам нужны более гибкие варианты лицензирования.

Позвоните нам по телефону 866-236-0087
. Представители доступны с 9:00 до 18:00 EST.



Ключевые слова

Свяжитесь с нами

Продажи и исследования SuperStock
Эл.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *