Пенополистирол теплопроводность: Сравнение пенопласта и экструдированного пенополистирола — «ИзолМаркет»

Содержание

Теплопроводность пенополистирола, от чего зависит и на какие параметры влияет

Из всех бюджетных видов утеплителей, обладающих несущими способностями, пенопласт имеет минимальный коэффициент теплопроводности: не более 0,043 Вт/м·К при применении в обычных условиях. Отличные теплоизоляционные свойства объясняет ячеистая структура материала: только 2 % от общего объема занимают полистирольные стенки вспененных гранул, остальные 98 приходится на воздух. Как следствие, плиты пенопласта имеют низкий удельный вес и не перегружают строительные конструкции. Также положительно оценивается неизменность изоляционных параметров утеплителя в процессе эксплуатации. Пенопласт не боится намокания в сравнении с минватой, не теряет форму как эковата, единственным условием является закрытие его от лучей солнца.

Оглавление:

  1. Что влияет на теплопроводность?
  2. Взаимосвязь с другими параметрами
  3. Сравнение разных марок

От чего зависит теплопроводность пенополистирола?

Теплоизоляционные свойства этого материала определяются объемом содержащегося внутри гранул воздуха. Сама по себе характеристика отражает количество перенесенной тепловой энергии от более горячего участка строительной конструкции к холодному, соответственно, чем она меньше, тем лучше. Плиты из пенополистирола в этом плане выигрывают у других утеплителей: ячеистая структура обеспечивает не только хорошую изоляцию, но и более равномерное распределение градиента температуры по всей толщине.

Распространенным заблуждением является мнение, что главным влияющим на теплопроводность фактором служит плотность пенопласта. На практике, эти две характеристики имеют линейную взаимосвязь, уплотнение приводит к уменьшению объема воздуха внутри гранул, но одновременно улучшает коэффициент водонепроницаемости материала и упрочняет стенки ячеек. Минимальная теплопроводность наблюдается у плит из пенополистирола с удельным весом около 30 кг/м3, увеличение плотности вызывает незначительное (доли процентов) ухудшение теплоизоляционных способностей и при достижении определенных показателей коэффициент становится неизменным – 0,043 Вт/м·К.

На практике значение зависит от:

  • Структуры пенопласта: качественные марки с плотно запаянными ячейками лучше держат тепло.
  • Толщины плит.
  • Условий эксплуатации: влажности и температуры (возрастание последней приводит к снижению теплопроводности пенопласта).

Взаимосвязь с другими характеристиками и показателями

Для достижения нужного эффекта энергосбережения проводится теплотехнический расчет толщины прослойки из пенопласта. Теплопроводность утеплителя при этом является главным учитываемым фактором, наряду с общей величиной сопротивления, определяемой климатическими особенностями региона и типом строительной конструкции. Практика показывает, что максимальная толщина (и, соответственно, минимальная теплопроводность) требуется при обустройстве полов, фундаментных участков, подвалов и перекрытий. В этом случае используются марки от 0,033 до 0,038 Вт/м·К. При утеплении внешних стен приобретается пенопласт со средним значением характеристики (от 0,037 Вт/м·К).

Замечено, что величина коэффициента теплопроводности ухудшается при длительной эксплуатации в условиях повышенных температур (верхний предел составляет 80 °C). Также пенопласт теряет свои теплоизоляционные способности при изменении структуры под прямым воздействием солнечного излучения и атмосферных осадков. Этого легко избежать – достаточно просто закрыть плиты сайдингом, стяжкой, штукатуркой или краской. Последним важным требованием является отсутствие мостиков холода: вне зависимости от величины теплового сопротивления утеплителя неплотная укладка плит приводит к потерям температуры. Для предотвращения подобной ситуации все возможные стыки аккуратно заполняются монтажной пеной (выбираются марки с минимальным вторичным расширением, не сдвигающие материал) и герметизируются, в идеале укладывается два слоя пенополистирола со смещением листов.

Сравнение теплопроводности у марок с разной плотностью и назначением

Более наглядно зависимость теплоизоляционных свойств от степени наполненности пенопласта и закрытости его структуры показывает сопоставление этих параметров у продукции разных видов. Не секрет, что при равной толщине плит теплопроводность экструдированного пенополистирола более низкая в сравнении с обычным. Хорошую изоляцию также обеспечивают гранулы, точное значение зависит от размера фракций, но в целом лучшие наблюдаются у вспененной крошки, худшие – у дробленки. Результаты сравнения характеристик разных марок сведены в таблицу:

Наименование марки пенопластаПлотность, кг/м3Коэффициент теплопроводности, Вт/м·К
Кнауф ТермДача150,048
Стена250,04
Фасад350,031
Пол400,035
Дом40-420,032
Кровля0,036
ПСБ-СДо 150,043
15-250,041
15-350,038
50
Экструдированный пенополистирол33-380,03
38-450,032
М-50 вспененная крошка с размером гранул от 0,5 до 1 мм30*0,036
М-25, то же с более крупными гранулами (4-6 мм)10*0,042
Дробленка (3-6 мм)11*0,05

* – насыпная плотность материала.

Результаты сравнения доказывают, что плотность пенопласта влияет на теплопроводность линейно и косвенно. Тяжелые марки экструдированного пенополистирола обладают лучшими изоляционными свойствами, несмотря на снижение объема воздуха внутри ячеек, низкая теплопроводность у них достигается за счет введения графитовых добавок и хорошей влагостойкости.

Как следствие, значение этого показателя стоит уточнить еще до выбора и приобретения утеплителя, он относится к основным рабочим характеристикам и обязательно подтверждается соответствующей документацией от производителя (указывается ГОСТ и итоги испытаний).

Теплопроводность пенополистирола – какая она и от чего зависит

Перечисляя параметры утеплителей, на первое место всегда ставят теплопроводность материала. Зависит она от того, сколько в данном веществе содержится воздуха. Ведь именно воздушная среда служит отличным естественным теплоизолятором. Заметим, что способность проводить тепло уменьшается при увеличении разреженности среды. Так что лучше всего держит тепло прослойка из вакуума.

На этом принципе основана работа термосов. Но при строительстве вакуум создать проблематично, поэтому ограничиваются обычным воздухом. К примеру, низкая теплопроводность пенополистирола, особенно экструдированного, обусловлена тем, что этого самого воздуха в нем хоть отбавляй.

Что влияет на способность пенополистирола проводить тепло

Чтобы наглядно понять, что такое теплопроводность, возьмем кусок материала метровой толщины и площадью один квадратный метр. Причем одну его сторону нагреваем, а вторую оставляем холодной. Разница этих температур должна быть десятикратной. Измерив количество теплоты, которое за одну секунду переходит на холодную сторону, получаем коэффициент теплопроводности.

Отчего же именно пенополистирол способен хорошо сохранять как тепло, так и холод? Оказывается, всё дело в его строении. Конструктивно данный материал состоит из множества герметичных многогранных ячеек, имеющих размер от 2 до 8 миллиметров. Внутри у них находится воздух – он составляет 98 процентов и служит великолепным теплоизолятором. На полистирол приходится 2% от объёма.А по массе полистирол составляет 100%, т.к. воздух, условно говоря, не имеет массы.

Надо заметить, что теплопроводность экструдированного пенополистирола остается неизменной по прошествии времени. Это выгодно отличает данный материал от других пенопластов, ячейки которых наполнены не воздухом, а иным газом. Ведь этот газ обладает способностью постепенно улетучиваться, а воздух так и остается внутри герметичных пенополистирольных ячеек.

Покупая пенопласт, мы обычно спрашиваем продавца о том, каково значение плотности данного материала. Ведь мы привыкли, что плотность и способность проводить тепло неразрывно связаны друг с другом. Существуют даже таблицы этой зависимости, с помощью которых можно выбрать подходящую марку утеплителя.

Плотность пенополистирола кг/м3Теплопроводность Вт. /МКв
10 0,044
15
0,038
20 0,035
25 0,034
30 0,033
35 0,032

Однако в нынешнее время придумали улучшенный утеплитель, в который введены графитовые добавки. Благодаря им коэффициент теплопроводности пенополистирола различной плотности остается неизменным. Его значение – от 0,03 до 0,033 ватта на метр на Кельвин. Так что теперь, приобретая современный улучшенный ЭППС, нет надобности проверять его плотность. 

Маркировка пенополистирола теплопроводность которого не зависит от плотности:

Марка пенополистиролаТеплопроводность Вт./МКв
EPS 50 0.
031 – 0.032
EPS 70 0.033 – 0.032
EPS 80 0.031
EPS 100 0.030 – 0.033
EPS 120 0.031
EPS 150 0.030 – 0.031
EPS 200 0.031

Пенополистирол и другие утеплители: сравнение

Сравним теплопроводность минеральной ваты и пенополистирола. У последнего данный показатель меньше и составляет – от 0,028 до 0,034 ватта на метр на Кельвин. Теплоизоляционные свойства ЭППС без графитовых добавок уменьшаются с увеличением плотности. Так, например, экструдированный пенополистирол, теплопроводность которого 0,03 ватта на метр на Кельвин, обладает плотностью 45 килограммов на кубический метр.

Сравнив данные показатели у разнообразных утеплителей, можно сделать вывод в пользу ЭППС. Двухсантиметровый слой этого материала держит тепло так же, как минвата слоем 3,8 сантиметра, обычный пенопласт слоем 3 сантиметра, деревянная доска толщиной 20 сантиметров. Кирпичом же придется выложить стенку 37 сантиметров толщиной, а пенобетоном – 27 сантиметров. Впечатляюще, не так ли?

Если вы заметили ошибку, не рабочее видео или ссылку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Поделиться:

Плотность, прочность, температура плавления, теплопроводность

О полистироле

Полистирол, сокращенно PS, представляет собой синтетический ароматический углеводородный полимер, изготовленный из мономера, известного как стирол, который получают из бензола и этилена, нефтепродуктов. Полистирол может быть твердым или вспененным. Полистирол общего назначения прозрачен, тверд и довольно хрупок. Полистирол представляет собой бесцветный прозрачный термопласт, который обычно используется для изготовления изоляции из пенопласта или картона, а также типа насыпной изоляции, состоящей из небольших шариков полистирола. Пенополистирол 95-98% воздуха. Пенополистирольные пенопласты являются хорошими теплоизоляторами и поэтому часто используются в качестве строительных изоляционных материалов, например, в изоляционных бетонных формах и конструкционных теплоизоляционных панельных строительных системах. Вспененный (EPS) и экструдированный полистирол (XPS) изготавливаются из полистирола, но EPS состоит из маленьких пластиковых шариков, которые сплавляются вместе, а XPS начинается как расплавленный материал, который выдавливается из формы в листы. XPS чаще всего используется в качестве утеплителя из пенопласта.

Резюме

Имя Полистирол
Фаза на STP твердый
Плотность 1050 кг/м3
Предел прочности при растяжении 48 МПа
Предел текучести Н/Д
Модуль упругости Юнга 3,4 ГПа
Твердость по Бринеллю 50 бат
Точка плавления 217 °С
Теплопроводность 0,12 Вт/мК
Теплоемкость 1100 Дж/г К
Цена 1,1 $/кг

Плотность полистирола

Типичные плотности различных веществ даны при атмосферном давлении. Плотность  определяется как  масса на единицу объема . Это интенсивное свойство , которое математически определяется как масса, деленная на объем: общий объем (V), занимаемый этим веществом. Стандартная единица СИ составляет килограммов на кубический метр ( кг/м 3 ). Стандартная английская единица измерения – 90 014 фунтов массы на кубический фут 9.0015  ( фунтов/фут 3 ).

Плотность полистирола 1050 кг/м 3 .

 

Пример: Плотность

Рассчитайте высоту куба из полистирола, который весит одну метрическую тонну.

Решение:

Плотность  определяется как  масса на единицу объема . Математически он определяется как масса, деленная на объем: ρ = m/V

Так как объем куба равен третьей степени его сторон (V = a 3 ), высоту этого куба можно вычислить:

Тогда высота этого куба равна a = 0,984 м .

Плотность материалов

Механические свойства полистирола

Прочность полистирола

В механике материалов прочность материала способность выдерживать приложенную нагрузку без разрушения или пластической деформации. Сопротивление материалов в основном рассматривает взаимосвязь между внешние нагрузки , приложенные к материалу, и результирующая деформация или изменение размеров материала. При проектировании конструкций и машин важно учитывать эти факторы, чтобы выбранный материал имел достаточную прочность, чтобы противостоять приложенным нагрузкам или силам и сохранять свою первоначальную форму.

Прочность материала – это его способность выдерживать приложенную нагрузку без разрушения или пластической деформации. Для напряжения растяжения способность материала или конструкции выдерживать нагрузки, имеющие тенденцию к удлинению, известна как предел прочности при растяжении (UTS). Предел текучести или предел текучести — это свойство материала, определяемое как напряжение, при котором материал начинает пластически деформироваться, тогда как предел текучести — это точка, в которой начинается нелинейная (упругая + пластическая) деформация. В случае растягивающего напряжения однородного стержня (кривая напряжения-деформации) Закон Гука описывает поведение стержня в упругой области. Модуль упругости Юнга представляет собой модуль упругости для напряжения растяжения и сжатия в режиме линейной упругости одноосной деформации и обычно оценивается испытаниями на растяжение.

См. также: Прочность материалов

Предел прочности при растяжении полистирола

Предел прочности при растяжении полистирола 48 МПа.

Предел текучести полистирола

Предел текучести полистирола   — это Н/Д.

Модуль упругости полистирола

Модуль упругости Юнга полистирола составляет 3,4 ГПа.

Твердость полистирола

В материаловедении твердость  – это способность выдерживать  поверхностные вдавливания ( локализованная пластическая деформация ) и  царапание . Испытание на твердость по Бринеллю В тестах Бринелля жесткий,  9Сферический индентор 0014 вдавливается под определенной нагрузкой в ​​поверхность испытуемого металла.

Число твердости по Бринеллю (HB) представляет собой нагрузку, деленную на площадь поверхности вмятины. Диаметр вдавления измеряют с помощью микроскопа с наложенной шкалой. Число твердости по Бринеллю вычисляется из уравнения:

Твердость полистирола по Бринеллю составляет примерно 50 BHN (в пересчете).

См. также: Твердость материалов

 

Пример: Прочность

Предположим, пластиковый стержень изготовлен из полистирола. Этот пластиковый стержень имеет площадь поперечного сечения 1 см 2 . Рассчитайте усилие на растяжение, необходимое для достижения предела прочности на растяжение для этого материала, которое составляет: UTS = 48 МПа.

Решение:

Напряжение (σ)  можно приравнять нагрузке на единицу площади или силе (F), приложенной к площади поперечного сечения (A) перпендикулярно силе, как:

, следовательно, сила растяжения, необходимая для достижения предела прочности при растяжении, равна:

F = UTS x A = 48 x 10 6 x 0,0001 = 4 800 Н

Сопротивление материалов 90 007

Эластичность Материалы

Твердость материалов

 

Тепловые свойства полистирола

Полистирол – температура плавления

Температура плавления полистирола 217 900 15 °С .

Обратите внимание, что эти точки связаны со стандартным атмосферным давлением. В общем, плавление  является фазовым переходом  вещества из твердой фазы в жидкую. точка плавления вещества — это температура, при которой происходит это фазовое превращение. Точка плавления   также определяет состояние, при котором твердое тело и жидкость могут существовать в равновесии. Для различных химических соединений и сплавов трудно определить температуру плавления, так как они обычно представляют собой смесь различных химических элементов.

Полистирол – теплопроводность

Теплопроводность полистирола 0,12 Вт/(м·К) .

Характеристики теплопередачи твердого материала измеряются свойством, называемым теплопроводностью , k (или λ), измеряемой в Вт/м·K . Это мера способности вещества передавать тепло через материал за счет теплопроводности. Обратите внимание, что закон Фурье  применим ко всей материи, независимо от ее состояния (твердое, жидкое или газообразное), поэтому он также определен для жидкостей и газов.

Теплопроводность большинства жидкостей и твердых тел зависит от температуры. Для паров это также зависит от давления. В общем:

Большинство материалов почти однородны, поэтому обычно мы можем написать k = k (T) . Аналогичные определения связаны с теплопроводностями в направлениях y и z (ky, kz), но для изотропного материала теплопроводность не зависит от направления переноса, kx = ky = kz = k.

Полистирол – Удельная теплоемкость

Удельная теплоемкость полистирола 1100 Дж/г K .

Удельная теплоемкость или удельная теплоемкость   – это свойство, связанное с  внутренней энергией  , которое очень важно в термодинамике. Интенсивные свойства c v и c p определены для чистых, простых сжимаемых веществ как частные производные от внутренняя энергия u(T, v) и энтальпия h(T, p) соответственно:

где индексы v  и  p  обозначают переменные, фиксированные во время дифференцирования. Свойства c v и c p называются удельной теплоемкостью (или теплоемкостью ), поскольку при определенных особых условиях они связывают изменение температуры системы с количеством энергии, добавленной теплопередача. Их единицы СИ  Дж/кг K или Дж/моль K .

 

Пример: расчет теплопередачи

Теплопроводность определяется как количество тепла (в ваттах), передаваемое через квадрат материала заданной толщины (в метрах) из-за разницы температур. Чем ниже теплопроводность материала, тем выше его способность сопротивляться теплопередаче.

Рассчитайте скорость теплового потока  через стену площадью 3 м x 10 м (A = 30 м 2 ). Стена имеет толщину 15 см (L 1 ) и изготовлена ​​из полистирола с теплопроводностью k 1 = 0,12 Вт/м·К (плохой теплоизолятор). Предположим, что внутренняя и наружная температуры  составляют 22°C и -8°C, а коэффициенты конвекционной теплопередачи  на внутренней и внешней сторонах равны h 1  = 10 Вт/м 2 K и h 2  = 30 Вт/м 2 К соответственно. Обратите внимание, что эти коэффициенты конвекции сильно зависят, в частности, от окружающих и внутренних условий (ветер, влажность и т. д.).

Рассчитайте тепловой поток ( потери тепла ) через эту стену.

Решение:

Как уже было сказано, многие процессы теплопередачи включают составные системы и даже включают комбинацию проводимости и конвекции . С этими композитными системами часто удобно работать с  общим коэффициентом теплопередачи , , известным как U-фактор . U-фактор определяется выражением, аналогичным Закон охлаждения Ньютона :

Общий коэффициент теплопередачи связан с полным тепловым сопротивлением и зависит от геометрии задачи.

, предполагая одномерную теплопередачу через плоскую стенку и игнорируя излучение, Общий коэффициент теплопередачи может быть рассчитана как:

Общий коэффициент теплопередачи -U = 1 / (1 10004 . /10 + 0,15/0,12 + 1/30) = 0,72 Вт/м 2 K

Тепловой поток можно рассчитать следующим образом: q = 0,72 [Вт/м 2 K] x 30 [K] = 21,69 Вт/м 2

Общие потери тепла через эту стену будет: q потеря   = q . A = 21,69 [Вт/м 2 ] x 30 [м 2 ] = 650,6 Вт

Температура плавления материалов

Теплопроводность материалов 900 07

Теплоемкость материалов

Сравнение XPS и EPS

Докладчик: проф. д-р Дилмач
Организатор:
Ассоциация производителей полистирола

теплоизоляционный материал в небольшие полости, обеспечивающие теплоизоляцию все еще захваченного воздуха (или другого газа) d. Теплопроводность газа (колебание атомов или молекул) очень низкая. Однако молекулы, когда они обнаруживают, что могут перемещаться на одно пространство, конвекцией (конвекцией) передают значительное количество тепла. При этом зазоры в материале увеличиваются или соединяются между собой при подаче воздуха (или газа), за счет чего увеличивается теплопроводность материала. Содержание воды в материале увеличивается, теплопроводность материала увеличивается, когда

ТИХАЯ И СУХАЯ ПОГОДА
самый дешевый, простой и экологически чистый изоляционный материал находится. ЕЩЕ ОСТАЮТСЯ ДЛЯ ВОЗДУХА И СУХОЙ, остаются в закрытых порах равномерно распределяются по малым
Водопоглощающий материал должен быть небольшим
Значение воздухоизоляции для газов меньше
Однако они более дороги, время и место материала для воздуха, время, когда они увеличивают изменение теплопроводности (старение), а экологические причины повреждения

ТЕПЛОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ, ОБЫЧНО ИСПОЛЬЗУЕМЫЕ В ЗДАНИЯХ

Волокнистые материалы Вспененные материалы
Минеральная вата Пенополистирол
1 – Минеральная вата Пенополистирол – EPS
2 – Стекловата Пенополистирол экструдированный – XPS
Древесная шерсть пенополиуретан

Наша страна имеет высокую долю на рынке теплоизоляционных материалов Минеральная вата (MW), EPS и XPS’
Минеральная вата: Изготовление стеклянных или каменных волокон после растворения полимерного связующего используется для удерживания и часто комбинация этих волокон является открытой -пористый изоляционный материал
EPS: Пенополистирол Жесткий (EPS-Expanded Polystyrene Rigid Foam), полученный из масла и частиц, сшиваемых и сплавляемых (склеивающих) для получения продукта в виде пеноматериала Маркированный, термопластичный, с закрытыми порами, обычно белый утеплитель материал.

Продукты также доступны в современных тепловых лучах, отражающих пониженную теплопроводность серого цвета 9.0482 XPS: экструдированный пенополистирол жесткий (пенополистирол жесткий экструдированный), полученный из нефти и размягченный добавленным вдуванием в сырье вспененный газом, термопласт, закрытые поры, цветные теплоизоляционные материалы
EPS, XPS и BMW некоторые важные технические характеристики, связанные с кратким сравнением каждой нормы продукта EN (Европейская норма) и других международных источников дается на основе
ТЕПЛОПРОВОДНОСТЬ
Теплопроводность зависит от плотности пенополистирола. С увеличением плотности теплопроводность уменьшается. Теплопроводность пенополистирола плотностью 15-40 кг/м3 в случае приобретения величиной 0,033 Вт/мК и 0,040 Вт/мК между значениями принимается и остается постоянной в течение всего срока эксплуатации. Пентановый продувочный газ, используемый в производстве. Пентан вытесняет воздух в течение нескольких часов после производства.

EPS плотность изменение теплопроводности (EN 13163)
Теплопроводность:
Продувка XPS различными газами, используемыми для производства газа и воздуха, изменения которых занимают длительный период времени. Поэтому фактором, определяющим теплопроводность ЭПС, является теплопроводность используемого продувочного газа, а при этом вытесняющим газом является воздух. Это происходит в результате замещения газов воздухом, со временем теплопроводность увеличивается. Происходит старение. Различные источники XPS для теплопроводности из-за продувочного газа, приведены значения 0,028 Вт / мК и 0,045 Вт / мК. Газы с низкой теплопроводностью указывают на то, что они могут повредить озон и / или вносят важный вклад в глобальное потепление, использование этих газов было запрещено в Европейском союзе. Старения не наблюдается при использовании СО2, обладающего высокой теплопроводностью.

Минеральная вата (стекловата и каменная вата) имеет установленную теплопроводность в диапазоне 0,040 Вт/мК. Однако минеральная вата обычно имеет более низкую прочность на сжатие и особую обработку из-за своих открытых пор, если они обладают высоким водопоглощением. Структура по толщине под нагрузкой минеральной ваты намокает или при отсутствии значительного уменьшения происходит уменьшение термического сопротивления, возникающего в процессе эксплуатации.
Сопротивление ДАВЛЕНИЮ:
10% сжимающее напряжение при деформации/сопротивлении EN 13162 в диапазоне 0,5-500 кПа; 10%
сжимающее напряжение при деформации EPS / сопротивление EN 13163 >
30 > 500 кПа; XPS
сжимающее напряжение при деформации 10 % / прочность EN 13164 > 100-³1000 даны в кПа.
СОПРОТИВЛЕНИЕ НАКЛОНУ:
Минерал yünleri’nin eğme dayanımı EN 13162’de 25 – 700 кПа;
EPS’in eğme dayanımı EN 13163’de >50 >750 кПа;
XPS’in eğme dayanımı EN 13164’de 300–4000 кПа.
ДИНАМИЧЕСКАЯ ЖЕСТКОСТЬ:
Продувка XPS различными газами, используемыми для производства газа и воздуха, изменения которых занимают длительный период времени. Поэтому фактором, определяющим теплопроводность ЭПС, является теплопроводность используемого продувочного газа, а при этом вытесняющим газом является воздух. Это происходит в результате замещения газов воздухом, со временем теплопроводность увеличивается. Происходит старение. Различные источники XPS для теплопроводности из-за продувочного газа, приведены значения 0,028 Вт / мК и 0,045 Вт / мК. Газы с низкой теплопроводностью указывают на то, что они могут повредить озон и / или вносят важный вклад в глобальное потепление, использование этих газов было запрещено в Европейском союзе. Старения не наблюдается при использовании СО2, обладающего высокой теплопроводностью.
Коэффициент сопротивления диффузии водяного пара (м):
Сопротивление водяному пару eps варьируется в широких пределах в зависимости от интенсивности (m = 20–100). Сопротивление водяному пару XPS, как правило, выше (m = от 50 до 300). Сопротивление водяному пару nmineral yünleri очень низкое, эквивалентно воздуху (m = 1). Сопротивление водяному пару теплоизоляционных приложений с низкой внешней изоляцией, изоляция должна быть высокой изнутри приложения. Паростойкость Eps может варьироваться по интенсивности в желаемом диапазоне, как снаружи, так и предлагает удобные варианты теплоизоляции как изнутри. XPS обычно не подходит для высокого сопротивления при применении внешней изоляции; Паростойкость минеральной ваты часто не подходит для применения с теплоизоляцией, очень низкая
ГОСУДАРСТВЕННЫЙ ЗАБОР ВОДЫ:
Минеральная вата, открытые поры, потому что, если не принять специальных мер, водопоглощение материалов очень велико. EPS и XPS закрытые поры из-за водопоглощения малы.

Теплоизоляционные материалы Объемная степень водопоглощения (%)
Минеральная вата (EN 13162) Только что проведен эксперимент с частичным погружением. Длительное водопоглощение при частичном погружении £ 3 кг/м2
EPS (EN 13163) ЭПС (EN 13164)

Рыночные случайные образцы, взятые из водопоглощения, сделанного в соответствии с результатами испытаний IS0 4502’y

EPS на образцах, Университет Корлу Тракья, инженерно-технологический факультет, результаты испытаний водопоглощения Nova Chemicals, проведенные в Европе

СТАТУС ВОСПЛАМЕНЯЕМОСТИ:
Стеклянная и каменная минеральная вата является основным материалом огнеупорных волокон. Тем не менее, эти волокна представляют собой легковоспламеняющиеся твердые полимерные связующие для скрепления и получения жесткого листа. Реакция минеральной ваты на огонь тесно связана с количеством полимерного связующего.
EPS и XPS корпус B1 подходит для использования в пламенных исполнительных устройствах.
ПРОМЫВКА С ПРИКЛЕИВАНИЕМ:
Сцепление минеральной ваты с традиционной цементной штукатуркой у EPS и XPS слабое. В штукатурках на цементной основе должны использоваться полимерные добавки. Сцепление с гипсом хорошее.
СТАРЕНИЕ
У минеральной ваты и пенополистирола старение не наблюдается.
XPS Наблюдается теплопроводность продуктов старения на надутых ГХФУ (значение теплопроводности увеличивается со временем). Теплопроводность этих продуктов, надутых с помощью CO2, не видна, но она выше, чем с другими надутыми XPS с ГХФУ.
Уровень цен:
Один из самых экономичных материалов по сравнению с материалом EPS.
0,09 Теплопроводность Вт/мК при заказе d. Изоляционный материал выше. Поэтому, вместо того, чтобы использоваться сегодня отдельно, в качестве композитного элемента используется минеральная вата или пенополистирол.
АХШАП ЮНЮ
Geleneksel çimento sıva ile aderansı iyidir.
Isı iletkenlikleri 0,09 Вт/мК mertebelerindedir. Isı yalıtım malzemesi olarak yüksektir. Bu sebeple, tek başlarına kullanılmaktan ziyade, günümüzde, EPS veya taş yünü ile oluşturulmus kompozit elemanlar halinde kullanılmaktadır.
Пенополиуретан

Открытые или закрытые поры могут производить. Поскольку они продаются в виде листов, их можно применять в виде пенопласта, необходимого на месте. адгезия с nmetal высока. Прилипание к традиционной штукатурке слабое. Горючие материалы.

Долговечность ?
Купите минеральную вату, при этом должны быть указаны показатели водопоглощения. Из водорастворимого вяжущего, но это не волокна горючего вяжущего, размерная стабильность (особенно изменение толщины под нагрузкой) следует помнить, что это важно и для открытого пористого материала. XPS при продувке газа должен быть известен. Особенно на теплопроводность обдувающего газа используемого в броне во времени и на поверхности (скользкий тонкий слой) следует помнить об этом влиянии. В то время как плотность EPS и форма частиц сцепления должны быть исследованы (зерна вместе, чтобы сохранить многоугольно-сотовое пространство, должны иметь структуру). Необходимо отметить применение внешней изоляции вместо необходимого времени отдыха.
Вопросы, которые следует учитывать при выборе изоляционного материала:
Теплопроводность
Механические свойства
Коэффициент объемного водопоглощения
Сопротивление паропроницаемости
Fayda/Maliyet karşılaştırması
при необходимости звукоизоляционная способность
В частности, покрытие будет б/у, это должен быть известен признак воспламеняемости.
ИЗОЛЯЦИЯ = более комфортные условия + Чистый воздух + Энергия (топливо) Выручка от курсовой разницы Экономия + Низкие счета за топливо жители улучшения + бюджета и+ народного хозяйства + Развитие
ТЕПЛОИЗОЛЯЦИЯ, улучшение комфортных условий для жильцов и снижение затрат на топливо по всей стране с экономией топлива и энергии, а также чистый воздух, это означает валютные поступления и развитие.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *