Как строить сечения – Как строить сечения 🚩 что такое сечение в геометрии 🚩 Математика

Учимся строить сечения многогранников. Часть 2.

Учимся строить сечения многогранников. Часть 2.

Эта статья для тех, кто хочет научиться строить сечения. Она содержит 11 заданий для построения сечений, подсказки и ответы к каждому заданию. Рекомендую сначала прочитать эту статью и посмотреть это видео.

Вспомним, что сечение многогранника плоскостью представляет собой плоский многоугольник, вершины которого принадлежат сторонам, а ребра - граням многогранника. Две соседние вершины принадлежат одной грани многогранника. 

Чтобы найти точку, лежащую одновременно в двух плоскостях, нужно найти точку пересечения прямой, лежащей в первой плоскости, с прямой, лежащей во второй плоскости.

 

В подсказках и ответах изображение  дополнительных прямых, используемых при построении сечения, сплошными линиями или пунктирными, не зависит от того, видимы эти прямые или нет.

Рядом с каждой дополнительной прямой указан ее порядковый номер при построении сечения. Все прямые проведены через две точки, принадлежащие определенной плоскости. Прямые пронумерованы в порядке их построения. Рекомендуется при использовании подсказки и воспроизведении построения сечения проговаривать, какой плоскости принадлежит данная прямая, каким плоскостям принадлежит точка их пересечения.

Постройте сечения, проходящие через точки Подготовка к ГИА и ЕГЭ.

Задание 1:
Screenshot at нояб. 28 14-31-12

Подсказка. показать

Screenshot at нояб. 28 14-56-09

Ответ. показать

Screenshot at нояб. 28 14-58-35

Задание 2:

Screenshot at нояб. 28 15-16-54

Подсказка: показать

 

Screenshot at нояб. 28 15-35-25

Ответ: показать

Screenshot at нояб. 28 15-39-25

Задание 3:

Screenshot at нояб. 28 17-24-50

Подсказка: показать

Screenshot at нояб. 28 17-35-22

 

Ответ: показать

Screenshot at нояб. 28 17-43-03

Задание 4:

 

Screenshot at нояб. 28 15-48-24

Подсказка: показать

построение сечения 18

 

Ответ: показать

построение сечения 19

 

Задание 5:

Screenshot at нояб. 28 16-50-58

Подсказка: показать

Screenshot at нояб. 28 16-57-28

 

Ответ: показать

 

построение сечения 5

Задание 6:

Screenshot at нояб. 28 17-58-43

Подсказка: показать

Screenshot at нояб. 28 18-08-54

Ответ: показать

 

Screenshot at нояб. 28 18-12-26

Задание 7:

Screenshot at нояб. 28 18-20-50

Подсказка: показать

Screenshot at нояб. 28 18-26-05

Ответ: показать

построение сечения 17

Задание 8:

Screenshot at нояб. 28 18-38-35

Подсказка: показать

Screenshot at нояб. 28 18-43-12

Ответ: показать

 

построение сечения 4

Задание 9:

построение сечения 2

Подсказка: показать

построение сечения 3

Ответ: показать

постронение сечения 20

 

Задание 10:

построение сечени 6

 

Подсказка: показать

построение сечения 10

Ответ: показать

постр сеч

 

 

Задание 11:

построение сечения 1

 

Подсказка: показать

построение сечения 15

Ответ: показать

построение сечения 16

И. В. Фельдман, репетитор по математике.

ege-ok.ru

Построение сечений

Определение

Сечение — это плоская фигура, которая образуется при пересечении пространственной фигуры плоскостью и граница которой лежит на поверхности пространственной фигуры.

 

Замечание

Для построения сечений различных пространственных фигур необходимо помнить основные определения и теоремы о параллельности и перпендикулярности прямых и плоскостей, а также свойства пространственных фигур. Напомним основные факты.
Для более подробного изучения рекомендуется ознакомиться с темами “Введение в стереометрию. Параллельность” и “Перпендикулярность. Углы и расстояния в пространстве”

.

 

Важные определения

1. Две прямые в пространстве параллельны, если они лежат в одной плоскости и не пересекаются.

 

2. Две прямые в пространстве скрещиваются, если через них нельзя провести плоскость.

 

3. Прямая и плоскость параллельны, если они не имеют общих точек.

 

4. Две плоскости параллельны, если они не имеют общих точек.

 

5. Две прямые в пространстве называются перпендикулярными, если угол между ними равен \(90^\circ\).

 

6. Прямая называется перпендикулярной плоскости, если она перпендикулярна любой прямой, лежащей в этой плоскости.

 

7. Две плоскости называются перпендикулярными, если угол между ними равен \(90^\circ\).

 

Важные аксиомы

1. Через три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна.

 

2. Через прямую и не лежащую на ней точку проходит плоскость, и притом только одна.

 

3. Через две пересекающиеся прямые проходит плоскость, и притом только одна.

 

Важные теоремы

1. Если прямая \(a\), не лежащая в плоскости \(\pi\), параллельна некоторой прямой \(p\), лежащей в плоскости \(\pi\), то она параллельна данной плоскости.


 

2. Пусть прямая \(p\) параллельна плоскости \(\mu\). Если плоскость \(\pi\) проходит через прямую \(p\) и пересекает плоскость \(\mu\), то линия пересечения плоскостей \(\pi\) и \(\mu\) — прямая \(m\) — параллельна прямой \(p\).


 

3. Если две пересекающиеся прямых из одной плоскости параллельны двум пересекающимся прямым из другой плоскости, то такие плоскости будут параллельны.

 

4. Если две параллельные плоскости \(\alpha\) и \(\beta\) пересечены третьей плоскостью \(\gamma\), то линии пересечения плоскостей также параллельны:

\[\alpha\parallel \beta, \ \alpha\cap \gamma=a, \ \beta\cap\gamma=b \Longrightarrow a\parallel b\]

 

5. Пусть прямая \(l\) лежит в плоскости \(\lambda\). Если прямая \(s\) пересекает плоскость \(\lambda\) в точке \(S\), не лежащей на прямой \(l\), то прямые \(l\) и \(s\) скрещиваются.


 

6. Если прямая перпендикулярна двум пересекающимся прямым, лежащим в данной плоскости, то она перпендикулярна этой плоскости.

 

7. Теорема о трех перпендикулярах.

Пусть \(AH\) – перпендикуляр к плоскости \(\beta\). Пусть \(AB, BH\) – наклонная и ее проекция на плоскость \(\beta\). Тогда прямая \(x\) в плоскости \(\beta\) будет перпендикулярна наклонной тогда и только тогда, когда она перпендикулярна проекции.


 

8. Если плоскость проходит через прямую, перпендикулярную другой плоскости, то она перпендикулярна этой плоскости.

 

Замечание

Еще один важный факт, часто использующийся для построения сечений:

для того, чтобы найти точку пересечения прямой и плоскости, достаточно найти точку пересечения данной прямой и ее проекции на эту плоскость.


 

Для этого из двух произвольных точек \(A\) и \(B\) прямой \(a\) проведем перпендикуляры на плоскость \(\mu\) – \(AA'\) и \(BB'\) (точки \(A', B'\) называются проекциями точек \(A,B\) на плоскость). Тогда прямая \(A'B'\) – проекция прямой \(a\) на плоскость \(\mu\). Точка \(M=a\cap A'B'\) и есть точка пересечения прямой \(a\) и плоскости \(\mu\).

 

Причем заметим, что все точки \(A, B, A', B', M\) лежат в одной плоскости.

 

Пример 1.

Дан куб \(ABCDA'B'C'D'\). \(A'P=\dfrac 14AA', \ KC=\dfrac15 CC'\). Найдите точку пересечения прямой \(PK\) и плоскости \(ABC\).

 

Решение

1) Т.к. ребра куба \(AA', CC'\) перпендикулярны \((ABC)\), то точки \(A\) и \(C\) — проекции точек \(P\) и \(K\). Тогда прямая \(AC\) – проекция прямой \(PK\) на плоскость \(ABC\). Продлим отрезки \(PK\) и \(AC\) за точки \(K\) и \(C\) соответственно и получим точку пересечения прямых – точку \(E\).


 

2) Найдем отношение \(AC:EC\). \(\triangle PAE\sim \triangle KCE\) по двум углам (\(\angle A=\angle C=90^\circ, \angle E\) – общий), значит, \[\dfrac{PA}{KC}=\dfrac{EA}{EC}\]

Если обозначить ребро куба за \(a\), то \(PA=\dfrac34a, \ KC=\dfrac15a, \ AC=a\sqrt2\). Тогда:

\[\dfrac{\frac34a}{\frac15a}=\dfrac{a\sqrt2+EC}{EC} \Rightarrow EC=\dfrac{4\sqrt2}{11}a \Rightarrow AC:EC=4:11\]

Пример 2.

Дана правильная треугольная пирамида \(DABC\) с основанием \(ABC\), высота которой равна стороне основания. Пусть точка \(M\) делит боковое ребро пирамиды в отношении \(1:4\), считая от вершины пирамиды, а \(N\) – высоту пирамиды в отношении \(1:2\), считая от вершины пирамиды. Найдите точку пересечения прямой \(MN\) с плоскостью \(ABC\).

 

Решение

1) Пусть \(DM:MA=1:4, \ DN:NO=1:2\) (см. рисунок). Т.к. пирамида правильная, то высота падает в точку \(O\) пересечения медиан основания. Найдем проекцию прямой \(MN\) на плоскость \(ABC\). Т.к. \(DO\perp (ABC)\), то и \(NO\perp (ABC)\). Значит, \(O\) – точка, принадлежащая этой проекции. Найдем вторую точку. Опустим перпендикуляр \(MQ\) из точки \(M\) на плоскость \(ABC\). Точка \(Q\) будет лежать на медиане \(AK\).
Действительно, т.к. \(MQ\) и \(NO\) перпендикулярны \((ABC)\), то они параллельны (значит, лежат в одной плоскости). Следовательно, т.к. точки \(M, N, O\) лежат в одной плоскости \(ADK\), то и точка \(Q\) будет лежать в этой плоскости. Но еще (по построению) точка \(Q\) должна лежать в плоскости \(ABC\), следовательно, она лежит на линии пересечения этих плоскостей, а это – \(AK\).


 

Значит, прямая \(AK\) и есть проекция прямой \(MN\) на плоскость \(ABC\). \(L\) – точка пересечения этих прямых.

 

2) Заметим, что для того, чтобы правильно нарисовать чертеж, необходимо найти точное положение точки \(L\) (например, на нашем чертеже точка \(L\) лежит вне отрезка \(OK\), хотя она могла бы лежать и внутри него; а как правильно?).

 

Т.к. по условию сторона основания равна высоте пирамиды, то обозначим \(AB=DO=a\). Тогда медиана \(AK=\dfrac{\sqrt3}2a\). Значит, \(OK=\dfrac13AK=\dfrac 1{2\sqrt3}a\). Найдем длину отрезка \(OL\) (тогда мы сможем понять, внутри или вне отрезка \(OK\) находится точка \(L\): если \(OL>OK\) – то вне, иначе – внутри).

 

а) \(\triangle AMQ\sim \triangle ADO\) по двум углам (\(\angle Q=\angle O=90^\circ, \ \angle A\) – общий). Значит,

\[\dfrac{MQ}{DO}=\dfrac{AQ}{AO}=\dfrac{MA}{DA}=\dfrac 45 \Rightarrow MQ=\dfrac 45a, \ AQ=\dfrac 45\cdot \dfrac 1{\sqrt3}a\]

Значит, \(QK=\dfrac{\sqrt3}2a-\dfrac 45\cdot \dfrac 1{\sqrt3}a=\dfrac7{10\sqrt3}a\).

 

б) Обозначим \(KL=x\).
\(\triangle LMQ\sim \triangle LNO\) по двум углам (\(\angle Q=\angle O=90^\circ, \ \angle L\) – общий). Значит,

\[\dfrac{MQ}{NO}=\dfrac{QL}{OL} \Rightarrow \dfrac{\frac45 a}{\frac 23a} =\dfrac{\frac{7}{10\sqrt3}a+x}{\frac1{2\sqrt3}a+x} \Rightarrow x=\dfrac a{2\sqrt3} \Rightarrow OL=\dfrac a{\sqrt3}\]

Следовательно, \(OL>OK\), значит, точка \(L\) действительно лежит вне отрезка \(AK\).

 

Замечание

Не стоит пугаться, если при решении подобной задачи у вас получится, что длина отрезка отрицательная. Если бы в условиях предыдущей задачи мы получили, что \(x\) – отрицательный, это как раз значило бы, что мы неверно выбрали положение точки \(L\) (то есть, что она находится внутри отрезка \(AK\)).

 

Пример 3

Дана правильная четырехугольная пирамида \(SABCD\). Найдите сечение пирамиды плоскостью \(\alpha\), проходящей через точку \(C\) и середину ребра \(SA\) и параллельной прямой \(BD\).

 

Решение

1) Обозначим середину ребра \(SA\) за \(M\). Т.к. пирамида правильная, то высота \(SH\) пирамиды падает в точку пересечения диагоналей основания. Рассмотрим плоскость \(SAC\). Отрезки \(CM\) и \(SH\) лежат в этой плоскости, пусть они пересекаются в точке \(O\).


 

Для того, чтобы плоскость \(\alpha\) была параллельна прямой \(BD\), она должна содержать некоторую прямую, параллельную \(BD\). Точка \(O\) находится вместе с прямой \(BD\) в одной плоскости – в плоскости \(BSD\). Проведем в этой плоскости через точку \(O\) прямую \(KP\parallel BD\) (\(K\in SB, P\in SD\)). Тогда, соединив точки \(C, P, M, K\), получим сечение пирамиды плоскостью \(\alpha\).

 

2) Найдем отношение, в котором делят точки \(K\) и \(P\) ребра \(SB\) и \(SD\). Таким образом мы полностью определим построенное сечение.

 

Заметим, что так как \(KP\parallel BD\), то по теореме Фалеса \(\dfrac{SB}{SK}=\dfrac{SD}{SP}\). Но \(SB=SD\), значит и \(SK=SP\). Таким образом, можно найти только \(SP:PD\).

 

Рассмотрим \(\triangle ASC\). \(CM, SH\) – медианы в этом треугольнике, следовательно, точкой пересечения делятся в отношении \(2:1\), считая от вершины, то есть \(SO:OH=2:1\).


 

Теперь по теореме Фалеса из \(\triangle BSD\): \(\dfrac{SP}{PD}=\dfrac{SO}{OH}=\dfrac21\).

 

3) Заметим, что по теореме о трех перпендикулярах \(CO\perp BD\) как наклонная (\(OH\) – перпендикуляр на плоскость \(ABC\), \(CH\perp BD\) – проекция). Значит, \(CO\perp KP\). Таким образом, сечением является четырехугольник \(CPMK\), диагонали которого взаимно перпендикулярны.

 

Пример 4

Дана прямоугольная пирамида \(DABC\) с ребром \(DB\), перпендикулярным плоскости \(ABC\). В основании лежит прямоугольный треугольник с \(\angle B=90^\circ\), причем \(AB=DB=CB\). Проведите через прямую \(AB\) плоскость, перпендикулярную грани \(DAC\), и найдите сечение пирамиды этой плоскостью.

 

Решение

1) Плоскость \(\alpha\) будет перпендикулярна грани \(DAC\), если она будет содержать прямую, перпендикулярную \(DAC\). Проведем из точки \(B\) перпендикуляр на плоскость \(DAC\) — \(BH\), \(H\in DAC\).

 

Проведем вспомогательные \(BK\) – медиану в \(\triangle ABC\) и \(DK\) – медиану в \(\triangle DAC\).
Т.к. \(AB=BC\), то \(\triangle ABC\) – равнобедренный, значит, \(BK\) – высота, то есть \(BK\perp AC\).
Т.к. \(AB=DB=CB\) и \(\angle ABD=\angle CBD=90^\circ\), то \(\triangle ABD=\triangle CBD\), следовательно, \(AD=CD\), следовательно, \(\triangle DAC\) – тоже равнобедренный и \(DK\perp AC\).

 

Применим теорему о трех перпендикулярах: \(BH\) – перпендикуляр на \(DAC\); наклонная \(BK\perp AC\), значит и проекция \(HK\perp AC\). Но мы уже определили, что \(DK\perp AC\). Таким образом, точка \(H\) лежит на отрезке \(DK\).


 

Соединив точки \(A\) и \(H\), получим отрезок \(AN\), по которому плоскость \(\alpha\) пересекается с гранью \(DAC\). Тогда \(\triangle ABN\) – искомое сечение пирамиды плоскостью \(\alpha\).

 

2) Определим точное положение точки \(N\) на ребре \(DC\).

 

Обозначим \(AB=CB=DB=x\). Тогда \(BK\), как медиана, опущенная из вершины прямого угла в \(\triangle ABC\), равна \(\frac12 AC\), следовательно, \(BK=\frac12 \cdot \sqrt2 x\).

 

Рассмотрим \(\triangle BKD\). Найдем отношение \(DH:HK\).


 

Заметим, что т.к. \(BH\perp (DAC)\), то \(BH\) перпендикулярно любой прямой из этой плоскости, значит, \(BH\) – высота в \(\triangle DBK\). Тогда \(\triangle DBH\sim \triangle DBK\), следовательно

\[\dfrac{DH}{DB}=\dfrac{DB}{DK} \Rightarrow DH=\dfrac{\sqrt6}3x \Rightarrow HK=\dfrac{\sqrt6}6x \Rightarrow DH:HK=2:1\]


 

Рассмотрим теперь \(\triangle ADC\). Медианы треугольника точной пересечения делятся в отношении \(2:1\), считая от вершины. Значит, \(H\) – точка пересечения медиан в \(\triangle ADC\) (т.к. \(DK\) – медиана). То есть \(AN\) – тоже медиана, значит, \(DN=NC\).

shkolkovo.net

Задачи на построение сечений в параллелепипеде . Видеоурок. Геометрия 10 Класс

Тема: Параллельность прямых и плоскостей

Урок: Задачи на построение сечений в параллелепипеде

В ходе урока все желающие смогут получить представление о теме «Задачи на построение сечений в параллелепипеде».

Рассмотрим параллелепипед АВСDА1B1C1D1 (рис. 1). Вспомним его свойства.

Рис. 1. Свойства параллелепипеда

1) Противоположные грани (равные параллелограммы) лежат в параллельных плоскостях.

Например, параллелограммы АВСD и А1B1C1D1 равны (то есть их можно совместить наложением) и лежат в параллельных плоскостях.

2) Длины параллельных ребер равны.

Например, AD = BC = A1D1 = B1C1 (рис. 2).

Рис. 2. Длины противоположных ребер параллелепипеда равны

3) Диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам.

Например, диагонали параллелепипеда BD1 и B1D пересекаются в одной точке и делятся этой точкой пополам (рис. 3).

Рис. 3.

4) В сечение параллелепипеда может быть треугольник, четырехугольник, пятиугольник, шестиугольник.

Задача на сечение параллелепипеда

Например, рассмотрим решение следующей задачи. Дан параллелепипед АВСDА1B1C1D1 и точки M, N, K на ребрах AA1, A1D1, A1B1соответственно (рис. 4). Постройте сечения параллелепипеда плоскостью MNK. Точки M и N одновременно лежат в плоскости AA1D1 и в секущей плоскости. Значит, MN – линия пересечения двух указанных плоскостей. Аналогично получаем MK и KN. То есть, сечением будет треугольник MKN.

Рис. 4.

Построить сечение параллелепипеда AD1 плоскостью А1В1М, где .

Решение (см. рис. 5)

Рис. 5.

1 способ

Соединим точки А1 и М. Эти точки лежат одновременно в плоскости AA1D1 и в секущей плоскости. Значит, А1М – линия пересечения этих плоскостей.

Если две параллельные плоскости АВВ1 и DCC1 рассечены третьей плоскостью (секущей плоскостью), то линии их пересечения параллельны. Поэтому, проведем прямую MN параллельно А1В1, . Соединим точки В1 и N. A1B1NM - искомое сечение. Заметим, что A1B1NM – параллелограмм. Чтобы найти площадь сечения параллелепипеда, нужно найти площадь полученного параллелограмма.

2 способ

Соединим точки А1 и М.

Если две параллельные плоскости АDD1 и BCC1 рассечены третьей плоскостью (секущей плоскостью), то линии их пересечения параллельны. Поэтому, проведем прямую B1N параллельно А1M, . Соединим точки M и N. A1B1NM - искомое сечение.

Построить сечение параллелепипеда AD1 плоскостью Р1Р2Р3, где  (рис. 6).

Рис. 6.

Комментарий. В этой и в следующих задачах вид сечения зависит от расположения точек. Например, если бы в задачи 2 расположение точек было бы другим, то и сечение получилось бы иным. И соответственно, площадь сечения параллелепипеда нужно было бы считать по разным формулам.

Решение:

1 способ (рис. 7)

Рис. 7.

Соединим точки Р1и Р2 и получим прямую Р1Р2 – линию пересечения плоскости АВВ1 и секущей плоскости.

Соединим точки Р3и Р2 и получим прямую Р3Р2 – линию пересечения плоскости СВВ1 и секущей плоскости.

Если две параллельные плоскости АDD1 и BCC1 рассечены третьей плоскостью (секущей плоскостью), то линии их пересечения параллельны. Поэтому, проведем прямую Р1S1 параллельно Р3Р2, .

Если две параллельные плоскости АВВ1 и DCC1 рассечены третьей плоскостью (секущей плоскостью), то линии их пересечения параллельны. Поэтому, проведем прямую P3S2 параллельно P1P2, .

Соединим точки S1 и S1. Пятиугольник Р1Р2Р3S2S1- искомое сечение.

2 способ (рис. 8)

Рис. 8.

Соединим точки Р1и Р2 и получим прямую Р1Р2 – линию пересечения плоскости АВВ1 и секущей плоскости. Продлим прямые Р1P2 и АВ до их пересечения в точке Q1.

Соединим точки Р3и Р2 и получим прямую Р3Р2 – линию пересечения плоскости СВВ1 и секущей плоскости. Продлим прямые Р3P2 и ВС до их пересечения в точке Q2.

Точки Q1 и Q2лежат в плоскости АВС. Соединим точки Q1и Q2. Получаем .

Соединим точки Р1и S1, Р3 и S2. Пятиугольник Р1Р2Р3S2S1- искомое сечение.

Изобразите параллелепипед АВСDА1B1C1D1 и отметьте точку М грани АА1В1В. Постройте сечение параллелепипеда, проходящее через точку М параллельно:

а) плоскости основания ABCD

б) плоскости BDD1.

Решение:

а) Заметим, что секущая плоскость и плоскость АВС пересекаются третьей плоскостью АВВ1. Значит, линии пересечения параллельны. Поэтому через точку М проведем прямую М1М2 параллельно АВ (рис. 9),  , . М1М2– это линия пересечения секущей плоскости и грани АВВ1А1.

Проведем прямую М2М3 параллельно ВС,  .

Проведем прямую М3М4 параллельно CD, 

.

Соединим точки М1 и М4. М1М2М3М4 – искомое сечение.

 

Рис. 9.

б) Плоскость BDD1 и секущая плоскость рассекаются третьей плоскостью АВВ1 по параллельным прямым. Поэтому через точку М проведем прямую N1N2 параллельно прямой ВВ1, .

Проведем прямую N2N3 параллельно ВD,  .

Проведем прямую N1N4 параллельно B1D1.

Соединим точки N3 и N4. N1N2N3N4

– искомое сечение.

Рис. 10.

Постройте сечение параллелепипеда AD1 плоскостью ACM, где . Определите вид полученного сечения.

Решение: (рис. 11)

Параллельные плоскости АВСD и А1B1C1D1  рассечены плоскостью сечения по параллельным прямым. Значит, через точку М нужно провести прямую NK параллельно АС, .

Соединим точки A и N, K и C. ANKC – искомое сечение. ANKC – трапеция, так как NK || AC.

Рис. 11.

Ребро куба равно а.

1) Постройте сечение куба плоскостью ACN, где N – середина ребра A1D1 (рис. 12).

Рис. 12. Построить сечение куба

Решение:

Точки А и С лежат одновременно и в секущей плоскости, и в плоскости АВС. Значит, АС – линия пересечения этих плоскостей.

Параллельные плоскости АВСD и А1B1C1D1  рассечены плоскостью сечения по параллельным прямым. Значит, через точку N нужно провести прямую NK параллельно АС,  (рис. 13).

Соединим точки A и N, K и C. ANKC – искомое сечение. ANKC – трапеция, так как NK || AC.

Заметим, что NK – средняя линия треугольника A1D1C1.

Рис. 13.

2) Найдите периметр сечения ANKC.

По условию, ребро куба равно а (рис. 14). Значит, диагональ .

Найдем длину отрезка NK: , так как NK – средняя линия треугольника A1D1C1. То есть.

AN = KC, так как треугольники AA1N и CC1K равны.

Найдем AN из прямоугольного треугольника AA1N. По теореме Пифагора  .

Вычислим периметр:

Ответ: .

Рис. 14.

По рисунку (рис. 15) найти точку пересечения прямой MN () и плоскости АВС параллелепипеда AD1.

Рис. 15.

Решение:

Рассмотрим плоскость АСС1А1. В этой плоскости лежит прямая NM и прямая AC. Эти прямые не параллельны. Найдем точку пересечения прямых NM и AC. Обозначим точку пересечения Q (рис. 16).

Точка Q лежит на прямой NM и на прямой АС, а значит и в плоскости АВС. Мы нашли след прямой NM на плоскости АВС. Точка Q – искомая.

interneturok.ru

Пошаговое построение сечения параллелепипеда

Построение сечения методом следов – это поэтапное отыскание точек, принадлежащих одной и той же плоскости грани и одновременно плоскости сечения, то есть прямым, проходящим через точки, принадлежащие сечению. Метод подходит для использования тогда, когда следы секущей плоскости и прямые граней многогранника пересекаются в области чертежа, то есть если сечение параллельно или почти параллельно основанию, этот метод построения не подойдет.

Задача 1. Построить сечение параллелепипеда ABCDA_1B_1C_1D_1 плоскостью, проходящей через точки  T, U, V.

Построение сечения параллелепипеда

Задача 1. Дано

Шаг 1. Чезез точки U и V, которые принадлежат одной грани, и, следовательно, одной плоскости, проводим прямую. Точки этой прямой все принадлежат секущей плоскости. Точка T лежит в плоскости основания, поэтому неплохо бы найти найти точку прямой UV, которая также принадлежала бы основанию. Для этого проводим прямую CD, и находим точку ее пересечения с прямой UVW.

Построение сечения параллелепипеда

Задача 1. Шаг 1.

Шаг 2. Проводим прямую WT, принадлежащую плоскости основания. Находим точку пересечения этой прямой ребра ADX.

Построение сечения параллелепипеда

Задача 1. Шаг 2.

Шаг 3. Точка V лежит в задней грани, поэтому надо бы найти точку прямой WT, которая принадлежала бы плоскости задней грани. Для этого проведем прямую BC, которая принадлежит как плоскости основания, так и плоскости задней грани, и найдем точку ее пересечения с прямой WTY. Через две точки задней грани проводим прямую YV, и находим место пересечения этой прямой с ребром BB_1Z.

Построение сечения параллелепипеда

Задача 1. Шаг 3.

Шаг 4. Окончание построения. Соединяем полученные точки отрезками, и строим многоугольник сечения.

Построение сечения параллелепипеда

Задача 1. Шаг 4.

 

Задача 2. Построить сечение параллелепипеда ABCDA_1B_1C_1D_1 плоскостью, проходящей через точки  T, U, V

Построение сечения параллелепипеда

Задача 2. Дано.

Шаг 1. Точки U и T лежат в одной плоскости, можно соединить их прямой. Прямая UT пересечет ребро BB_1 в точке W.

Построение сечения параллелепипеда

Задача 2. Шаг 1.

Шаг 2. Точки T и V также лежат в одной плоскости. Соединяем их прямой и отыскиваем точку пересечения ею ребра B_1CX.

Построение сечения параллелепипеда

Задача 2. Шаг 2

Шаг 3. Найдем точку секущей плоскости, принадлежащую передней грани, чтобы затем через эту точку и точку U можно было бы тоже провести след секущей плоскости. Для того, чтобы найти такую точку, проведем луч A_1D_1 и найдем его пересечение с прямой TV – ведь обе эти прямые принадлежат плоскости верхней грани. Точка пересечения – точка Y. Точки Y и U можно соединить отрезком.

Построение сечения параллелепипеда

Задача 2. Шаг 3.

Шаг 4. Находим точку пересечения отрезком YU ребра DD_1 – точку Z.

Построение сечения параллелепипеда

Задача 2. Шаг 4

Шаг 5. После этого соединяем отрезками полученные точки и закрашиваем многоугольник сечения.

Построение сечения параллелепипеда

Задача 2. Шаг 5

Задача 3. Построить сечение параллелепипеда ABCDA_1B_1C_1D_1 плоскостью, проходящей через точки  T, U, V

Построение сечения параллелепипеда

Задача 3. Дано.

Шаг 1. Построим прямую TU, это можно сделать, так как обе точки принадлежат одной грани. Точка V принадлежит грани основания, поэтому нужна точка в этой плоскости.

Построение сечения параллелепипеда

Задача 3. Шаг 1

Шаг 2. Для того, чтобы найти точку, одновременно принадлежащую и секущей плоскости, и плоскости нижней грани, продолжим прямую AB и найдем точку ее пересечения с прямой TUW.

Построение сечения параллелепипеда

Задача 3. Шаг 2.

Шаг 3. Проводим прямую WV и находим точку пересечения этой прямой с ребром BC – точка X.

Построение сечения параллелепипеда

Задача 3. Шаг 3.

Шаг 4. Теперь надо найти точку в плоскости передней  грани, потому что в этой плоскости у нас уже есть точка – точка T. Для того, чтобы найти такую точку, продлим прямую AD  и найдем пересечение этой прямой с прямой WV – точка Y.

Построение сечения параллелепипеда

Задача 3. Шаг 4

Шаг 5. Проводим прямую TY, отыскиваем точки пересечения ею ребер DD_1 – точку Z, и ребра A_1D_1 – точку K.

Построение сечения параллелепипеда

Задача 3. Шаг 5.

Шаг 6. Соединяем точки и получаем многоугольник сечения.

Построение сечения параллелепипеда

Задача 3. Шаг 6

Окончательный вид сечения с другого ракурса:

Построение сечения параллелепипеда

Окончательный вид

Задача 4. Построить сечение параллелепипеда ABCDA_1B_1C_1D_1 плоскостью, проходящей через точки  T, U, V. Точка T в задней грани.

Построение сечения параллелепипеда

Задача 4. Дано

Шаг 1.  Проводим прямую через две точки одной плоскости – U и T.  Определяем точку пересечения данной прямой ребра BCW.

Построение сечения параллелепипеда

Задача 4. Шаг 1.

Шаг 2. Продолжение прямой TU пересечется с продолжением прямой CC_1 – так как обе прямые принадлежат плоскости задней грани. Точка X также принадлежит задней грани, но также и боковой. А в боковой грани у нас есть точка V, и тогда можно провести прямую XV.

Построение сечения параллелепипеда

Задача 4. Шаг 2.

Шаг 3. Точка Y – точка пересечения прямой XV ребра D_1C_1. Продлим также ребро CD и найдем пересечение прямой CD и прямой XV – точку Z, которая принадлежит плоскости основания.

Построение сечения параллелепипеда

Задача 4. Шаг 3

Шаг 4. Соединяем Точки W и Z плоскости основания, определяем точку пересечения данной прямой с ребром AD – точку K. Соединяем полученные точки отрезками. Штрихуем полученный многоугольник сечения.

Построение сечения параллелепипеда

Задача 4. Шаг 4.

Окончательный вид сечения с другого ракурса:

Построение сечения параллелепипеда

Окончание построения

easy-physic.ru

Стереометрия. Задачи на построение сечений

В задачах на построение сечений мы применяем все те определения, теоремы, свойства и признаки, которые изучаем и доказываем на уроках в школе.

Например, если две плоскости имеют общую точку, то они пересекаются по прямой. Это значит, что плоскость сечения и, например, плоскость грани пирамиды будут пересекаться по прямой, и на чертеже будет показана часть этой прямой – отрезок.

Как вы думаете - может ли восьмиугольник быть сечением куба?

И может ли правильный пятиугольник быть сечением куба?

Чтобы соединить какие-либо две точки на чертеже, нам нужна плоскость, в которой эти точки лежат. Иногда это грань объемного тела. Иногда – вспомогательная плоскость.

А вообще сечение - это плоская фигура, которая образуется при пересечении объемного тела плоскостью и граница которой лежит на поверхности этого объемного тела.

Конечно, восьмиугольник сечением куба быть не может. Ведь у куба 6 граней, и поэтому сечение куба не может иметь больше 6 сторон.

При построении сечений мы часто используем следующие теоремы:

1. Линии пересечения параллельных плоскостей третьей плоскостью параллельны.

Именно поэтому правильный пятиугольник не может быть сечением куба. Ведь 4 из 5 сторон этого пятиугольника лежат в параллельных гранях куба и поэтому параллельны. А у правильного пятиугольника параллельных сторон нет.

2. Теорема о прямой и параллельной ей плоскости:

Пусть прямая m параллельна плоскости α. Если плоскость β проходит через прямую m и пересекает плоскость α по прямой c, то c параллельна m.

Эта теорема помогает, например, при построении сечений пирамиды.

Разберем несколько задач на построение сечений.

1. Постройте сечение тетраэдра плоскостью, проходящей через точки М, N, K. Точка М лежит на ребре AD, N — на ребре DC, К — на ребре АВ.

Проведем МК в плоскости грани ABD и MN в плоскости грани ADC.

Продлим отрезки MN и АС;

Проведем РК в плоскости нижней грани; четырехугольник — искомое сечение.

MNLK

2. Постройте сечение тетраэдра плоскостью, проходящей через точки М, N, K. Точка N лежит на ребре

BC, M \in AD, K \in BD, MK \parallel AB.

Покажем, что плоскость сечения пересекает плоскость основания пирамиды по прямой NT, параллельной МК.

Прямая МК параллельна АВ, лежащей в плоскости основания АВС. Значит,

Плоскость сечения проходит прямую МК, параллельную плоскости АВС. По теореме о прямой и параллельной ей плоскости, линия пересечения плоскости сечения и плоскости АВС параллельна прямой МК. Трапеция MKNT — искомое сечение.

3. Постройте сечение куба проходящее через вершину и середины ребер и

BC.

Пусть М — середина АВ, N — середина ВС, Продолжим прямую MN до пересечения с продолжениями ребер DC и AD;

Треугольники АМР и KCN — прямоугольные равнобедренные, причем

Проведем — в плоскости задней грани и — в плоскости левой грани куба;

Пятиугольник — искомое сечение. В нем есть параллельные стороны: так как линии пересечения параллельных плоскостей третьей плоскостью параллельны.

4. Постройте сечение куба проходящее через вершину В и середины ребер и

CC_1.

Пусть М — середина ребра , N — середина ребра

Поскольку линии пересечения параллельных плоскостей третьей плоскостью параллельны, плоскость сечения пересекает заднюю грань по прямой, параллельной ВМ, а левую грань — по прямой, параллельной BN. Тогда искомое сечение — ромб

5. Постройте сечение правильного тетраэдра АВСS, проходящее через точку К — середину ребра АВ, точку М, делящую ребро АS в отношении , и точку N — середину апофемы грани SBC.

SM:AM = 1:2

Пусть SH — апофема грани SBC; N—середина SH.

Проведем MN в плоскости ASH;

Четырехугольник KMEF — искомое сечение.

Постройте сечение правильного тетраэдра АВСS, проходящее через точку К — середину ребра АВ, и точки М и Т — центры граней АSС и SBC.

\left(MN\right)\cap \left(AH\right)=P;P\in \left(ABC\right).KP\cap BC=F;FN\cap SC=E;

Пусть SЕ и SH — апофемы граней ASC и SBC; точки М и Т делят отрезки SЕ и SH в отношении 2:1, считая от точки S.

Из подобия треугольников SMT и SEH получим, что Значит

По теореме о прямой и параллельной ей плоскости, линия пересечения плоскости сечения и нижней грани параллельна прямой МТ. Это значит, что плоскость сечения пересекает грань АВС по прямой АВ. Достроим сечение.

где — середина ;

— искомое сечение.

7. Постройте сечение куба , проходящее через точку М, лежащую на ребре и точки Т и К, принадлежащие граням АВС и .

DCC_{1}

Точки М и К лежат в плоскости задней грани . Соединив М и К, получим, что

Соединив точки Р и Т в нижней грани, получим FN — линию пересечения плоскости сечения с нижней гранью;

. Трапеция FMEN — искомое сечение.

8. И самый сложный случай. Построим сечение куба плоскостью МNK, где , причем расстояния от точек М и N до плоскости АВС различны.

M \in \left(BB_1C_1\right),N\in \left(AA_1D_1\right),K\in \left(ABC\right)

Пусть точки и — проекции точек M и N на плоскость нижней грани

Плоскость проходит через параллельные прямые и .

Проведем в этой плоскости MN и

.

Точки Р и К лежат в нижней грани куба, следовательно, плоскость сечения пересекает нижнюю грань по прямой РК. Дальнейшее построение — очевидно.

 

Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России)                        +7 (495) 984-09-27 (бесплатный звонок по Москве)

Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

ege-study.ru

Учимся строить сечения многогранников.

Учимся строить сечения многогранников.

В этой статье я предлагаю вам самостоятельно построить сечения многогранника, проходящее через точки Подготовка к ГИА и ЕГЭ.  Каждое задание сопровождается видео с пошаговым построением сечения. Продолжение статьи читайте здесь.

Задание 1.

Учимся строить сечения многогранников

Построение. показать

 

Задание 2.

33

Построение. показать

Задание 3.

333

Построение. показать

Задание 4.

33

 

Построение. показать

Задание 5.

33

Построение. показать

Задание 6.

333

Построение. показать

 

 

И. В. Фельдман, репетитор по математике.

ege-ok.ru

Примеры построения сечений многогранников

Как известно, любой экзамен по математике содержит в качестве основной части решение задач. Умение решать задачи – основной показатель уровня математического развития.

Достаточно часто на школьных экзаменах, а так же на экзаменах, проводимых в ВУЗах и техникумах,  встречаются случаи, когда ученики, показывающие хорошие результаты в области теории, знающие все необходимые определения и теоремы, запутываются при решении весьма простых задач.

За годы обучения в школе каждый ученик решает большое число задач, но при этом для всех учеников задачи предлагаются одни и те же. И если некоторые ученики усваивают общие правила и методы решения задач, то другие, встретившись с задачей незнакомого вида, даже не знают, как к ней подступиться.

Одной из причин такого положения является то, что если одни ученики вникают в ход решения задачи и стараются осознать и понять общие приёмы и методы их решения, то другие не задумываются над этим, стараются как можно быстрее решить предложенные задачи.

Многие учащиеся не анализируют решаемые задачи, не выделяют для себя общие приёмы и способы решения. В таких случаях задачи решаются только ради получения нужного ответа.

Так, например, многие учащиеся даже не знают, в чём суть решения задач на построение. А ведь задачи на построение являются обязательными задачами в курсе стереометрии. Эти задачи не только красивы и оригинальны в методах своего решения, но и имеют большую практическую ценность.

Благодаря задачам на построение развивается способность мысленно представлять себе ту или иную геометрическую фигуру, развивается пространственное мышление, логическое мышление, а так же геометрическая интуиция. Задачи на построение развивают навыки решения проблем практического характера.

Задачи на построения не являются простыми, так как единого правила или алгоритма для их решения не существует. Каждая новая задача уникальна и требует индивидуального подхода к решению.

Процесс решения любой задачи на построение – это последовательность некоторых промежуточных построений, приводящих к цели.

Построение сечений многогранников базируется на следующих аксиомах:

1) Если две точки прямой лежат в некоторой плоскости, то и вся прямая лежит в данной плоскости;

2) Если две плоскости имеют общую точку, то они пересекаются по прямой, проходящей через эту точку.

Теорема: если две параллельные плоскости пересечены третьей плоскостью, то прямые пересечения параллельны.

Примеры построения сечений многогранников

Построить сечение многогранника плоскостью, проходящей через точки А, В и С. Рассмотрим следующие примеры.

Примеры построения сечений многогранников

Метод следов

I. Построить сечение призмы плоскостью, проходящей через данную прямую g (след) на плоскости одного из оснований призмы и точку А.

Случай 1.

Точка А принадлежит другому основанию призмы (или грани, параллельной прямой g) – секущая плоскость пересекает это основание (грань) по отрезку ВС, параллельному следу g.

Случай 2.

Точка А принадлежит боковой грани призмы:

1) строится точка D, в которой плоскость грани пересекает данный след g;

2) проводится прямая через точки А и D.

Отрезок ВС прямой AD и есть пересечение данной грани с секущей плоскостью.

Концы отрезка ВС принадлежат и соседним граням. Поэтому описанным способом можно построить пересечение этих граней с секущей плоскостью. И т. д.Примеры построения сечений многогранников

Случай 3.

Построение сечения четырехугольной призмы плоскостью, проходящей через прямую g в плоскости нижнего основания призмы и точку А на одном из боковых ребер.

II. Построить сечение пирамиды плоскостью, проходящей через данную прямую g (след) на плоскости основания пирамиды и точку А.

Для построения сечения пирамиды плоскостью достаточно построить пересечения ее боковых граней с секущей плоскостью.

Случай 1.

Если точка А принадлежит грани, параллельной прямой g, то секущая плоскость пересекает эту грань по отрезку ВС, параллельному следу g.

Случай 2.

Если точка А, принадлежащая сечению, расположена на грани, не параллельной грани следу g, то:

1) строится точка D, в которой плоскость грани пересекает данный след g;

2) проводится прямая через точки А и D.

Отрезок ВС прямой АD и есть пересечение данной грани с секущей плоскостью.

Концы отрезка ВС принадлежат и соседним граням. Поэтому описанным способом можно построить пересечение этих граней с секущей плоскостью. И т. д.Примеры построения сечений многогранников

Случай 3.

Построение сечения четырехугольной пирамиды плоскостью, проходящей через сторону основания и точку А на одном из боковых ребер.

Задачи на построение сечений через точку на грани

1. Построить сечение тетраэдра АВСD плоскостью, проходящей через вершину С и точки М и N на гранях АСD и АВС соответственно.

Точки С и М лежат на грани АСD, значит, и прямая СМ лежит в плоскости этой грани (рис. 1).

Пусть Р – точка пересечения прямых СМ и АD. Аналогично, точки С и N лежат в грани АСВ, значит прямая СN лежит в плоскости этой грани. Пусть Q – точка пересечения прямых СN и АВ. Точки Р и Q принадлежат и плоскости сечения, и грани АВD. Поэтому отрезок РQ – сторона сечения. Итак, треугольник СРQ – искомое сечение.Примеры построения сечений многогранников

2. Построить сечение тетраэдра АВСD плоскостью MPN, где точки M, N, P лежат соответственно на ребре АD, в грани ВСD и в грани АВС, причем MN не параллельно плоскости грани АВС (рис. 2).

 Остались вопросы? Не знаете, как построить сечение многогранника?
Чтобы получить помощь репетитора – зарегистрируйтесь.
Первый урок – бесплатно!

Зарегистрироваться

© blog.tutoronline.ru, при полном или частичном копировании материала ссылка на первоисточник обязательна.

blog.tutoronline.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о